Advertisement

Chemical Synthesis and Biological Function of Lipidated Proteins

  • Aimin Yang
  • Lei Zhao
  • Yao-Wen Wu
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 362)

Abstract

Lipidated proteins play a key role in many essential biological processes in eukaryotic cells, including signal transduction, membrane trafficking, immune response and pathology. The investigation of the function of lipidated proteins requires access to a reasonable amount of homogenous lipid-modified proteins with defined structures and functional groups. Chemical approaches have provided useful tools to perform such studies. In this review we summarize synthetic methods of lipidated peptides and developments in the chemoselective ligation for the production of lipidated proteins. We introduce the biology of lipidated proteins and highlight the application of synthetic lipidated proteins to tackle important biological questions.

Keywords

Click ligation Diels–Alder ligation Expressed protein ligation GPI anchor MIC ligation Peptide synthesis Protein lipidation Rab Ras Rheb Sortase-mediated protein ligation 

References

  1. 1.
    Resh MD (2006) Nat Chem Biol 2:584–590Google Scholar
  2. 2.
    Carr SA, Biemann K, Shoji S, Parmelee DC, Titani K (1982) Proc Natl Acad Sci U S A 79:6128–6131Google Scholar
  3. 3.
    Aitken A, Cohen P, Santikarn S, Williams DH, Calder AG, Smith A, Klee CB (1982) FEBS Lett 150:314–318Google Scholar
  4. 4.
    Farazi TA, Waksman G, Gordon JI (2001) J Biol Chem 276:39501–39504Google Scholar
  5. 5.
    Gheysen D, Jacobs E, de Foresta F, Thiriart C, Francotte M, Thines D, De Wilde M (1989) Cell 59:103–112Google Scholar
  6. 6.
    Liu Y, Kahn RA, Prestegard JH (2009) Structure 17:79–87Google Scholar
  7. 7.
    Hutagalung AH, Novick PJ (2011) Physiol Rev 91:119–149Google Scholar
  8. 8.
    Stenmark H (2009) Nat Rev Mol Cell Biol 10:513–525Google Scholar
  9. 9.
    Amor JC, Harrison DH, Kahn RA, Ringe D (1994) Nature 372:704–708Google Scholar
  10. 10.
    Goldberg J (1998) Cell 95:237–248Google Scholar
  11. 11.
    Maurer-Stroh S, Eisenhaber F (2004) Trends Microbiol 12:178–185Google Scholar
  12. 12.
    Pal R, Reitz MS Jr, Tschachler E, Gallo RC, Sarngadharan MG, Veronese FD (1990) AIDS Res Hum Retroviruses 6:721–730Google Scholar
  13. 13.
    Provitera P, El-Maghrabi R, Scarlata S (2006) Biophys Chem 119:23–32Google Scholar
  14. 14.
    Casey PJ (1995) Science 268:221–225Google Scholar
  15. 15.
    Resh MD (1999) Biochim Biophys Acta 1451:1–16Google Scholar
  16. 16.
    Kang R, Wan J, Arstikaitis P, Takahashi H, Huang K, Bailey AO, Thompson JX, Roth AF, Drisdel RC, Mastro R, Green WN, Yates JR 3rd, Davis NG, El-Husseini A (2008) Nature 456:904–909Google Scholar
  17. 17.
    Wedegaertner PB, Bourne HR (1994) Cell 77:1063–1070Google Scholar
  18. 18.
    Rocks O, Peyker A, Kahms M, Verveer PJ, Koerner C, Lumbierres M, Kuhlmann J, Waldmann H, Wittinghofer A, Bastiaens PI (2005) Science 307:1746–1752Google Scholar
