Surface Hopping Dynamics with DFT Excited States

  • Mario BarbattiEmail author
  • Rachel Crespo-Otero
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 368)


Nonadiabatic dynamics simulation of electronically-excited states has been a research area of fundamental importance, providing support for spectroscopy, explaining photoinduced processes, and predicting new phenomena in a variety of specialties, from basic physical-chemistry, through molecular biology, to materials engineering. The demands in the field, however, are quickly growing, and the development of surface hopping based on density functional theory (SH/DFT) has been a major advance in the field. In this contribution, the surface hopping approach, the methods for computation of excited states based on DFT, the connection between these methodologies, and their diverse implementations are reviewed. The shortcomings of the methods are critically addressed and a number of case studies from diverse fields are surveyed.


Density functional theory Excited states Nonadiabatic dynamics Photochemistry Surface hopping 



Algebraic diagrammatic construction


Adiabatic local density approximation


Complete active space self-consistent field


Coupled cluster


Configuration interaction


CI with single excitations


Classical path approximation


Density functional theory


Density functional based tight binding


Decoherence-induced surface hopping


Global-flux surface hopping


Linear response




Multiconfigurational self-consistent field


Multireference CI


MRCI with singles and doubles


Multireference perturbation theory


Spin-restricted ensemble-referenced KS


Restricted open-shell KS


Random phase approximation


Single determinant KS


Surface hopping


Surface hopping with DFT excited states




Tamm–Dancoff approximation


Time-dependent Hartree–Fock


Spin-unrestricted broken symmetry



We would like to thank Dr. Michael Filatov for kindly providing the REKS data for Fig. 3 and also Dr. W. Arbelo-González, Dr. Fazzi, Dr. G. Rodrigues, and Dr. T. Very for helpful discussions.


