Advertisement

Isolated Neutral Peptides

  • Eric Gloaguen
  • Michel Mons
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 364)

Abstract

This chapter examines the structural characterisation of isolated neutral amino-acids and peptides. After a presentation of the experimental and theoretical state-of-the-art in the field, a review of the major structures and shaping interactions is presented. Special focus is made on conformationally-resolved studies which enable one to go beyond simple structural characterisation; probing flexibility and excited-state photophysics are given as examples of promising future directions.

Keywords

Amide Amino-acid Backbone-side chain interactions Conformation-selective IR spectroscopy Gas phase laser spectroscopy Hydrates Secondary structures Supersonic expansion 

Abbreviations

Ac

Acetyl

Aib

Aminoisobutyric acid

BB

Backbone

Bn

Benzyl

CI

Conical intersection

CT

Charge transfer

DFT

Density functional theory

FC

Franck–Condon

FEL

Free electron laser

FTIR

Fourier transform infrared

IR

Infrared

LE

Locally excited

Me

Methyl

NCI

Non-covalent interactions

OPO

Optical parametric oscillator

PES

Potential energy surface

SC

Side-chain

SEP

Stimulated emission pumping

UV

Ultraviolet

VUV

Vacuum ultraviolet

Z

Benzyloxycarbonyl

References

  1. 1.
    Tzeng SR, Kalodimos CG (2012) Protein activity regulation by conformational entropy. Nature 488:236Google Scholar
  2. 2.
    Perczel A, Angyán JG, Kajtar M, Viviani W, Rivail JL, Marcoccia JF, Csizmadia IG (1991) Peptide models. 1. Topology of selected peptide conformational potential-energy surfaces (glycine and alanine derivatives). J Am Chem Soc 113:6256Google Scholar
  3. 3.
    Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry. W.H. Freeman, New YorkGoogle Scholar
  4. 4.
    Scheraga HA, Khalili M, Liwo A (2007) Protein-folding dynamics: overview of molecular simulation techniques. Annu Rev Phys Chem 58:57Google Scholar
  5. 5.
    Shea JE, Brooks CL (2001) From folding theories to folding proteins: a review and assessment of simulation studies of protein folding and unfolding. Annu Rev Phys Chem 52:499Google Scholar
  6. 6.
    Chen YW, Ding F, Nie HF, Serohijos AW, Sharma S, Wilcox KC, Yin SY, Dokholyan NV (2008) Protein folding: then and now. Arch Biochem Biophys 469:4Google Scholar
  7. 7.
    Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9:646Google Scholar
  8. 8.
    Gordon MS, Slipchenko L, Li H, Jensen JH (2007) The effective fragment potential: a general method for predicting intermolecular interactions. Annu Rep Comp Chem 3:177Google Scholar
  9. 9.
    Gresh N (2006) Development, validation, and applications of anisotropic polarizable molecular mechanics to study ligand and drug-receptor interactions. Curr Pharm Design 12:2121Google Scholar
  10. 10.
    Gresh N, Cisneros GA, Darden TA, Piquemal J-P (2007) Anisotropic, polarizable molecular mechanics studies of inter- and intramolecular interactions and ligand-macromolecule complexes. A bottom-up strategy. J Chem Theory Comput 3:1960Google Scholar
  11. 11.
    Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Angew Chem Int Ed 48:1198Google Scholar
  12. 12.
    Zwier TS (2001) Laser spectrosocpy of jet-cooled biomolecules and their water-containing clusters: water bridges and molecular conformation. J Phys Chem A 105:8827Google Scholar
  13. 13.
    Weinkauf R, Schermann JP, de Vries MS, Kleinermanns K (2002) Molecular physics of building blocks of life under isolated or defined conditions. Eur Phys J D 20:309Google Scholar
  14. 14.
    Robertson EG, Hockridge MR, Jelfs PD, Simons JP (2000) IR-UV ion-dip spectroscopy of N-benzylformamide clusters: stepwise hydration of a model peptide. J Phys Chem A 104:11714Google Scholar
  15. 15.
    Robertson EG (2000) IR-UV ion-dip spectroscopy of N-phenyl formamide, and its hydrated clusters. Chem Phys Lett 325:299Google Scholar
  16. 16.
    Snoek LC, Robertson EG, Kroemer RT, Simons JP (2000) Conformational landscapes in amino acids: infrared and ultraviolet ion-dip spectroscopy of phenylalanine in the gas phase. Chem Phys Lett 321:49Google Scholar
  17. 17.
    Mons M, Dimicoli I, Tardivel B, Piuzzi F, Robertson EG, Simons JP (2001) Energetics of the gas phase hydrates of trans-formanilide: a microscopic approach to the hydration sites of the peptide bond. J Phys Chem A 105:969Google Scholar
  18. 18.
    Robertson EG, Hockridge MR, Jelfs PD, Simons JP (2001) IR-UV ion-depletion and fluorescence spectroscopy of 2-phenylacetamide clusters: hydration of a primary amide. Phys Chem Chem Phys 3:786Google Scholar
  19. 19.
    Robertson EG, Simons JP (2001) Getting into shape: conformational and supramolecular landscapes in small biomolecules and their hydrated clusters. Phys Chem Chem Phys 3:1Google Scholar