  19. 19.
    Tu Y, Wang J, Ross EM (1997) Science 278:1132–1135Google Scholar
  20. 20.
    Rocks O, Gerauer M, Vartak N, Koch S, Huang ZP, Pechlivanis M, Kuhlmann J, Brunsveld L, Chandra A, Ellinger B, Waldmann H, Bastiaens PI (2010) Cell 141:458–471Google Scholar
  21. 21.
    Chandra A, Grecco HE, Pisupati V, Perera D, Cassidy L, Skoulidis F, Ismail SA, Hedberg C, Hanzal-Bayer M, Venkitaraman AR, Wittinghofer A, Bastiaens PI (2012) Nat Cell Biol 14:148–158Google Scholar
  22. 22.
    Zhang FL, Casey PJ (1996) Annu Rev Biochem 65:241–269Google Scholar
  23. 23.
    Casey PJ, Seabra MC (1996) J Biol Chem 271:5289–5292Google Scholar
  24. 24.
    Maurer-Stroh S, Washietl S, Eisenhaber F (2003) Genome Biol 4:212Google Scholar
  25. 25.
    Nguyen UT, Goody RS, Alexandrov K (2010) Chembiochem 11:1194–1201Google Scholar
  26. 26.
    Clarke S (1992) Annu Rev Biochem 61:355–386Google Scholar
  27. 27.
    Wu YW, Goody RS, Abagyan R, Alexandrov K (2009) J Biol Chem 284:13185–13192Google Scholar
  28. 28.
    Li F, Yi L, Zhao L, Itzen A, Goody RS, Wu YW (2014) Proc Natl Acad Sci U S A 111:2572–2577Google Scholar
  29. 29.
    Rak A, Pylypenko O, Durek T, Watzke A, Kushnir S, Brunsveld L, Waldmann H, Goody RS, Alexandrov K (2003) Science 302:646–650Google Scholar
  30. 30.
    Wu YW, Tan KT, Waldmann H, Goody RS, Alexandrov K (2007) Proc Natl Acad Sci U S A 104:12294–12299Google Scholar
  31. 31.
    Yu S, Guo Z, Johnson C, Gu G, Wu Q (2013) Curr Opin Chem Biol 17:1006–1013Google Scholar
  32. 32.
    Tsai YH, Liu X, Seeberger PH (2012) Angew Chem Int Ed Engl 51:11438–11456Google Scholar
  33. 33.
    Paulick MG, Bertozzi CR (2008) Biochemistry 47:6991–7000Google Scholar
  34. 34.
    Levental I, Grzybek M, Simons K (2010) Biochemistry 49:6305–6316Google Scholar
  35. 35.
    Nosjean O, Briolay A, Roux B (1997) Biochim Biophys Acta 1331:153–186Google Scholar
  36. 36.
    Ishihara A, Hou Y, Jacobson K (1987) Proc Natl Acad Sci U S A 84:1290–1293Google Scholar
  37. 37.
    Schofield L, McConville MJ, Hansen D, Campbell AS, Fraser-Reid B, Grusby MJ, Tachado SD (1999) Science 283:225–229Google Scholar
  38. 38.
    Weissmann C (2004) Nat Rev Microbiol 2:861–871Google Scholar
  39. 39.
    Chesebro B, Trifilo M, Race R, Meade-White K, Teng C, LaCasse R, Raymond L, Favara C, Baron G, Priola S, Caughey B, Masliah E, Oldstone M (2005) Science 308:1435–1439Google Scholar
  40. 40.
    Zuegg J, Gready JE (2000) Glycobiology 10:959–974Google Scholar
  41. 41.
    Hall TM, Porter JA, Young KE, Koonin EV, Beachy PA, Leahy DJ (1997) Cell 91:85–97Google Scholar
  42. 42.
    Buglino JA, Resh MD (2008) J Biol Chem 283:22076–22088Google Scholar
  43. 43.
    Guerrero I, Chiang C (2007) Trends Cell Biol 17:1–5Google Scholar
  44. 44.
    Mizushima N, Yoshimori T, Ohsumi Y (2011) Annu Rev Cell Dev Biol 27:107–132Google Scholar
