Advertisement

Carbohydrates

  • Emilio J. Cocinero
  • Pierre ÇarçabalEmail author
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 364)

Abstract

Although carbohydrates represent one of the most important families of biomolecules, they remain under-studied in comparison to the other biomolecular families (peptides, nucleobases). Beyond their best-known function of energy source in living systems, they act as mediator of molecular recognition processes, carrying molecular information in the so-called “sugar code,” just to name one of their countless functions. Owing to their high conformational flexibility, they encode extremely rich information conveyed via the non-covalent hydrogen bonds within the carbohydrate and with other biomolecular assemblies, such as peptide subunits of proteins. Over the last decade there has been tremendous progress in the study of the conformational preferences of neutral oligosaccharides, and of the interactions between carbohydrates and various molecular partners (water, aromatic models, and peptide models), using vibrational spectroscopy as a sensitive probe. In parallel, other spectroscopic techniques have recently become available to the study of carbohydrates in the gas phase (microwave spectroscopy, IRMPD on charged species).

Keywords

Carbohydrates Sugars Glycans Biomolecular interactions Non-covalent interactions Hydrogen bonding Conformations Micro-hydration Gas-phase spectroscopy 

Notes

Acknowledgements

Professor John P. Simons has pioneered the study of neutral CBHs in the gas phase. Several “generations” of students and post-docs have been lucky enough to spend some time in his group. We had the opportunity to contribute to very exciting studies and, most importantly, we found inspiration and confidence to pursue our own scientific interests. John has been especially important for the two of us for developing our own activities and we can never thank him enough for his support. We also want to thank all our friends from the “JPS sugar team” who contributed over the years. Francis Talbot, Rebeccah A. Jockush, Niel A. Macleod, Isabel Hunig, Cristina Stanca-Kaposta, Bo Liu, Timothy D. Vaden, Zheng Su, Nitzan Mayorkas, and Svemir Rudic.