  20. 20.
    Snoek LC, Kroemer RT, Hockridge MR, Simons JP (2001) Conformational landscapes of aromatic amino acids in the gas phase: infrared and ultraviolet ion dip spectroscopy of tryptophan. Phys Chem Chem Phys 3:1819Google Scholar
  21. 21.
    Alonso JL, López JC (2014) Microwave spectroscopy of biomolecular building blocks. Top Curr Chem. doi: 10.1007/128_2014_601 Google Scholar
  22. 22.
    Balabin RM (2010) Conformational equilibrium in glycine: experimental jet-cooled Raman spectrum. J Phys Chem Lett 1:20Google Scholar
  23. 23.
    Balabin RM (2010) The identification of the two missing conformers of gas-phase alanine: a jet-cooled Raman spectroscopy study. Phys Chem Chem Phys 12:5980Google Scholar
  24. 24.
    Balabin RM (2010) The first step in glycine solvation: the glycine-water complex. J Phys Chem B 114:15075Google Scholar
  25. 25.
    Balabin RM (2012) Experimental thermodynamics of free glycine conformations: the first Raman experiment after twenty years of calculations. Phys Chem Chem Phys 14:99Google Scholar
  26. 26.
    Linder R, Nispel M, Häber T, Kleinermanns K (2005) Gas-phase FT-IR-spectra of natural amino acids. Chem Phys Lett 409:260Google Scholar
  27. 27.
    Albrecht M, Rice CA, Suhm MA (2008) Elementary peptide motifs in the gas phase: FTIR aggregation study of formamide, acetamide, N-methylformamide, and N-methylacetamide. J Phys Chem A 112:7530Google Scholar
  28. 28.
    Linder R, Seefeld K, Vavra A, Kleinermanns K (2008) Gas phase infrared spectra of nonaromatic amino acids. Chem Phys Lett 453:1Google Scholar
  29. 29.
    Hesse S, Suhm MA (2009) Conformation and aggregation of proline esters and their aromatic homologs: pyramidal vs. planar RR' N-H in hydrogen bonds. Z Phys Chem 223:579Google Scholar
  30. 30.
    Otto KE, Hesse S, Wassermann TN, Rice CA, Suhm MA, Stafforstz T, Diederichsen U (2011) Temperature-dependent intensity anomalies in amino acid esters: weak hydrogen bonds in protected glycine, alanine and valine. Phys Chem Chem Phys 13:14119Google Scholar
  31. 31.
    Lee JJ, Albrecht M, Rice CA, Suhm MA (2013) Adaptive aggregation of peptide model systems. J Phys Chem A 117:7050Google Scholar
  32. 32.
    Hu YJ, Bernstein ER (2009) Vibrational and photoionization spectroscopy of neutral valine clusters. J Phys Chem A 113:8454Google Scholar
  33. 33.
    Hu Y, Bernstein ER (2008) Vibrational and photoionization spectroscopy of biomolecules: aliphatic amino acid structures. J Chem Phys 128:164311Google Scholar
  34. 34.
    Chin W, Piuzzi F, Dimicoli I, Mons M (2006) Probing the competition between secondary structures and local preferences in gas phase isolated peptide backbones. Phys Chem Chem Phys 8:1033Google Scholar
  35. 35.
    Zwier TS (2006) Laser probes of conformational isomerization in flexible molecules and complexes. J Phys Chem A 110:4133Google Scholar
  36. 36.
    Gerhards M (2006) In: Laskin J, Lifshitz C (eds) Principles of mass spectrometry applied to biomolecules. Wiley, Hoboken, p. 3Google Scholar
  37. 37.
    de Vries MS, Hobza P (2007) Gas-phase spectroscopy of biomolecular building blocks. Annu Rev Phys Chem 58:585Google Scholar
  38. 38.
    Schermann JP (2008) Spectroscopy and modelling of biomolecular building blocks. Elsevier, AmsterdamGoogle Scholar
  39. 39.
    Simons JP (2009) Good vibrations: probing biomolecular structure and interactions through spectroscopy in the gas phase. Mol Phys 107:2435Google Scholar
  40. 40.
    Patrick AL, Polfer NC (2014) Peptide fragmentation products in mass spectrometry probed by infrared spectroscopy. Top Curr Chem. doi: 10.1007/128_2014_576
  41. 41.
    Dunbar RC (2014) Spectroscopy of metal-ion complexes with peptide-related ligands. Top Curr Chem. doi: 10.1007/128_2014_578 Google Scholar
  42. 42.
    Filsinger F, Erlekam U, von Helden G, Küpper J, Meijer G (2008) Selector for structural isomers of neutral molecules. Phys Rev Lett 100:133003Google Scholar
  43. 43.
    Page RH, Shen YR, Lee YT (1988) Infrared–ultraviolet double resonance studies of benzene molecules in a supersonic beam. J Chem Phys 88:5362Google Scholar
  44. 44.
    Rijs AM, Oomens J (2014) IR spectroscopic techniques to study isolated biomolecules. Top Curr Chem. doi: 10.1007/128_2014_621 Google Scholar
  45. 45.
    Pribble RN, Zwier TS (1994) Size-specific infrared-spectra of benzene-(H2O)n clusters (n = 1 through 7): evidence for noncyclic (H2O)n structures. Science 265:75Google Scholar
  46. 46.
    Gerhards M, Unterberg C (2002) Structures of the protected amino acid Ac-Phe-OMe and its dimer: a β-sheet model system in the gas phase. Phys Chem Chem Phys 4:1760Google Scholar
  47. 47.
    Dian BC, Longarte A, Zwier TS (2002) Conformational dynamics in a dipeptide after single-mode vibrational excitation. Science 296:2369Google Scholar