  45. 45.
    Feng Y, He D, Yao Z, Klionsky DJ (2014) Cell Res 24:24–41Google Scholar
  46. 46.
    Hackenberger CPR, Schwarzer D (2008) Angew Chem Int Ed Engl 47:10030–10074Google Scholar
  47. 47.
    Brunsveld L, Kuhlmann J, Alexandrov K, Wittinghofer A, Goody RS, Waldmann H (2006) Angew Chem Int Ed Engl 45:6622–6646Google Scholar
  48. 48.
    Gerauer M, Koch S, Brunsveld L, Waldmann H (2009) Lipidated peptide synthesis. In: Begley TP (ed) Wiley encyclopedia of chemical biology, vol 2. Wiley, New Jersey, pp 520–530Google Scholar
  49. 49.
    Görmer K, Waldmann H, Brunsveld L (2010) Lipidation of peptides and proteins. In: Mander L, Lui H-W (eds) Comprehensive natural products II: chemistry and biology, vol 5. Elsevier, Oxford, pp 531–585Google Scholar
  50. 50.
    Lumbierres M, Palomo JM, Kragol G, Roehrs S, Muller O, Waldmann H (2005) Chemistry 11:7405–7415Google Scholar
  51. 51.
    Kadereit D, Deck P, Heinemann I, Waldmann H (2001) Chemistry 7:1184–1193Google Scholar
  52. 52.
    Kadereit D, Waldmann H (2000) Chembiochem 1:200–203Google Scholar
  53. 53.
    Brunsveld L, Watzke A, Durek T, Alexandrov K, Goody RS, Waldmann H (2005) Chemistry 11:2756–2772Google Scholar
  54. 54.
    Durek T, Alexandrov K, Goody RS, Hildebrand A, Heinemann I, Waldmann H (2004) J Am Chem Soc 126:16368–16378Google Scholar
  55. 55.
    Millington CR, Quarrell R, Lowe G (1998) Tetrahedron Lett 39:7201–7204Google Scholar
  56. 56.
    Ludolph B, Eisele F, Waldmann H (2002) J Am Chem Soc 124:5954–5955Google Scholar
  57. 57.
    Rosenbaum C, Waldmann H (2001) Tetrahedron Lett 42:5677–5680Google Scholar
  58. 58.
    Backes BJ, Ellman JA (1999) J Org Chem 64:2322–2330Google Scholar
  59. 59.
    Triola G, Gerauer M, Gormer K, Brunsveld L, Waldmann H (2010) Chemistry 16:9585–9591Google Scholar
  60. 60.
    Palomo JM, Lumbierres M, Waldmann H (2006) Angew Chem Int Ed Engl 45:477–481Google Scholar
  61. 61.
    Chen YX, Koch S, Uhlenbrock K, Weise K, Das D, Gremer L, Brunsveld L, Wittinghofer A, Winter R, Triola G, Waldmann H (2010) Angew Chem Int Ed Engl 49:6090–6095Google Scholar
  62. 62.
    Yang A, Li Y, Pantoom S, Triola G, Wu YW (2013) Chembiochem 14:1296–1300Google Scholar
  63. 63.
    Grogan MJ, Kaizuka Y, Conrad RM, Groves JT, Bertozzi CR (2005) J Am Chem Soc 127:14383–14387Google Scholar
  64. 64.
    Huang YC, Li YM, Chen Y, Pan M, Li YT, Yu L, Guo QX, Liu L (2013) Angew Chem Int Ed Engl 52:4858–4862Google Scholar
  65. 65.
    Peters C, Wolf A, Wagner M, Kuhlmann J, Waldmann H (2004) Proc Natl Acad Sci U S A 101:8531–8536Google Scholar
  66. 66.
    Goody RS, Alexandrov K, Engelhard M (2002) Chembiochem 3:399–403Google Scholar
  67. 67.
    Kho Y, Kim SC, Jiang C, Barma D, Kwon SW, Cheng J, Jaunbergs J, Weinbaum C, Tamanoi F, Falck J, Zhao Y (2004) Proc Natl Acad Sci U S A 101:12479–12484Google Scholar
  68. 68.