References

  1. 1.
    Varki A (1993) Glycobiology 3(2):97–130Google Scholar
  2. 2.
    Berg JM, Tymoczko JL, Stryer L (2002) Carbohydrates. In: Biochemistry, 5th edn. W.H. Freeman, New YorkGoogle Scholar
  3. 3.
    Taylor ME, Drickamer K (2003) Introduction to glycobiology, 2nd edn. Oxford University Press, London, New YorkGoogle Scholar
  4. 4.
    Rudd PM, Dwek RA (2006) Curr Opin Struct Biol 16(5):559–560Google Scholar
  5. 5.
    Imperiali B (2012) J Am Chem Soc 134(43):17835–17839Google Scholar
  6. 6.
    A Roadmap for the Future (2012) National Research Council (US) committee on assessing the importance and impact of glycomics and glycosciences. National Academies Press, Washington. ISBN-13: 978-0-309-26083-1-ISBN-10: 0-309-26083-3Google Scholar
  7. 7.
    Simons JP, Jockusch RA, Carcabal P, Hung I, Kroemer RT, Macleod NA, Snoek LC (2005) Int Rev Phys Chem 24(3–4):489–531Google Scholar
  8. 8.
    Simons JP (2009) Mol Phys 107(23–24):2435–2458Google Scholar
  9. 9.
    Schwarz F, Aebi M (2011) Curr Opin Struct Biol 21(5):576–582Google Scholar
  10. 10.
    Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA (2007) Annu Rev Immunol 25:21–50Google Scholar
  11. 11.
    Wormald MR, Dwek RA (1999) Structure 7(7):R155–R160Google Scholar
  12. 12.
    Wormald MR, Petrescu AJ, Pao YL, Glithero A, Elliott T, Dwek RA (2002) Chem Rev 102(2):371–386Google Scholar
  13. 13.
    O’Connor SE, Imperiali B (1996) Chem Biol 3(10):803–812Google Scholar
  14. 14.
    O’Connor SE, Imperiali B (1998) Chem Biol 5(8):427–437Google Scholar
  15. 15.
    Weerapana E, Imperiali B (2006) Glycobiology 16(6):91r–101rGoogle Scholar
  16. 16.
    Woods RJ, Pathiaseril A, Wormald MR, Edge CJ, Dwek RA (1998) Eur J Biochem 258(2):372–386Google Scholar
  17. 17.
    Bosques CJ, Tschampel SM, Woods RJ, Imperiali B (2004) J Am Chem Soc 126(27):8421–8425Google Scholar
  18. 18.
    Gabius HJ (2000) Naturwissenschaften 87(3):108–121Google Scholar
  19. 19.
    Gabius H-J, André S, Kaltner H, Siebert H-C (2002) Biochim Biophys Acta Gen Subj 1572(2–3):165–177Google Scholar
  20. 20.
    Gabius H-J, André S, Jiménez-Barbero J, Romero A, Solís D (2011) Trends Biochem Sci 36(6):298–313Google Scholar
  21. 21.
    Pilobello KT, Mahal LK (2007) Curr Opin Chem Biol 11(3):300–305Google Scholar
  22. 22.
    Feizi T, Chai W (2004) Nat Rev Mol Cell Biol 5(7):582–588Google Scholar
  23. 23.
    Davis BG (2000) Chem Ind, pp. 134–138Google Scholar
  24. 24.
    Shriver Z, Raguram S, Sasisekharan R (2004) Nat Rev Drug Discov 3(10):863–873Google Scholar
  25. 25.
    Ernst B, Magnani JL (2009) Nat Rev Drug Discov 8(8):661–677Google Scholar
  26. 26.
    Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) (2009) Essential in glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  27. 27.
    Weis WI, Drickamer K (1996) Annu Rev Biochem 65(1):441–473Google Scholar
  28. 28.
    Bertozzi CR, Rabuka D (2009) Structural basis of glycan diversity. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  29. 29.
    Breslow R (2012) J Am Chem Soc 134(16):6887–6892Google Scholar
  30. 30.
    Ruiz-Mirazo K, Briones C, de la Escosura A (2014) Chem Rev 114(1):285–366Google Scholar
  31. 31.
    Cocinero EJ, Lesarri A, Ecija P, Basterretxea FJ, Grabow J-U, Fernandez JA, Castano F (2012) Angew Chem Int Ed 51(13):3119–3124Google Scholar
  32. 32.
    Talbot FO, Simons JP (2002) Phys Chem Chem Phys 4(15):3562–3565Google Scholar