  1. 1.
    Winter NOC, Graf NK, Leutwyler S, Hattig C (2013) Phys Chem Chem Phys 15:6623CrossRefGoogle Scholar
  2. 2.
    Silva-Junior MR, Thiel W (2010) J Chem Theory Comput 6:1546CrossRefGoogle Scholar
  3. 3.
    Silva-Junior MR, Schreiber M, Sauer SPA, Thiel W (2010) J Chem Phys 133:174318CrossRefGoogle Scholar
  4. 4.
    Schreiber M, Silva-Junior MR, Sauer SPA, Thiel W (2008) J Chem Phys 128:134110CrossRefGoogle Scholar
  5. 5.
    Silva-Junior MR, Schreiber M, Sauer SPA, Thiel W (2008) J Chem Phys 129:104103CrossRefGoogle Scholar
  6. 6.
    Wu W, Zhang H, Braïda B, Shaik S, Hiberty P (2014) Theor Chem Acc 133:1Google Scholar
  7. 7.
    Dreuw A, Weisman JL, Head-Gordon M (2003) J Chem Phys 119:2943CrossRefGoogle Scholar
  8. 8.
    Yonehara T, Hanasaki K, Takatsuka K (2011) Chem Rev 112:499CrossRefGoogle Scholar
  9. 9.
    Yarkony DR (2011) Chem Rev 112:481CrossRefGoogle Scholar
  10. 10.
    Worth GA, Cederbaum LS (2004) Annu Rev Phys Chem 55:127CrossRefGoogle Scholar
  11. 11.
    Barbatti M (2011) WIREs Comput Mol Sci 1:620CrossRefGoogle Scholar
  12. 12.
    Nelson T, Fernandez-Alberti S, Roitberg AE, Tretiak S (2013) J Chem Phys 138:224111CrossRefGoogle Scholar
  13. 13.
    Zheng J, Meana-Pañeda R, Truhlar DG (2014) J Phys Chem Lett 5:2039CrossRefGoogle Scholar
  14. 14.
    Nelson T, Fernandez-Alberti S, Chernyak V, Roitberg AE, Tretiak S (2012) J Chem Phys 136:054108CrossRefGoogle Scholar
  15. 15.
    Akimov AV, Prezhdo OV (2014) Phys Rev Lett 113:153003CrossRefGoogle Scholar
  16. 16.
    Gorshkov VN, Tretiak S, Mozyrsky D (2013) Nat Commun 4:2144CrossRefGoogle Scholar
  17. 17.
    Kelly A, van Zon R, Schofield J, Kapral R (2012) J Chem Phys 136:084101CrossRefGoogle Scholar
  18. 18.
    Nikitin EE (1968) In: Hartmann H, Heidberg J, Heydtmann H, Kohlmaier GH (eds) Chemische Elementarprozesse. Springer, BerlinGoogle Scholar
  19. 19.
    Tully JC, Preston RK (1971) J Chem Phys 55:562CrossRefGoogle Scholar
  20. 20.
    Curchod BFE, Rothlisberger U, Tavernelli I (2013) ChemPhysChem 14:1314CrossRefGoogle Scholar
  21. 21.
    Akimov AV, Neukirch AJ, Prezhdo OV (2013) Chem Rev 113:4496CrossRefGoogle Scholar
  22. 22.
    Fabiano E, Keal TW, Thiel W (2008) Chem Phys 349:334CrossRefGoogle Scholar
  23. 23.
    Wang L, Trivedi D, Prezhdo OV (2014) J Chem Theory Comput 10:3598CrossRefGoogle Scholar
  24. 24.
    Fabiano E, Groenhof G, Thiel W (2008) Chem Phys 351:111CrossRefGoogle Scholar
  25. 25.
    Kammerer CF, Lasser C (2008) J Chem Phys 128:144102CrossRefGoogle Scholar
  26. 26.
    Lasser C, Swart T (2008) J Chem Phys 129:034302CrossRefGoogle Scholar
  27. 27.
    Zhu C, Nakamura H, Nobusada K (2000) Phys Chem Chem Phys 2:557CrossRefGoogle Scholar
  28. 28.
    Tully JC (1990) J Chem Phys 93:1061CrossRefGoogle Scholar
  29. 29.
    Blais NC, Truhlar DG (1983) J Chem Phys 79:1334CrossRefGoogle Scholar
  30. 30.
    Jaeger HM, Fischer S, Prezhdo OV (2012) J Chem Phys 137:22A545CrossRefGoogle Scholar