  48. 48.
    Cable JR, Tubergen MJ, Levy DH (1987) Laser desorption molecular beam spectroscopy: the electronic spectra of tryptophan peptides in the gas phase. J Am Chem Soc 109:6198Google Scholar
  49. 49.
    Meijer G, de Vries M, Hunziker HE, Wendt HR (1990) Laser desorption jet-cooling of organic-molecules – cooling characteristics and detection sensitivity. Appl Phys B 51:395Google Scholar
  50. 50.
    Piuzzi F, Dimicoli I, Mons M, Tardivel B, Zhao Q (2000) A simple laser vaporization source for thermally fragile molecules coupled to a supersonic expansion: application to the spectroscopy of tryptophan. Chem Phys Lett 320:282Google Scholar
  51. 51.
    Cirtog M, Rijs AM, Loquais Y, Brenner V, Tardivel B, Gloaguen E, Mons M (2012) Far/mid-infrared signatures of solvent solute interactions in a microhydrated model peptide chain. J Phys Chem Lett 3:3307Google Scholar
  52. 52.
    Buchanan EG, James WH, Choi SH, Guo L, Gellman SH, Muller CW, Zwier TS (2012) Single-conformation infrared spectra of model peptides in the amide I and amide II regions: experiment-based determination of local mode frequencies and inter-mode coupling. J Chem Phys 137:094301Google Scholar
  53. 53.
    Biswal HS, Loquais Y, Tardivel B, Gloaguen E, Mons M (2011) Isolated monohydrates of a model peptide chain: effect of a first water molecule on the secondary structure of a capped phenylalanine. J Am Chem Soc 133:3931Google Scholar
  54. 54.
    Abo-Riziq A, Crews BO, Callahan MP, Grace L, de Vries MS (2006) Spectroscopy of isolated gramicidin peptides. Angew Chem Int Ed 45:5166Google Scholar
  55. 55.
    Blom MN, Compagnon I, Polfer NC, von Helden G, Meijer G, Suhai S, Paizs B, Oomens J (2007) Stepwise solvation of an amino acid: the appearance of zwitterionic structures. J Phys Chem A 111:7309Google Scholar
  56. 56.
    Inokuchi Y, Kobayashi Y, Ito T, Ebata T (2007) Conformation of L-tyrosine studied by fluorescence-detected UV-UV and IR-UV double-resonance spectroscopy. J Phys Chem A 111:3209Google Scholar
  57. 57.
    Snoek LC, Kroemer RT, Simons JP (2002) A spectroscopic and computational exploration of tryptophan-water cluster structures in the gas phase. Phys Chem Chem Phys 4:2130Google Scholar
  58. 58.
    Ebata T, Hashimoto T, Ito T, Inokuchi Y, Altunsu F, Brutschy B, Tarakeshwar P (2006) Hydration profiles of aromatic amino acids: conformations and vibrations of L-phenylalanine-(H2O)n clusters. Phys Chem Chem Phys 8:4783Google Scholar
  59. 59.
    Cable JR, Tubergen MJ, Levy DH (1988) The electronic-spectra of small peptides in the gas-phase. Faraday Discuss 86:143Google Scholar
  60. 60.
    Sipior J, Sulkes M (1988) Spectroscopy of tryptophan derivatives in supersonic expansions – addition of solvent molecules. J Chem Phys 88:6146Google Scholar
  61. 61.
    Cable JR, Tubergen MJ, Levy DH (1989) Fluorescence spectroscopy of jet cooled tryptophan peptides. J Am Chem Soc 111:9032Google Scholar
  62. 62.
    Martinez SJ III, Alfano JC, Levy DH (1992) The electronic spectroscopy of the amino acids tyrosine and phenylalanine in a supersonic jet. J Mol Spectrosc 156:421Google Scholar
  63. 63.
    Dian BC, Longarte A, Mercier S, Evans DA, Wales DJ, Zwier TS (2002) The infrared and ultraviolet spectra of single conformations of methyl-capped dipeptides: N-acetyl tryptophan amide and N-acetyl tryptophan methyl amide. J Chem Phys 117:10688Google Scholar
  64. 64.
    Gerhards M, Unterberg C, Gerlach A (2002) Structure of a β-sheet model system in the gas phase: analysis of the C = O stretching vibrations. Phys Chem Chem Phys 4:5563Google Scholar
  65. 65.
    Unterberg C, Gerlach A, Schrader T, Gerhards M (2002) Clusters of a protected amino acid with pyrazole derivatives: β-sheet model systems in the gas phase. Eur Phys J D 20:543Google Scholar
  66. 66.
    Bakker JM, Aleese LM, Meijer G, von Helden G (2003) Fingerprint IR spectroscopy to probe amino acid conformations in the gas phase. Phys Rev Lett 91:203003Google Scholar
  67. 67.
    Hünig I, Seefeld KA, Kleinermanns K (2003) REMPI and UV–UV double resonance spectroscopy of tryptophan ethylester and the dipeptides tryptophan-serine, glycine- tryptophan and proline-tryptophan. Chem Phys Lett 369:173Google Scholar
  68. 68.
    Unterberg C, Gerlach A, Schrader T, Gerhards M (2003) Structure of the protected dipeptide Ac-Val-Phe-OMe in the gas phase: towards a β-sheet model system. J Chem Phys 118:8296Google Scholar
  69. 69.
    Çarçabal P, Kroemer RT, Snoek LC, Simons JP, Bakker JM, Compagnon I, Meijer G, von Helden G (2004) Hydrated complexes of tryptophan: ion dip infrared spectroscopy in the “molecular fingerprint” region, 100–2,000 cm−1. Phys Chem Chem Phys 6:4546Google Scholar
  70. 70.