  33. 33.
    Jockusch RA, Kroemer RT, Talbot FO, Simons JP (2003) J Phys Chem A 107(49):10725–10732Google Scholar
  34. 34.
    Jockusch RA, Kroemer RT, Talbot FO, Snoek LC, Carcabal P, Simons JP, Havenith M, Bakker JM, Compagnon I, Meijer G, von Helden G (2004) J Am Chem Soc 126(18):5709–5714Google Scholar
  35. 35.
    Carcabal P, Jockusch RA, Hunig I, Snoek LC, Kroemer RT, Davis BG, Gamblin DP, Compagnon I, Oomens J, Simons JP (2005) J Am Chem Soc 127(32):11414–11425Google Scholar
  36. 36.
    Carcabal P, Hunig I, Gamblin DP, Liu B, Jockusch RA, Kroemer RT, Snoek LC, Fairbanks AJ, Davis BG, Simons JP (2006) J Am Chem Soc 128(6):1976–1981Google Scholar
  37. 37.
    Jockusch RA, Talbot FO, Rogers PS, Simone MI, Fleet GWJ, Simons JP (2006) J Am Chem Soc 128(51):16771–16777Google Scholar
  38. 38.
    Macleod NA, Johannessen C, Hecht L, Barron LD, Simons JP (2006) Int J Mass Spectrom 253(3):193–200Google Scholar
  39. 39.
    Screen J, Stanca-Kaposta EC, Gamblin DP, Liu B, Macleod NA, Snoek LC, Davis BG, Simons JP (2007) Angew Chem Int Ed 46(20):3644–3648Google Scholar
  40. 40.
    Cocinero EJ, Stanca-Kaposta EC, Scanlan EM, Gamblin DP, Davis BG, Simons JP (2008) Chem Eur J 14(29):8947–8955Google Scholar
  41. 41.
    Simons JP, Stanca-Kaposta EC, Cocinero EJ, Liu B, Davis BG, Gamblin DP, Kroemer RT (2008) Phys Scr 78(5), 058124Google Scholar
  42. 42.
    Cocinero EJ, Gamblin DP, Davis BG, Simons JP (2009) J Am Chem Soc 131(31):11117–11123Google Scholar
  43. 43.
    Simons JP, Davis BG, Cocinero EJ, Gamblin DP, Stanca-Kaposta EC (2009) Tetrahedron-Asymmetry 20(6–8):718–722Google Scholar
  44. 44.
    Su Z, Cocinero EJ, Stanca-Kaposta EC, Davis BG, Simons JP (2009) Chem Phys Lett 471(1–3):17–21Google Scholar
  45. 45.
    Drouin L, Stanca-Kaposta EC, Saundh P, Fairbanks AJ, Kemper S, Claridge TDW, Simons JP (2009) Chem Eur J 15(16):4057–4069Google Scholar
  46. 46.
    Su Z, Wagner B, Cocinero EJ, Ernst B, Simons JP (2009) Chem Phys Lett 477(4–6):365–368Google Scholar
  47. 47.
    Brauer B, Pincu M, Buch V, Bar I, Simons JP, Gerber RB (2011) J Phys Chem A 115(23):5859–5872Google Scholar
  48. 48.
    Cocinero EJ, Carcabal P, Vaden TD, Davis BG, Simons JP (2011) J Am Chem Soc 133(12):4548–4557Google Scholar
  49. 49.
    Cocinero EJ, Carcabal P, Vaden TD, Simons JP, Davis BG (2011) Nature 469(7328):76–U1400Google Scholar
  50. 50.
    Jin L, Simons JP, Gerber RB (2011) Chem Phys Lett 518:49–54Google Scholar
  51. 51.
    Mayorkas N, Rudic S, Cocinero EJ, Davis BG, Simons JP (2011) Phys Chem Chem Phys 13(41):18671–18678Google Scholar
  52. 52.
    Mayorkas N, Rudic S, Davis BG, Simons JP (2011) Chem Sci 2(6):1128–1134Google Scholar
  53. 53.
    Pincu M, Cocinero EJ, Mayorkas N, Brauer B, Davis BG, Gerber RB, Simons JP (2011) J Phys Chem A 115(34):9498–9509Google Scholar
  54. 54.
    Jin L, Simons JP, Gerber RB (2012) J Phys Chem A 116(46):11088–11094Google Scholar
  55. 55.
    Sagar R, Rudic S, Gamblin DP, Scanlan EM, Vaden TD, Odell B, Claridge TDW, Simons JP, Davis BG (2012) Chem Sci 3(7):2307–2313Google Scholar
  56. 56.
    H-b X, Jin L, Rudic S, Simons JP, Gerber RB (2012) J Phys Chem B 116(16):4851–4859Google Scholar
  57. 57.
    Barry CS, Cocinero EJ, Carcabal P, Gamblin DP, Stanca-Kaposta EC, Remmert SM, Fernández Alonso MdC, Rudic S, Simons JP, Davis BG (2013) J Am Chem Soc 135(45):16895–16903Google Scholar