  31. 31.
    Hammes-Schiffer S, Tully JC (1994) J Chem Phys 101:4657CrossRefGoogle Scholar
  32. 32.
    Mitrić R, Werner U, Bonačić-Koutecký V (2008) J Chem Phys 129:164118CrossRefGoogle Scholar
  33. 33.
    Pittner J, Lischka H, Barbatti M (2009) Chem Phys 356:147CrossRefGoogle Scholar
  34. 34.
    Tapavicza E, Tavernelli I, Rothlisberger U (2007) Phys Rev Lett 98:023001CrossRefGoogle Scholar
  35. 35.
    Plasser F, Crespo-Otero R, Pederzoli M, Pittner J, Lischka H, Barbatti M (2014) J Chem Theory Comput 10:1395CrossRefGoogle Scholar
  36. 36.
    Ou Q, Fatehi S, Alguire E, Shao Y, Subotnik JE (2014) J Chem Phys 141:024114CrossRefGoogle Scholar
  37. 37.
    Granucci G, Persico M, Toniolo A (2001) J Chem Phys 114:10608CrossRefGoogle Scholar
  38. 38.
    Plasser F, Granucci G, Pittner J, Barbatti M, Persico M, Lischka H (2012) J Chem Phys 137:22A514CrossRefGoogle Scholar
  39. 39.
    Wang L, Prezhdo OV (2014) J Phys Chem Lett 5:713CrossRefGoogle Scholar
  40. 40.
    Schwartz BJ, Bittner ER, Prezhdo OV, Rossky PJ (1996) J Chem Phys 104:5942CrossRefGoogle Scholar
  41. 41.
    Zhu CY, Nangia S, Jasper AW, Truhlar DG (2004) J Chem Phys 121:7658CrossRefGoogle Scholar
  42. 42.
    Akimov AV, Long R, Prezhdo OV (2014) J Chem Phys 140:194107CrossRefGoogle Scholar
  43. 43.
    Granucci G, Persico M (2007) J Chem Phys 126:134114CrossRefGoogle Scholar
  44. 44.
    Granucci G, Persico M, Zoccante A (2010) J Chem Phys 133:134111CrossRefGoogle Scholar
  45. 45.
    Bajo JJ, González-Vázquez J, Sola IR, Santamaria J, Richter M, Marquetand P, González L (2011) J Phys Chem A 116:2800CrossRefGoogle Scholar
  46. 46.
    Granucci G, Persico M, Spighi G (2012) J Chem Phys 137:22A501CrossRefGoogle Scholar
  47. 47.
    Jones GA, Acocella A, Zerbetto F (2008) J Phys Chem A 112:9650CrossRefGoogle Scholar
  48. 48.
    Mitric R, Petersen J, Bonacic-Koutecky V (2009) Phys Rev A 79:053416CrossRefGoogle Scholar
  49. 49.
    Tavernelli I, Curchod BFE, Rothlisberger U (2010) Phys Rev A 81:052508CrossRefGoogle Scholar
  50. 50.
    Fischer M, Handt J, Schmidt R (2014) Phys Rev A 90:012527CrossRefGoogle Scholar
  51. 51.
    Baer R (2002) Chem Phys Lett 364:75CrossRefGoogle Scholar
  52. 52.
    Lopata K, Govind N (2011) J Chem Theory Comput 7:1344CrossRefGoogle Scholar
  53. 53.
    Dobson JF, Bunner MJ, Gross EKU (1997) Phys Rev Lett 79:1905CrossRefGoogle Scholar
  54. 54.
    Casida M (1995) In: Chong D (ed) Recent advances in density functional methods, part I. World Scientific, Singapore, p 155CrossRefGoogle Scholar
  55. 55.
    Dreuw A, Head-Gordon M (2005) Chem Rev 105:4009CrossRefGoogle Scholar
  56. 56.
    Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Phys Rev B 58:7260CrossRefGoogle Scholar
  57. 57.
    Niehaus TA, Suhai S, Della Sala F, Lugli P, Elstner M, Seifert G, Frauenheim T (2001) Phys Rev B 63:085108CrossRefGoogle Scholar
  58. 58.