    Chin W, Mons M, Dognon J-P, Piuzzi F, Tardivel B, Dimicoli I (2004) Competition between local conformational preferences and secondary structures in gas-phase model tripeptides as revealed by laser spectroscopy and theoretical chemistry. Phys Chem Chem Phys 6:2700Google Scholar
  71. 71.
    Dian BC, Longarte A, Winter PR, Zwier TS (2004) The dynamics of conformational isomerization in flexible biomolecules. I. Hole-filling spectroscopy of N-acetyl tryptophan methyl amide and N-acetyl tryptophan amide. J Chem Phys 120:133Google Scholar
  72. 72.
    Evans DA, Wales DJ, Dian BC, Zwier TS (2004) The dynamics of conformational isomerization in flexible biomolecules. II. Simulating isomerizations in a supersonic free jet with master equation dynamics. J Chem Phys 120:148Google Scholar
  73. 73.
    Gerhards M, Unterberg C, Gerlach A, Jansen A (2004) β-Sheet model systems in the gas phase: structures and vibrations of Ac-Phe-NHMe and its dimer (Ac-Phe-NHMe)2. Phys Chem Chem Phys. 6:2682Google Scholar
  74. 74.
    Hünig I, Kleinermanns K (2004) Conformers of the peptides glycine-tryptophan, tryptophan-glycine and tryptophan-glycine-glycine as revealed by double resonance laser spectroscopy. Phys Chem Chem Phys 6:2650Google Scholar
  75. 75.
    Lee YH, Jung JW, Kim B, Butz P, Snoek LC, Kroemer RT, Simons JP (2004) Alanyl side chain folding in phenylalanine: conformational assignments through ultraviolet rotational band contour analysis. J Phys Chem A 108:69Google Scholar
  76. 76.
    Wiedemann S, Metsala A, Nolting D, Weinkauf R (2004) The dipeptide cyclic(glycyltryptophanyl) in the gas phase: a concerted action of density functional calculations, S0-S1 two-photon ionization, spectral UV/UV hole burning and laser photoelectron spectroscopy. Phys Chem Chem Phys 6:2641Google Scholar
  77. 77.
    Abo-Riziq AG, Bushnell JE, Crews B, Callahan MP, Grace L, De Vries MS (2005) Discrimination between diastereoisomeric dipeptides by IR-UV double resonance spectroscopy and ab initio calculations. Int J Quantum Chem 105:437Google Scholar
  78. 78.
    Abo-Riziq AG, Crews B, Bushnell JE, Callahan MP, De Vries MS (2005) Conformational analysis of cyclo(Phe-Ser) by UV-UV and IR-UV double resonance spectroscopy and ab initio calculations. Mol Phys 103:1491Google Scholar
  79. 79.
    Bakker JM, Plützer C, Hünig I, Häber T, Compagnon I, von Helden G, Meijer G, Kleinermanns K (2005) Folding structures of isolated peptides as revealed by gas-phase mid-infrared spectroscopy. ChemPhysChem 6:120Google Scholar
  80. 80.
    Chin W, Compagnon I, Dognon JP, Canuel C, Piuzzi F, Dimicoli I, von Helden G, Meijer G, Mons M (2005) Spectroscopic evidence for gas-phase formation of successive β-turns in a three-residue peptide chain. J Am Chem Soc 127:1388Google Scholar
  81. 81.
    Chin W, Dognon JP, Piuzzi F, Tardivel B, Dimicoli I, Mons M (2005) Intrinsic folding of small peptide chains: spectroscopic evidence for the formation of beta-turns in the gas phase. J Am Chem Soc 127:707Google Scholar
  82. 82.
    Chin W, Dognon J-P, Canuel C, Piuzzi F, Dimicoli I, Mons M, Compagnon I, von Helden G, Meijer G (2005) Secondary structures of short peptide chains in the gas phase: double resonance spectroscopy of protected dipeptides. J Chem Phys 122:054317Google Scholar
  83. 83.
    Chin W, Mons M, Dognon J-P, Mirasol R, Chass G, Dimicoli I, Piuzzi F, Butz P, Tardivel B, Compagnon I, von Helden G, Meijer G (2005) The gas-phase dipeptide analogue acetyl-phenylalanyl-amide: a model for the study of side chain/backbone interactions in proteins. J Phys Chem A 109:5281Google Scholar
  84. 84.
    Chin W, Piuzzi F, Dognon J-P, Dimicoli I, Mons M (2005) Gas phase models of γ-turns: effects of side-chain/backbone interactions investigated by IR/UV spectroscopy and quantum chemistry. J Chem Phys 123:084301Google Scholar
  85. 85.
    Chin W, Piuzzi F, Dognon J-P, Dimicoli I, Tardivel B, Mons M (2005) Gas phase formation of a 310-helix in a three-residue peptide chain: role of side chain-backbone interactions as evidenced by IR-UV double resonance experiments. J Am Chem Soc 127:11900Google Scholar
  86. 86.
    Chin W, Dognon JP, Piuzzi F, Dimicoli I, Mons M (2005) Secondary structures of Val-Phe and Val-Tyr( Me) peptide chains in the gas phase: effect of the nature of the protecting groups. Mol Phys 103:1579Google Scholar
  87. 87.
    Gerlach A, Unterberg C, Fricke H, Gerhards M (2005) Structures of Ac-Trp-OMe and its dimer (Ac-Trp-OMe)2 in the gas phase: influence of a polar group in the side-chain. Mol Phys 103:1521Google Scholar
  88. 88.
    Řeha D, Valdés H, Vondrášek J, Hobza P, Abu-Riziq A, Crews B, de Vries MS (2005) Structure and IR spectrum of phenylalanyl-glycyl-glycine tripetide in the gas-phase: IR/UV experiments, ab initio quantum chemical calculations, and molecular dynamic simulations. Chem-Eur J 11:6803Google Scholar