    Nguyen UT, Cramer J, Gomis J, Reents R, Gutierrez-Rodriguez M, Goody RS, Alexandrov K, Waldmann H (2007) Chembiochem 8:408–423Google Scholar
  69. 69.
    Duckworth BP, Zhang Z, Hosokawa A, Distefano MD (2007) Chembiochem 8:98–105Google Scholar
  70. 70.
    Dursina B, Reents R, Delon C, Wu Y, Kulharia M, Thutewohl M, Veligodsky A, Kalinin A, Evstifeev V, Ciobanu D, Szedlacsek SE, Waldmann H, Goody RS, Alexandrov K (2006) J Am Chem Soc 128:2822–2835Google Scholar
  71. 71.
    Nguyen UT, Guo Z, Delon C, Wu Y, Deraeve C, Franzel B, Bon RS, Blankenfeldt W, Goody RS, Waldmann H, Wolters D, Alexandrov K (2009) Nat Chem Biol 5:227–235Google Scholar
  72. 72.
    Berry AF, Heal WP, Tarafder AK, Tolmachova T, Baron RA, Seabra MC, Tate EW (2010) Chembiochem 11:771–773Google Scholar
  73. 73.
    Yi L, Abootorabi M, Wu YW (2011) Chembiochem 12:2413–2417Google Scholar
  74. 74.
    Paulick MG, Wise AR, Forstner MB, Groves JT, Bertozzi CR (2007) J Am Chem Soc 129:11543–11550Google Scholar
  75. 75.
    Alexandrov K, Heinemann I, Durek T, Sidorovitch V, Goody RS, Waldmann H (2002) J Am Chem Soc 124:5648–5649Google Scholar
  76. 76.
    Olschewski D, Seidel R, Miesbauer M, Rambold AS, Oesterhelt D, Winklhofer KF, Tatzelt J, Engelhard M, Becker CF (2007) Chem Biol 14:994–1006Google Scholar
  77. 77.
    Antos JM, Miller GM, Grotenbreg GM, Ploegh HL (2008) J Am Chem Soc 130:16338–16343Google Scholar
  78. 78.
    Reents R, Wagner M, Kuhlmann J, Waldmann H (2004) Angew Chem Int Ed Engl 43:2711–2714Google Scholar
  79. 79.
    Chu NK, Becker CF (2009) Methods Enzymol 462:177–193Google Scholar
  80. 80.
    Dawson PE, Muir TW, Clark-Lewis I, Kent SB (1994) Science 266:776–779Google Scholar
  81. 81.
    Dawson PE, Kent SB (2000) Annu Rev Biochem 69:923–960Google Scholar
  82. 82.
    Muir TW (2003) Annu Rev Biochem 72:249–289Google Scholar
  83. 83.
    Muir TW, Sondhi D, Cole PA (1998) Proc Natl Acad Sci U S A 95:6705–6710Google Scholar
  84. 84.
    Siman P, Brik A (2012) Org Biomol Chem 10:5684–5697Google Scholar
  85. 85.
    Vila-Perello M, Muir TW (2010) Cell 143:191–200Google Scholar
  86. 86.
    Kuhn K, Owen DJ, Bader B, Wittinghofer A, Kuhlmann J, Waldmann H (2001) J Am Chem Soc 123:1023–1035Google Scholar
  87. 87.
    Wu YW, Oesterlin LK, Tan KT, Waldmann H, Alexandrov K, Goody RS (2010) Nat Chem Biol 6:534–540Google Scholar
  88. 88.
    Paulick MG, Forstner MB, Groves JT, Bertozzi CR (2007) Proc Natl Acad Sci U S A 104:20332–20337Google Scholar
  89. 89.
    Becker CF, Liu X, Olschewski D, Castelli R, Seidel R, Seeberger PH (2008) Angew Chem Int Ed Engl 47:8215–8219Google Scholar
  90. 90.
    Johnson EC, Kent SB (2006) J Am Chem Soc 128:6640–6646Google Scholar
  91. 91.
    Janosch S, Nicolini C, Ludolph B, Peters C, Völkert M, Hazlet TL, Gratton E, Waldmann H, Winter R (2004) J Am Chem Soc 126:7496–7503Google Scholar
  92. 92.
    Reents R, Wagner M, Schlummer S, Kuhlmann J, Waldmann H (2005) Chembiochem 6:86–94Google Scholar
  93. 93.