    Gonze X, Scheffler M (1999) Phys Rev Lett 82:4416CrossRefGoogle Scholar
  59. 59.
    Görling A (1996) Phys Rev A 54:3912CrossRefGoogle Scholar
  60. 60.
    Maitra NT (2006) J Chem Phys 125:014110CrossRefGoogle Scholar
  61. 61.
    Akimov AV, Prezhdo OV (2013) J Chem Theory Comput 9:4959CrossRefGoogle Scholar
  62. 62.
    Fischer M, Handt J, Schmidt R (2014) Phys Rev A 90:012525CrossRefGoogle Scholar
  63. 63.
    Gao X, Peng Q, Niu Y, Wang D, Shuai Z (2012) Phys Chem Chem Phys 14:14207CrossRefGoogle Scholar
  64. 64.
    Shenvi N, Roy S, Tully JC (2009) J Chem Phys 130:174107CrossRefGoogle Scholar
  65. 65.
    Frank I, Hutter J, Marx D, Parrinello M (1998) J Chem Phys 108:4060CrossRefGoogle Scholar
  66. 66.
    Doltsinis NL, Markwick PRL, Nieber H, Langer H (2008) In: Shukla MK, Leszczynski J (eds) Radiation induced molecular phenomena in nucleic acids. Springer, The Netherlands, p 265CrossRefGoogle Scholar
  67. 67.
    Röhrig UF, Guidoni L, Laio A, Frank I, Rothlisberger U (2004) J Am Chem Soc 126:15328CrossRefGoogle Scholar
  68. 68.
    Doltsinis NL, Marx D (2002) Phys Rev Lett 88:166402CrossRefGoogle Scholar
  69. 69.
    Filatov M, Shaik S (1998) Chem Phys Lett 288:689CrossRefGoogle Scholar
  70. 70.
    Okazaki I, Sato F, Yoshihiro T, Ueno T, Kashiwagi H (1998) J Mol Struct (THEOCHEM) 451:109CrossRefGoogle Scholar
  71. 71.
    Gräfenstein J, Kraka E, Cremer D (1998) Chem Phys Lett 288:593CrossRefGoogle Scholar
  72. 72.
    Furche F, Ahlrichs R (2002) J Chem Phys 117:7433CrossRefGoogle Scholar
  73. 73.
    Chernyak V, Mukamel S (2000) J Chem Phys 112:3572CrossRefGoogle Scholar
  74. 74.
    Hu C, Hirai H, Sugino O (2007) J Chem Phys 127:064103CrossRefGoogle Scholar
  75. 75.
    Hu C, Sugino O, Tateyama Y (2009) J Chem Phys 131:114101CrossRefGoogle Scholar
  76. 76.
    Hu C, Sugino O, Watanabe K (2014) J Chem Phys 140:054106CrossRefGoogle Scholar
  77. 77.
    Send R, Furche F (2010) J Chem Phys 132:044107CrossRefGoogle Scholar
  78. 78.
    Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Chem Phys Lett 162:165CrossRefGoogle Scholar
  79. 79.
    Tavernelli I, Tapavicza E, Rothlisberger U (2009) J Mol Struct (THEOCHEM) 914:22CrossRefGoogle Scholar
  80. 80.
    Barbatti M, Pittner J, Pederzoli M, Werner U, Mitrić R, Bonačić-Koutecký V, Lischka H (2010) Chem Phys 375:26CrossRefGoogle Scholar
  81. 81.
    Werner U, Mitrić R, Suzuki T, Bonačić-Koutecký V (2008) Chem Phys 349:319CrossRefGoogle Scholar
  82. 82.
    Tavernelli I, Tapavicza E, Rothlisberger U (2009) J Chem Phys 130:124107CrossRefGoogle Scholar
  83. 83.
    Tavernelli I, Curchod BFE, Laktionov A, Rothlisberger U (2010) J Chem Phys 133:194104CrossRefGoogle Scholar
  84. 84.
    Tavernelli I, Curchod BFE, Rothlisberger U (2009) J Chem Phys 131:196101CrossRefGoogle Scholar
  85. 85.
    Franco de Carvalho F, Curchod BFE, Penfold TJ, Tavernelli I (2014) J Chem Phys 140:144103Google Scholar
  86. 86.