  89. 89.
    Abo-Riziq A, Bushnell JE, Crews B, Callahan M, Grace L, De Vries MS (2006) Gas phase spectroscopy of the pentapeptide FDASV. Chem Phys Lett 431:227Google Scholar
  90. 90.
    Fricke H, Gerlach A, Gerhards M (2006) Structure of a β-sheet model system in the gas phase: analysis of the fingerprint region up to 10 μm. Phys Chem Chem Phys 8:1660Google Scholar
  91. 91.
    Hashimoto T, Takasu Y, Yamada Y, Ebata T (2006) Anomalous conformer dependent S1 lifetime of L-phenylalanine. Chem Phys Lett 421:227Google Scholar
  92. 92.
    Brenner V, Piuzzi F, Dimicoli I, Tardivel B, Mons M (2007) Chirality-controlled formation of β-turn secondary structures in short peptide chains: gas-phase experiment versus quantum chemistry. Angew Chem Int Ed 46:2463Google Scholar
  93. 93.
    Brenner V, Piuzzi F, Dimicoli I, Tardivel B, Mons M (2007) Spectroscopic evidence for the formation of helical structures in gas-phase short peptide chains. J Phys Chem A 111:7347Google Scholar
  94. 94.
    Gloaguen E, Pagliarulo F, Brenner V, Chin W, Piuzzi F, Tardivel B, Mons M (2007) Intramolecular recognition in a jet-cooled short peptide chain: γ-turn helicity probed by a neighbouring residue. Phys Chem Chem Phys 9:4491Google Scholar
  95. 95.
    Häber T, Seefeld K, Kleinermanns K (2007) Mid- and near-infrared spectra of conformers of H-Pro-Trp-OH. J Phys Chem A 111:3038Google Scholar
  96. 96.
    Häber T, Seefeld K, Engler G, Grimme S, Kleinermanns K (2008) IR/UV spectra and quantum chemical calculations of Trp-Ser: stacking interactions between backbone and indole side-chain. Phys Chem Chem Phys 10:2844Google Scholar
  97. 97.
    von Helden G, Compagnon I, Blom MN, Frankowski M, Erlekam U, Oomens J, Brauer B, Gerber RB, Meijer G (2008) Mid-IR spectra of different conformers of phenylalanine in the gas phase. Phys Chem Chem Phys 10:1248Google Scholar
  98. 98.
    Vaden TD, Gowers SAN, de Boer T, Steill JD, Oomens J, Snoek LC (2008) Conformational preferences of an amyloidogenic peptide: IR spectroscopy of Ac-VQIVYK-NHMe. J Am Chem Soc 130:14640Google Scholar
  99. 99.
    Valdés H, Spirko V, Rezac J, Řeha D, Abo-Riziq AG, de Vries MS, Hobza P (2008) Potential-energy and free-energy surfaces of glycyl-phenylalanyl-alanine (GFA) tripeptide: experiment and theory. Chem-Eur J 14:4886Google Scholar
  100. 100.
    Fricke H, Gerlach A, Unterberg C, Wehner M, Schrader T, Gerhards M (2009) Interactions of small protected peptides with aminopyrazole derivatives: the efficiency of blocking a beta-sheet model in the gas phase. Angew Chem Int Ed 48:900Google Scholar
  101. 101.
    Vaden TD, Gowers SAN, Snoek LC (2009) Infrared spectroscopy of ‘forbidden’ peptide sequences. Phys Chem Chem Phys 11:5843Google Scholar
  102. 102.
    Fricke H, Schwing K, Gerlach A, Unterberg C, Gerhards M (2010) Investigations of the water clusters of the protected amino acid Ac-Phe-OMe by applying IR/UV double resonance spectroscopy: microsolvation of the backbone. Phys Chem Chem Phys 12:3511Google Scholar
  103. 103.
    Gloaguen E, Valdes H, Pagliarulo F, Pollet R, Tardivel B, Hobza P, Piuzzi F, Mons M (2010) Experimental and theoretical investigation of the aromatic-aromatic interaction in isolated capped dipeptides. J Phys Chem A 114:2973Google Scholar
  104. 104.
    James WH, Baquero EE, Choi SH, Gellman SH, Zwier TS (2010) Laser spectroscopy of conformationally constrained alpha/beta-peptides: Ac-ACPC-Phe-NHMe and Ac-Phe-ACPC-NHMe. J Phys Chem A 114:1581Google Scholar
  105. 105.
    Rijs AM, Ohanessian G, Oomens J, Meijer G, von Helden G, Compagnon I (2010) Internal proton transfer leading to stable zwitterionic structures in a neutral isolated peptide. Angew Chem Int Ed 49:2332Google Scholar
  106. 106.
    Abo-Riziq A, Grace L, Crews B, Callahan MP, van Mourik T, de Vries MS (2011) Conformational structure of tyrosine, tyrosyl-glycine, and tyrosyl-glycyl-glycine by double resonance spectroscopy. J Phys Chem A 115:6077Google Scholar
  107. 107.
    Plowright RJ, Gloaguen E, Mons M (2011) Compact folding of isolated four-residue neutral peptide chains: H-bonding patterns and entropy effects. ChemPhysChem 12:1889Google Scholar
  108. 108.
    Rijs AM, Kabeláč M, Abo-Riziq A, Hobza P, de Vries MS (2011) Isolated gramicidin peptides probed by IR spectroscopy. ChemPhysChem 12:1816Google Scholar
  109. 109.
    Biswal HS, Gloaguen E, Loquais Y, Tardivel B, Mons M (2012) Strength of NH···S hydrogen bonds in methionine residues revealed by gas-phase IR/UV spectroscopy. J Phys Chem Lett 3:755Google Scholar
  110. 110.
    Mališ M, Loquais Y, Gloaguen E, Biswal HS, Piuzzi F, Tardivel B, Brenner V, Broquier M, Jouvet C, Mons M, Došlić N, Ljubić I (2012) Unraveling the mechanisms of nonradiative deactivation in model peptides following photoexcitation of a phenylalanine residue. J Am Chem Soc 134:20340Google Scholar