  58. 58.
    Carcabal P, Cocinero EJ, Simons JP (2013) Chem Sci 4(4):1830–1836Google Scholar
  59. 59.
    Stanca-Kaposta EC, Carcabal P, Cocinero EJ, Hurtado P, Simons JP (2013) J Phys Chem B 117(27):8135–8142Google Scholar
  60. 60.
    Polfer NC, Valle JJ, Moore DT, Oomens J, Eyler JR, Bendiak B (2006) Anal Chem 78(3):670–679Google Scholar
  61. 61.
    Stefan SE, Eyler JR (2009) Anal Chem 81(3):1224–1227Google Scholar
  62. 62.
    Cagmat EB, Szczepanski J, Pearson WL, Powell DH, Eyler JR, Polfer NC (2010) Phys Chem Chem Phys 12(14):3474–3479Google Scholar
  63. 63.
    Stefan SE, Eyler JR (2010) Int J Mass Spectrom 297(1–3):96–101Google Scholar
  64. 64.
    Brown DJ, Stefan SE, Berden G, Steill JD, Oomens J, Eyler JR, Bendiak B (2011) Carbohydr Res 346(15):2469–2481Google Scholar
  65. 65.
    Stefan SE, Ehsan M, Pearson WL, Aksenov A, Boginski V, Bendiak B, Eyler JR (2011) Anal Chem 83(22):8468–8476Google Scholar
  66. 66.
    Contreras CS, Polfer NC, Oomens J, Steill JD, Bendiak B, Eyler JR (2012) Int J Mass Spectrom 330:285–294Google Scholar
  67. 67.
    Rudic S, Xie H-b, Gerber RB, Simons JP (2012) Mol Phys 110(15–16):1609–1615Google Scholar
  68. 68.
    Pena I, Mata S, Martin A, Cabezas C, Daly AM, Alonso JL (2013) Phys Chem Chem Phys 15(41):18243–18248Google Scholar
  69. 69.
    Cocinero EJ, Lesarri A, Ecija P, Cimas A, Davis BG, Basterretxea FJ, Fernandez JA, Castano F (2013) J Am Chem Soc 135(7):2845–2852Google Scholar
  70. 70.
    Bermudez C, Pena I, Cabezas C, Daly AM, Alonso JL (2013) Chemphyschem 14(5):893–895Google Scholar
  71. 71.
    Peña I, Cocinero EJ, Cabezas C, Lesarri A, Mata S, Écija P, Daly AM, Cimas Á, Bermúdez C, Basterretxea FJ, Blanco S, Fernández JA, López JC, Castaño F, Alonso JL (2013) Angew Chem Int Ed:n/a–n/a 52(45):11840–11845Google Scholar
  72. 72.
    Motiyenko RA, Alekseev EA, Dyubko SF, Lovas FJ (2006) J Mol Spectrosc 240(1):93–101Google Scholar
  73. 73.
    Foley BL, Tessier MB, Woods RJ (2012) Wiley Interdiscip Rev: Comput Mol Sci 2(4):652–697Google Scholar
  74. 74.
    Hansen HS, Hünenberger PH (2011) J Comput Chem 32(6):998–1032Google Scholar
  75. 75.
    Kirschner KN, Yongye AB, Tschampel SM, González-Outeiriño J, Daniels CR, Foley BL, Woods RJ (2008) J Comput Chem 29(4):622–655Google Scholar
  76. 76.
    Mackerell AD (2004) J Comput Chem 25(13):1584–1604Google Scholar
  77. 77.
    Damm W, Frontera A, Tirado–Rives J, Jorgensen WL (1997) J Comput Chem 18(16):1955–1970Google Scholar
  78. 78.
    Reiling S, Schlenkrich M, Brickmann J (1996) J Comput Chem 17(4):450–468Google Scholar
  79. 79.
    Woods RJ, Dwek RA, Edge CJ, Fraserreid B (1995) J Phys Chem 99(11):3832–3846Google Scholar
  80. 80.
    Sameera WMC, Pantazis DA (2012) J Chem Theory Comput 8(8):2630–2645Google Scholar
  81. 81.
    Halgren TA (1999) J Comput Chem 20(7):730–748Google Scholar
  82. 82.
    Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) J Phys Chem B 105(28):6474–6487Google Scholar
  83. 83.
    Kratzcr A (1920) Z Phys 3:460Google Scholar
  84. 84.
    Loomis FW (1920) Astrophys J 62:248Google Scholar
  85. 85.
    Edward JT (1955) Chem Ind 1102–1104Google Scholar
  86. 86.
    Wang C, Ying F, Wu W, Mo Y (2011) J Am Chem Soc 133(34):13731–13736Google Scholar
  87. 87.
    Mo Y (2010) Nat Chem 2(8):666–671Google Scholar
  88. 88.
    Asensio JL, Jimenez-Barbero J (1995) Biopolymers 35(1):55–73Google Scholar