    Marian CM (2012) Wiley Interdiscip Rev Comput Mol Sci 2:187CrossRefGoogle Scholar
  87. 87.
    Chiodo S, Russo N (2008) J Comput Chem 29:912CrossRefGoogle Scholar
  88. 88.
    Chiodo SG, Russo N (2010) Chem Phys Lett 490:90CrossRefGoogle Scholar
  89. 89.
    Humeniuk A, Wohlgemuth M, Suzuki T, Mitrić R (2013) J Chem Phys 139:134104CrossRefGoogle Scholar
  90. 90.
    Billeter SR, Curioni A (2005) J Chem Phys 122:034105CrossRefGoogle Scholar
  91. 91.
    Filatov M (2015) Top Curr Chem (in press)Google Scholar
  92. 92.
    Hohenberg P, Kohn W (1964) Phys Rev 136:B864CrossRefGoogle Scholar
  93. 93.
    Gross EKU, Oliveira LN, Kohn W (1988) Phys Rev A 37:2805CrossRefGoogle Scholar
  94. 94.
    Katriel J, Zahariev F, Burke K (2001) Int J Quantum Chem 85:432CrossRefGoogle Scholar
  95. 95.
    Cremer D (2001) Mol Phys 99:1899CrossRefGoogle Scholar
  96. 96.
    Huix-Rotllant M, Nikiforov A, Thiel W, Filatov M (2015) Top Curr Chem (in press)Google Scholar
  97. 97.
    Becke AD (2014) J Chem Phys 140:18A301CrossRefGoogle Scholar
  98. 98.
    Cremer D (2013) WIREs Comput Mol Sci 3:482CrossRefGoogle Scholar
  99. 99.
    Filatov M, Shaik S (1999) Chem Phys Lett 304:429CrossRefGoogle Scholar
  100. 100.
    Gross EKU, Oliveira LN, Kohn W (1988) Phys Rev A 37:2809CrossRefGoogle Scholar
  101. 101.
    Filatov M (2015) WIREs Comput Mol Sci 5:146CrossRefGoogle Scholar
  102. 102.
    Grimme S, Waletzke M (1999) J Chem Phys 111:5645CrossRefGoogle Scholar
  103. 103.
    Beck EV, Stahlberg EA, Burggraf LW, Blaudeau J-P (2008) Chem Phys 349:158CrossRefGoogle Scholar
  104. 104.
    Kurzweil Y, Lawler KV, Head-Gordon M (2009) Mol Phys 107:2103CrossRefGoogle Scholar
  105. 105.
    Sharkas K, Savin A, Jensen HJA, Toulouse J (2012) J Chem Phys 137:044104CrossRefGoogle Scholar
  106. 106.
    Fromager E, Knecht S, Jensen HJA (2013) J Chem Phys 138:084101Google Scholar
  107. 107.
    Gräfenstein J, Kraka E, Filatov M, Cremer D (2002) Int J Mol Sci 3:360CrossRefGoogle Scholar
  108. 108.
    Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297CrossRefGoogle Scholar
  109. 109.
    Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257CrossRefGoogle Scholar
  110. 110.
    Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115:3540CrossRefGoogle Scholar
  111. 111.
    Becke AD (1988) Phys Rev A 38:3098CrossRefGoogle Scholar
  112. 112.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  113. 113.
    Minami T, Nakano M, Castet F (2011) J Phys Chem Lett 2:1725CrossRefGoogle Scholar
  114. 114.
    Zheng G, Witek HA, Bobadova-Parvanova P, Irle S, Musaev DG, Prabhakar R, Morokuma K, Lundberg M, Elstner M, Köhler C, Frauenheim T (2007) J Chem Theory Comput 3:1349CrossRefGoogle Scholar
  115. 115.
    Barbatti M, Paier J, Lischka H (2004) J Chem Phys 121:11614CrossRefGoogle Scholar
  116. 116.
    Dunning TH (1989) J Chem Phys 90:1007CrossRefGoogle Scholar
  117. 117.
    Sellner B, Barbatti M, Müller T, Domcke W, Lischka H (2013) Mol Phys 111:2439CrossRefGoogle Scholar