  111. 111.
    Schwing K, Fricke H, Bartl K, Polkowska J, Schrader T, Gerhards M (2012) Isolated β-turn model systems investigated by combined IR/UV spectroscopy. ChemPhysChem 13:1576Google Scholar
  112. 112.
    Gloaguen E, Loquais Y, Thomas JA, Pratt DW, Mons M (2013) Spontaneous formation of hydrophobic domains in isolated peptides. J Phys Chem B 117:4945Google Scholar
  113. 113.
    Shimozono Y, Yamada K, S-i I, Tsukiyama K, Fujii M (2013) Revised conformational assignments and conformational evolution of tyrosine by laser desorption supersonic jet laser spectroscopy. Phys Chem Chem Phys 15:5163Google Scholar
  114. 114.
    Stanca-Kaposta EC, Çarçabal P, Cocinero EJ, Hurtado P, Simons JP (2013) Carbohydrate-aromatic interactions: vibrational spectroscopy and structural assignment of isolated monosaccharide complexes with p-hydroxy toluene and N-acetyl L-tyrosine Methylamide. J Phys Chem B 117:8135Google Scholar
  115. 115.
    Mališ M, Loquais Y, Gloaguen E, Jouvet C, Brenner V, Mons M, Ljubić I, Došlić N (2014) Non-radiative deactivation of electronically excited phenylalanine in model peptides: quenching properties of a primary amide group. Phys Chem Chem Phys 16:2285Google Scholar
  116. 116.
    Yan B, Jaeqx S, van der Zande WJ, Rijs AM (2014) A conformation-selective IR-UV study of the dipeptides Ac-Phe-Ser-NH2 and Ac-Phe-Cys-NH2: probing the SH∙∙∙O and OH∙∙∙O hydrogen bond interactions. Phys Chem Chem Phys 16:10770Google Scholar
  117. 117.
    Jaeqx S, Oomens J, Cimas A, Gaigeot MP, Rijs AM (2014) Gas-phase peptide structures unraveled by far-IR spectroscopy: combining IR-UV ion-dip experiments with Born-Oppenheimer molecular dynamics simulations. Angew Chem Int Ed 53:3663Google Scholar
  118. 118.
    Alauddin M, Biswal HS, Gloaguen E, Mons M (2014) Intra-residue interactions in proteins: interplay between serine or cysteine side chains and backbone conformations, revealed by laser spectroscopy of isolated model peptides. Phys Chem Chem Phys. doi: 10.1039/c4cp04449e Google Scholar
  119. 119.
    Dian BC, Florio GM, Clarkson JR, Longarte A, Zwier TS (2004) Infrared-induced conformational isomerization and vibrational relaxation dynamics in melatonin and 5-methoxy-N-acetyl tryptophan methyl amide. J Chem Phys 120:9033Google Scholar
  120. 120.
    Fricke H, Gerlach A, Unterberg C, Rzepecki P, Schrader T, Gerhards M (2004) Structure of the tripeptide model Ac-Val-Tyr(Me)-NHMe and its cluster with water investigated by IR/UV double resonance spectroscopy. Phys Chem Chem Phys 6:4636Google Scholar
  121. 121.
    Fricke H, Schäfer G, Schrader T, Gerhards M (2007) Secondary structure binding motifs of the jet cooled tetrapeptide model Ac-Leu-Val-Tyr(Me)-NHMe. Phys Chem Chem Phys 9:4592Google Scholar
  122. 122.
    Baquero EE, James WH, Choi SH, Gellman SH, Zwier TS (2008) Single-conformation ultraviolet and infrared spectroscopy of model synthetic foldamers: β-peptides Ac-β3-hPhe-NHMe and Ac-β3-hTyr-NHMe. J Am Chem Soc 130:4784Google Scholar
  123. 123.
    Baquero EE, James WH, Choi SH, Gellman SH, Zwier TS (2008) Single-conformation ultraviolet and infrared spectroscopy of model synthetic foldamers: β-peptides Ac-β3-hPhe-β3-hAla-NHMe and Ac-β3-hAla-β3-hPhe-NHMe. J Am Chem Soc 130:4795Google Scholar
  124. 124.
    Fricke H, Funk A, Schrader T, Gerhards M (2008) Investigation of secondary structure elements by IR/UV double resonance spectroscopy: analysis of an isolated β-sheet model system. J Am Chem Soc 130:4692Google Scholar
  125. 125.
    James WH, Müller CW, Buchanan EG, Nix MGD, Guo L, Roskop L, Gordon MS, Slipchenko LV, Gellman SH, Zwier TS (2009) Intramolecular amide stacking and its competition with hydrogen bonding in a small foldamer. J Am Chem Soc 131:14243Google Scholar
  126. 126.
    Buchanan EG, James WH, Gutberlet A, Dean JC, Guo L, Gellman SH, Zwier TS (2011) Single-conformation spectroscopy and population analysis of model gamma-peptides: new tests of amide stacking. Faraday Discuss 150:209Google Scholar
  127. 127.
    James WH, Buchanan EG, Guo L, Geman SH, Zwier TS (2011) Competition between amide stacking and intramolecular H bonds in γ-peptide derivatives: controlling nearest-neighbor preferences. J Phys Chem A 115:11960Google Scholar
  128. 128.
    James WH, Buchanan EG, Muller CW, Dean JC, Kosenkov D, Slipchenko LV, Guo L, Reidenbach AG, Gellman SH, Zwier TS (2011) Evolution of amide stacking in larger gamma-peptides: triamide H-bonded cycles. J Phys Chem A 115:13783Google Scholar
  129. 129.
    Schwing K, Reyheller C, Schaly A, Kubik S, Gerhards M (2011) Structural analysis of an isolated cyclic tetrapeptide and its monohydrate by combined IR/UV spectroscopy. ChemPhysChem 12:1981Google Scholar
  130. 130.