  89. 89.
    Cheetham NWH, Dasgupta P, Ball GE (2003) Carbohydr Res 338(9):955–962Google Scholar
  90. 90.
    Larsson EA, Staaf M, Söderman P, Höög C, Widmalm G (2004) J Phys Chem A 108(18):3932–3937Google Scholar
  91. 91.
    Martín-Pastor M, Canales A, Corzana F, Asensio JL, Jiménez-Barbero J (2005) J Am Chem Soc 127(10):3589–3595Google Scholar
  92. 92.
    Olsson U, Serianni AS, Stenutz R (2008) J Phys Chem B 112(14):4447–4453Google Scholar
  93. 93.
    Pincu M, Gerber RB (2012) Chem Phys Lett 531:52–58Google Scholar
  94. 94.
    Zierke M, Smieško M, Rabbani S, Aeschbacher T, Cutting B, Allain FHT, Schubert M, Ernst B (2013) J Am Chem Soc 135(36):13464–13472Google Scholar
  95. 95.
    Mons M, Dimicoli I, Piuzzi F (2002) Int Rev Phys Chem 21(1):101–135Google Scholar
  96. 96.
    Mons M, Piuzzi F, Dimicoli I, Zehnacker A, Lahmani F (2000) Phys Chem Chem Phys 2(22):5065–5070Google Scholar
  97. 97.
    Cabezas C, Pena I, Daly AM, Alonso JL (2013) Chem Commun 49(92):10826–10828Google Scholar
  98. 98.
    Alonso JL, Lozoya MA, Pena I, Lopez JC, Cabezas C, Mata S, Blanco S (2014) Chem Sci 5(2):515–522Google Scholar
  99. 99.
    Brown GG, Dian BC, Douglass KO, Geyer SM, Shipman ST, Pate BH (2008) Rev Sci Instrum 79(5), 053103Google Scholar
  100. 100.
    Zaleski DP, Neill JL, Muckle MT, Seifert NA, Carroll PB, Weaver SLW, Pate BH (2012) J Mol Spectrosc 280:68–76Google Scholar
  101. 101.
    Neill JL, Harris BJ, Steber AL, Douglass KO, Plusquellic DF, Pate BH (2013) Opt Express 21(17):19743–19749Google Scholar
  102. 102.
    Santana AG, Jiménez-Moreno E, Gómez AM, Corzana F, González C, Jiménez-Oses G, Jiménez-Barbero J, Asensio JL (2013) J Am Chem Soc 135(9):3347–3350Google Scholar
  103. 103.
    Haseley SR, Vermeer HJ, Kamerling JP, Vliegenthart JFG (2001) Proc Natl Acad Sci 98(16):9419–9424Google Scholar
  104. 104.
    Carvalho de Souza A, Ganchev D, Snel ME, Eerden JJM, Vliegenthart JG, Kamerling J (2009) Glycoconj J 26(4):457–465Google Scholar
  105. 105.
    Gerhards M, Unterberg C, Gerlach A, Jansen A (2004) Phys Chem Chem Phys 6(10):2682–2690Google Scholar
  106. 106.
    Fukui K, Takahashi K (2012) Anal Chem 84(5):2188–2194Google Scholar
  107. 107.
    Pagel K, Harvey DJ (2013) Anal Chem 85(10):5138–5145Google Scholar
  108. 108.
    Brown LJ, Creaser CS (2013) Curr Anal Chem 9(2):192–198Google Scholar
  109. 109.
    Bellina B, Compagnon I, MacAleese L, Chirot F, Lemoine J, Maitre P, Broyer M, Antoine R, Kulesza A, Mitric R, Bonacic-Koutecky V, Dugourd P (2012) Phys Chem Chem Phys 14(32):11433–11440Google Scholar
  110. 110.
    Hernandez O, Isenberg S, Steinmetz V, Glish G, Maitre P (2014) Submitted for publicationGoogle Scholar
  111. 111.
    Schindler B, Joshi J, Allouche A-R, Simon D, Chambert S, Brites V, Gaigeot M-P, Compagnon I (2014) Phys Chem Chem Phys 16:22131–22138Google Scholar
  112. 112.
    Stearns JA, Seaiby C, Boyarkin OV, Rizzo TR (2009) Phys Chem Chem Phys 11(1):125–132Google Scholar
  113. 113.
    Shafizadeh N, Ha-Thi MH, Soep B, Gaveau MA, Piuzzi F, Pothier C (2011) J Chem Phys 135(11):114303Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Departamento de Química Física, Facultad de Ciencia y TecnologíaUniversidad del País Vasco (UPV – EHU)BilbaoSpain
  2. 2.Institut des Sciences Moléculaire d’Orsay-CNRSUniversité Paris SudOrsay CedexFrance

Personalised recommendations