  118. 118.
    Mori T, Glover WJ, Schuurman MS, Martinez TJ (2012) J Phys Chem A 116:2808CrossRefGoogle Scholar
  119. 119.
    Kosma K, Trushin SA, Fuss W, Schmid WE (2008) J Phys Chem A 112:7514CrossRefGoogle Scholar
  120. 120.
    Levine BG, Ko C, Quenneville J, Martínez TJ (2006) Mol Phys 104:1039CrossRefGoogle Scholar
  121. 121.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  122. 122.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623CrossRefGoogle Scholar
  123. 123.
    Tapavicza E, Tavernelli I, Rothlisberger U, Filippi C, Casida ME (2008) J Chem Phys 129:124108CrossRefGoogle Scholar
  124. 124.
    Hättig C (2005) Adv Quantum Chem 50:37CrossRefGoogle Scholar
  125. 125.
    Schirmer J (1982) Phys Rev A 26:2395CrossRefGoogle Scholar
  126. 126.
    Gozem S, Melaccio F, Valentini A, Filatov M, Huix-Rotllant M, Ferré N, Frutos LM, Angeli C, Krylov AI, Granovsky AA, Lindh R, Olivucci M (2014) J Chem Theory Comput 10:3074CrossRefGoogle Scholar
  127. 127.
    Crespo-Otero R, Mardykov A, Sanchez-Garcia E, Sander W, Barbatti M (2014) Phys Chem Chem Phys 16:18877CrossRefGoogle Scholar
  128. 128.
    Barbatti M (2014) J Am Chem Soc 136:10246CrossRefGoogle Scholar
  129. 129.
    Tuna D, Došlić N, Mališ M, Sobolewski AL, Domcke W (2014) J Phys Chem B 119:2112CrossRefGoogle Scholar
  130. 130.
    Barbatti M, Granucci G, Ruckenbauer M, Plasser F, Crespo-Otero R, Pittner J, Persico M, Lischka H (2013) NEWTON-X: a package for Newtonian dynamics close to the crossing seam:
  131. 131.
    Barbatti M, Ruckenbauer M, Plasser F, Pittner J, Granucci G, Persico M, Lischka H (2014) WIREs Comput Mol Sci 4:26CrossRefGoogle Scholar
  132. 132.
    Akimov AV, Prezhdo OV (2014) J Chem Theory Comput 10:789CrossRefGoogle Scholar
  133. 133.
    Mitrić R, Werner U, Wohlgemuth M, Seifert G, Bonačić-Koutecký V (2009) J Phys Chem A 113:12700CrossRefGoogle Scholar
  134. 134.
    Craig CF, Duncan WR, Prezhdo OV (2005) Phys Rev Lett 95:163001CrossRefGoogle Scholar
  135. 135.
    Fischer M, Handt J, Schmidt R (2014) Phys Rev A 90:012526CrossRefGoogle Scholar
  136. 136.
    Shenvi N, Tully JC (2012) Faraday Discuss 157:325CrossRefGoogle Scholar
  137. 137.
    Doltsinis NL (2002) In: Grotendorst J, Marx D, Muramatsu A (eds) Quantum simulations of complex many-body systems: from theory to algorithms. John von Neumann Institute for Computing, JulichGoogle Scholar
  138. 138.
    Tully JC (1998) Faraday Discuss 110:407CrossRefGoogle Scholar
  139. 139.
    Castro A, Appel H, Oliveira M, Rozzi CA, Andrade X, Lorenzen F, Marques MAL, Gross EKU, Rubio A (2006) Phys Status Solidi B 243:2465CrossRefGoogle Scholar
  140. 140.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, revision D.01. Gaussian, Inc., WallingfordGoogle Scholar
  141. 141.
    Lischka H, Müller T, Szalay PG, Shavitt I, Pitzer RM, Shepard R (2011) WIREs Comput Mol Sci 1:191CrossRefGoogle Scholar
  142. 142.