    Shubert VA, Zwier TS (2007) IR-IR-UV hole-burning: conformation specific IR spectra in the face of UV spectral overlap. J Phys Chem A 111:13283Google Scholar
  131. 131.
    Compagnon I, Oomens J, Bakker J, Meijer G, von Helden G (2005) Vibrational spectroscopy of a non-aromatic amino acid-based model peptide: identification of the gamma-turn motif of the peptide backbone. Phys Chem Chem Phys 7:13Google Scholar
  132. 132.
    Compagnon I, Oomens J, Meijer G, von Helden G (2006) Mid-infrared spectroscopy of protected peptides in the gas phase: a probe of the backbone conformation. J Am Chem Soc 128:3592Google Scholar
  133. 133.
    Cocinero EJ, Stanca-Kaposta EC, Gamblin DP, Davis BG, Simons JP (2009) Peptide secondary structures in the gas phase: consensus motif of N-linked glycoproteins. J Am Chem Soc 131:1282Google Scholar
  134. 134.
    Gloaguen E, Pollet R, Piuzzi F, Tardivel B, Mons M (2009) Gas phase folding of an (Ala)4 neutral peptide chain: spectroscopic evidence for the formation of a β-hairpin H-bonding pattern. Phys Chem Chem Phys 11:11385Google Scholar
  135. 135.
    Gloaguen E, de Courcy B, Piquemal JP, Pilmé J, Parisel O, Pollet R, Biswal HS, Piuzzi F, Tardivel B, Broquier M, Mons M (2010) Gas-phase folding of a two-residue model peptide chain: on the importance of an interplay between experiment and theory. J Am Chem Soc 132:11860Google Scholar
  136. 136.
    Zhu H, Blom M, Compagnon I, Rijs AM, Roy S, von Helden G, Schmidt B (2010) Conformations and vibrational spectra of a model tripeptide: change of secondary structure upon micro-solvation. Phys Chem Chem Phys 12:3415Google Scholar
  137. 137.
    Miyazaki M, Makara K, Ishiuchi S, Fujii M (2011) Gas-phase infrared spectroscopy of monopeptides from 10 to 3 μm. Chem Lett 40:1157Google Scholar
  138. 138.
    Chakraborty S, Yamada K, Ishiuchi S, Fujii M (2012) Gas phase IR spectra of tri-peptide Z-Pro-Leu-Gly: effect of C-terminal amide capping on secondary structure. Chem Phys Lett 531:41Google Scholar
  139. 139.
    Dean JC, Buchanan EG, Zwier TS (2012) Mixed 14/16 helices in the gas phase: conformation-specific spectroscopy of Z-(Gly)n, n = 1, 3, 5. J Am Chem Soc 134:17186Google Scholar
  140. 140.
    Ishiuchi S, Yamada K, Chakraborty S, Yagi K, Fujii M (2013) Gas-phase spectroscopy and anharmonic vibrational analysis of the 3-residue peptide Z-Pro-Leu-Gly-NH2 by the laser desorption supersonic jet technique. Chem Phys 419:145Google Scholar
  141. 141.
    Jaeqx S, Oomens J, Rijs AM (2013) Gas-phase salt bridge interactions between glutamic acid and arginine. Phys Chem Chem Phys 15:16341Google Scholar
  142. 142.
    Jaeqx S, Du WN, Meijer EJ, Oomens J, Rijs AM (2013) Conformational study of Z-Glu-OH and Z-Arg-OH: dispersion interactions versus conventional hydrogen bonding. J Phys Chem A 117:1216Google Scholar
  143. 143.
    Kusaka R, Zhang D, Walsh PS, Gord JR, Fisher BF, Gellman SH, Zwier TS (2013) Role of ring-constrained γ-amino acid residues in α/γ-peptide folding: single-conformation UV and IR spectroscopy. J Phys Chem A 117:10847Google Scholar
  144. 144.
    Walsh PS, Kusaka R, Buchanan EG, James WH III, Fisher BF, Gellman SH, Zwier TS (2013) Cyclic constraints on conformational flexibility in γ-peptides: conformation specific IR and UV spectroscopy. J Phys Chem A 117:12350Google Scholar
  145. 145.
    Gord JR, Walsh PS, Fisher BF, Gellman SH, Zwier TS (2014) Mimicking the first turn of an α-helix with an unnatural backbone: conformation-specific IR and UV spectroscopy of cyclically constrained β/γ-peptides. J Phys Chem B 118:8246Google Scholar
  146. 146.
    Gloaguen E, Brenner V, Alauddin M, Tardivel B, Mons M, Zehnacker-Rentien A, Declerck V, Aitken DJ (2014) Direct spectroscopic evidence of hyperconjugation unveils the conformational landscape of hydrazides. Angew Ch Int Ed. doi: 10.1002/anie.201407801 Google Scholar
  147. 147.
    Buchanan EG, Sibert EL, Zwier TS (2013) Ground state conformational preferences and CH stretch-bend coupling in a model alkoxy chain: 1,2-diphenoxyethane. J Phys Chem A 117:2800Google Scholar
  148. 148.
    Buchanan EG, Dean JC, Zwier TS, Sibert EL (2013) Towards a first-principles model of Fermi resonance in the alkyl CH stretch region: application to 1,2-diphenylethane and 2,2,2-paracyclophane. J Chem Phys 138:064308Google Scholar
  149. 149.
    Dian BC, Clarkson JR, Zwier TS (2004) Direct measurement of energy thresholds to conformational isomerization in tryptamine. Science 303:1169Google Scholar
  150. 150.
    Wilson KR, Belau L, Nicolas C, Jimenez-Cruz M, Leone SR, Ahmed M (2006) Direct determination of the ionization energy of histidine with VUV synchrotron radiation. Int J Mass Spectrom 249:155Google Scholar
  151. 151.