    Bader B, Kuhn K, Owen DJ, Waldmann H, Wittinghofer A, Kuhlmann J (2000) Nature 403:223–226Google Scholar
  94. 94.
    de Araujo AD, Palomo JM, Cramer J, Kohn M, Schroder H, Wacker R, Niemeyer C, Alexandrov K, Waldmann H (2005) Angew Chem Int Ed Engl 45:296–301Google Scholar
  95. 95.
    de Araujo AD, Palomo JM, Cramer J, Seitz O, Alexandrov K, Waldmann H (2006) Chemistry 12:6095–6109Google Scholar
  96. 96.
    Kolb HC, Finn MG, Sharpless KB (2001) Angew Chem Int Ed Engl 40:2004–2021Google Scholar
  97. 97.
    Huang X, Aulabaugh A, Ding W, Kapoor B, Alksne L, Tabei K, Ellestad G (2003) Biochemistry 42:11307–11315Google Scholar
  98. 98.
    Frankel BA, Kruger RG, Robinson DE, Kelleher NL, McCafferty DG (2005) Biochemistry 44:11188–11200Google Scholar
  99. 99.
    Dementiev A (2012) Protein Expr Purif 84:86–93Google Scholar
  100. 100.
    Wu Z, Guo X, Gao J, Guo Z (2013) Chem Commun (Camb) 49:11689–11691Google Scholar
  101. 101.
    de Almeida RF, Fedorov A, Prieto M (2003) Biophys J 85:2406–2416Google Scholar
  102. 102.
    Nicolini C, Baranski J, Schlummer S, Palomo J, Lumbierres-Burgues M, Kahms M, Kuhlmann J, Sanchez S, Gratton E, Waldmann H, Winter R (2006) J Am Chem Soc 128:192–201Google Scholar
  103. 103.
    Weise K, Triola G, Brunsveld L, Waldmann H, Winter R (2009) J Am Chem Soc 131:1557–1564Google Scholar
  104. 104.
    Weise K, Kapoor S, Denter C, Nikolaus J, Opitz N, Koch S, Triola G, Herrmann A, Waldmann H, Winter R (2011) J Am Chem Soc 133:880–887Google Scholar
  105. 105.
    Kapoor S, Triola G, Vetter IR, Erlkamp M, Waldmann H, Winter R (2012) Proc Natl Acad Sci U S A 109:460–465Google Scholar
  106. 106.
    Hanzal-Bayer M, Renault L, Roversi P, Wittinghofer A, Hillig RC (2002) EMBO J 21:2095–2106Google Scholar
  107. 107.
    Ismail SA, Chen YX, Rusinova A, Chandra A, Bierbaum M, Gremer L, Triola G, Waldmann H, Bastiaens PI, Wittinghofer A (2011) Nat Chem Biol 7:942–949Google Scholar
  108. 108.
    Nancy V, Callebaut I, El Marjou A, de Gunzburg J (2002) J Biol Chem 277:15076–15084Google Scholar
  109. 109.
    Linari M, Hanzal-Bayer M, Becker J (1999) FEBS Lett 458:55–59Google Scholar
  110. 110.
    Veltel S, Kravchenko A, Ismail S, Wittinghofer A (2008) FEBS Lett 582:2501–2507Google Scholar
  111. 111.
    Groves JT, Dustin ML (2003) J Immunol Methods 278:19–32Google Scholar
  112. 112.
    Sletten EM, Bertozzi CR (2009) Angew Chem Int Ed Engl 48:6974–6998Google Scholar
  113. 113.
    Ramil CP, Lin Q (2013) Chem Commun (Camb) 49:11007–11022Google Scholar
  114. 114.
    Wu YW, Goody RS (2010) J Pept Sci 16:514–523Google Scholar
  115. 115.
    Takaoka Y, Ojida A, Hamachi I (2013) Angew Chem Int Ed Engl 52:4088–4106Google Scholar
  116. 116.
    Lang K, Chin JW (2014) Chem Rev 114:4764–4806Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Chemical Genomics Centre of the Max Planck SocietyDortmundGermany

Personalised recommendations