    Lischka H, Shepard R, Shavitt I, Pitzer RM, Dallos M, Müller T, Szalay PG, Brown FB, Ahlrichs R, Böhm HJ, Chang A, Comeau DC, Gdanitz R, Dachsel H, Ehrhardt C, Ernzerhof M, Höchtl P, Irle S, Kedziora G, Kovar T, Parasuk V, Pepper MJM, Scharf P, Schiffer H, Schindler M, Schüler M, Seth M, Stahlberg EA, Zhao J-G, Yabushita S, Zhang Z, Barbatti M, Matsika S, Schuurmann M, Yarkony DR, Brozell SR, Beck EV, Blaudeau J-P, Ruckenbauer M, Sellner B, Plasser F, Szymczak JJ (2012) COLUMBUS, an ab initio electronic structure program, release 7.0:
  143. 143.
    Gordon MS, Schmidt MW (2005) In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry the first forty years. Elsevier, Amsterdam, p 1167CrossRefGoogle Scholar
  144. 144.
    Crespo-Otero R, Barbatti M, Yu H, Evans NL, Ullrich S (2011) ChemPhysChem 12:3365CrossRefGoogle Scholar
  145. 145.
    Tomasello G, Humeniuk A, Mitrić R (2014) J Phys Chem A 118:8437CrossRefGoogle Scholar
  146. 146.
    Klaumunzer B, Kroner D, Lischka H, Saalfrank P (2012) Phys Chem Chem Phys 14:8693CrossRefGoogle Scholar
  147. 147.
    Frank I, Damianos K (2007) J Chem Phys 126:125105CrossRefGoogle Scholar
  148. 148.
    Barbatti M, Lan Z, Crespo-Otero R, Szymczak JJ, Lischka H, Thiel W (2012) J Chem Phys 137:22A503CrossRefGoogle Scholar
  149. 149.
    Fischer SA, Habenicht BF, Madrid AB, Duncan WR, Prezhdo OV (2011) J Chem Phys 134:024102Google Scholar
  150. 150.
    Rodrigues GP, Ventura E, do Monte SA, Barbatti M (2014) J Phys Chem A 118:12041CrossRefGoogle Scholar
  151. 151.
    Langer H, Doltsinis NL (2004) Phys Chem Chem Phys 6:2742CrossRefGoogle Scholar
  152. 152.
    Langer H, Doltsinis NL, Marx D (2005) ChemPhysChem 6:1734CrossRefGoogle Scholar
  153. 153.
    Nieber H, Doltsinis NL (2008) Chem Phys 347:405CrossRefGoogle Scholar
  154. 154.
    Markwick PRL, Doltsinis NL, Schlitter J (2007) J Chem Phys 126:045104CrossRefGoogle Scholar
  155. 155.
    Wohlgemuth M, Bonačić-Koutecký V, Mitrić R (2011) J Chem Phys 135:054105Google Scholar
  156. 156.
    Mercier SR, Boyarkin OV, Kamariotis A, Guglielmi M, Tavernelli I, Cascella M, Rothlisberger U, Rizzo TR (2006) J Am Chem Soc 128:16938CrossRefGoogle Scholar
  157. 157.
    Hu W, Lendvay G, Maiti B, Schatz GC (2008) J Phys Chem A 112:2093CrossRefGoogle Scholar
  158. 158.
    Mališ M, Loquais Y, Gloaguen E, Biswal HS, Piuzzi F, Tardivel B, Brenner V, Broquier M, Jouvet C, Mons M, Došlić N, Ljubić I (2012) J Am Chem Soc 134:20340CrossRefGoogle Scholar
  159. 159.
    Guglielmi M, Tavernelli I, Rothlisberger U (2009) Phys Chem Chem Phys 11:4549CrossRefGoogle Scholar
  160. 160.
    Habenicht BF, Prezhdo OV (2008) Phys Rev Lett 100:197402CrossRefGoogle Scholar
  161. 161.
    Long R, Prezhdo OV (2014) Nano Lett 14:3335CrossRefGoogle Scholar
  162. 162.
    Habenicht BF, Prezhdo OV (2009) J Phys Chem C 113:14067CrossRefGoogle Scholar
  163. 163.
    Böckmann M, Doltsinis NL, Marx D (2010) Angew Chem 122:3454CrossRefGoogle Scholar
  164. 164.
    Bockmann M, Doltsinis NL, Marx D (2010) J Phys Chem A 114:745CrossRefGoogle Scholar
  165. 165.
    Neukirch AJ, Shamberger LC, Abad E, Haycock BJ, Wang H, Ortega J, Prezhdo OV, Lewis JP (2013) J Chem Theory Comput 10:14CrossRefGoogle Scholar
  166. 166.
    Akimov AV, Prezhdo OV (2014) J Am Chem Soc 136:1599CrossRefGoogle Scholar
  167. 167.
    Crespo-Otero R, Barbatti M (2011) J Chem Phys 134:164305CrossRefGoogle Scholar
  168. 168.
    Garavelli M (2006) Theor Chem Acc 116:87CrossRefGoogle Scholar
  169. 169.
    Tavernelli I, Curchod BFE, Rothlisberger U (2011) Chem Phys 391:101CrossRefGoogle Scholar
  170. 170.
    Jasper AW, Zhu CY, Nangia S, Truhlar DG (2004) Faraday Discuss 127:1CrossRefGoogle Scholar
  171. 171.
    Casida M, Natarajan B, Deutsch T (2012) In: Marques MAL, Maitra NT, Nogueira FMS, Gross EKU, Rubio A (eds) Fundamentals of time-dependent density functional theory. Springer, Berlin/Heidelberg, p 279CrossRefGoogle Scholar
  172. 172.
    Akimov AV, Muckerman JT, Prezhdo OV (2013) J Am Chem Soc 135:8682CrossRefGoogle Scholar
  173. 173.
    Casida ME, Huix-Rotllant M (2012) Annu Rev Phys Chem 63:287CrossRefGoogle Scholar
  174. 174.
    Barbatti M, Aquino AJA, Lischka H (2006) Mol Phys 104:1053CrossRefGoogle Scholar
  175. 175.
    Vazdar M, Eckert-Maksic M, Barbatti M, Lischka H (2009) Mol Phys 107:845CrossRefGoogle Scholar
  176. 176.
    Weingart O, Lan Z, Koslowski A, Thiel W (2011) J Phys Chem Lett 2:1506CrossRefGoogle Scholar
  177. 177.
    Pederzoli M, Pittner J, Barbatti M, Lischka H (2011) J Phys Chem A 115:11136CrossRefGoogle Scholar
  178. 178.
    Carstensen O, Sielk J, Schonborn JB, Granucci G, Hartke B (2010) J Chem Phys 133:124305CrossRefGoogle Scholar
  179. 179.
    Ootani Y, Satoh K, Nakayama A, Noro T, Taketsugu T (2009) J Chem Phys 131:194306CrossRefGoogle Scholar
  180. 180.
    Gao A-H, Li B, Zhang P-Y, Liu J (2014) Comput Theor Chem 1031:13CrossRefGoogle Scholar
  181. 181.
    Sobolewski AL, Domcke WG (2007) J Phys Chem A 111:11725CrossRefGoogle Scholar
  182. 182.
    Evans NL, Ullrich S (2010) J Phys Chem A 114:11225CrossRefGoogle Scholar
  183. 183.
    Mishra A, Bäuerle P (2012) Angew Chem Int Ed 51:2020CrossRefGoogle Scholar
  184. 184.
    Ameri T, Khoram P, Min J, Brabec CJ (2013) Adv Mater 25:4245CrossRefGoogle Scholar
  185. 185.
    Grancini G, Polli D, Fazzi D, Cabanillas-Gonzalez J, Cerullo G, Lanzani G (2011) J Phys Chem Lett 2:1099CrossRefGoogle Scholar
  186. 186.
    Veera S, Nismy NA, Adikaari AADT, Simon JH, Maxim S, Silva SRP (2011) Nanotechnology 22:265607CrossRefGoogle Scholar
  187. 187.
    Sen K, Crespo-Otero R, Weingart O, Thiel W, Barbatti M (2013) J Chem Theory Comput 9:533CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Max-Planck-Institut für KohlenforschungMülheim an der RuhrGermany
  2. 2.School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK

Personalised recommendations