    Wilson KR, Jimenez-Cruz M, Nicolas C, Belau L, Leone SR, Ahmed M (2006) Thermal vaporization of biological nanoparticles: fragment-free vacuum ultraviolet photoionization mass spectra of tryptophan, phenylalanine-glycine-glycine, and, beta-carotene. J Phys Chem A 110:2106Google Scholar
  152. 152.
    Lee KT, Sung J, Lee KJ, Park YD, Kim SK (2002) Conformation-dependent ionization energies of L-phenylalanine. Angew Chem Int Ed 41:4114Google Scholar
  153. 153.
    Jochims HW, Schwell M, Chotin JL, Clemino M, Dulieu F, Baumgärtel H, Leach S (2004) Photoion mass spectrometry of five amino acids in the 6–22 eV photon energy range. Chem Phys 298:279Google Scholar
  154. 154.
    Plekan O, Feyer V, Richter R, Coreno M, de Simone M, Prince KC, Carravetta V (2007) Investigation of the amino acids glycine, proline, and methionine by photoemission spectroscopy. J Phys Chem A 111:10998Google Scholar
  155. 155.
    Tia M, de Miranda BC, Daly S, Gaie-Levrel F, Garcia GA, Powis I, Nahon L (2013) Chiral asymmetry in the photoionization of gas-phase amino-acid alanine at Lyman-alpha radiation wavelength. J Phys Chem Lett 4:2698Google Scholar
  156. 156.
    Powis I, Rennie EE, Hergenhahn U, Kugeler O, Bussy-Socrate R (2003) Investigation of the gas-phase amino acid alanine by synchrotron radiation photoelectron spectroscopy. J Phys Chem A 107:25Google Scholar
  157. 157.
    Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701Google Scholar
  158. 158.
    Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668Google Scholar
  159. 159.
    Brooks BR, Brooks CL, Mackerell AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545Google Scholar
  160. 160.
    Valdés H, Řeha D, Hobza P (2006) Structure of isolated tryptophyl-glycine dipeptide and tryptophyl-glycyl-glycine tripeptide: ab initio SCC-DFTB-D molecular dynamics simulations and high-level correlated ab initio quantum chemical calculations. J Phys Chem B 110:6385Google Scholar
  161. 161.
    Toroz D, Van Mourik T (2006) The structure of the gas-phase tyrosine-glycine dipeptide. Mol Phys 104:559Google Scholar
  162. 162.
    Černý J, Hobza P (2007) Non-covalent interactions in biomacromolecules. Phys Chem Chem Phys 9:5291Google Scholar
  163. 163.
    Holroyd LF, van Mourik T (2007) Insufficient description of dispersion in B3LYP and large basis set superposition errors in MP2 calculations can hide peptide conformers. Chem Phys Lett 442:42Google Scholar
  164. 164.
    Shields AE, van Mourik T (2007) Comparison of ab initio and DFT electronic structure methods for peptides containing an aromatic ring: effect of dispersion and BSSE. J Phys Chem A 111:13272Google Scholar
  165. 165.
    van Mourik T (2008) Assessment of density functionals for intramolecular dispersion-rich interactions. J Chem Theory Comput 4:1610Google Scholar
  166. 166.
    Toroz D, van Mourik T (2010) Structure of the gas-phase glycine tripeptide. Phys Chem Chem Phys 12:3463Google Scholar
  167. 167.
    Zhao Y, Truhlar DG (2007) Density functionals for noncovalent interaction energies of biological importance. J Chem Theory Comput 3:289Google Scholar
  168. 168.
    Zhao Y, Truhlar DG (2006) Assessment of model chemistries for noncovalent interactions. J Chem Theory Comput 2:1009Google Scholar
  169. 169.
    Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41:157Google Scholar
  170. 170.
    Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25:1463Google Scholar
  171. 171.
    Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787Google Scholar
  172. 172.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104Google Scholar
  173. 173.
    Mackie ID, DiLabio GA (2008) Interactions in large, polyaromatic hydrocarbon dimers: application of density functional theory with dispersion corrections. J Phys Chem A 112:10968Google Scholar
  174. 174.
    Lill SON (2010) Evaluation of dispersion-corrected density functional theory (B3LYP-DCP) for compounds of biochemical interest. J Mol Graph 29:178Google Scholar
  175. 175.
    Bouteiller Y, Poully JC, Desfrançois C, Grégoire G (2009) Evaluation of MP2, DFT, and DFT-D methods for the prediction of infrared spectra of peptides. J Phys Chem A 113:6301Google Scholar
  176. 176.
    Bouteiller Y, Gillet JC, Grégoire G, Schermann JP (2008) Transferable specific scaling factors for interpretation of infrared spectra of biomolecules from density functional theory. J Phys Chem A 112:11656Google Scholar
  177. 177.
    Došlić N, Kovačević G, Ljubić I (2007) Signature of the conformational preferences of small peptides: a theoretical investigation. J Phys Chem A 111:8650Google Scholar
  178. 178.
    Neff M, Rauhut G (2009) Toward large scale vibrational configuration interaction calculations. J Chem Phys 131:124129Google Scholar
  179. 179.
    Scribano Y, Lauvergnat DM, Benoit DM (2010) Fast vibrational configuration interaction using generalized curvilinear coordinates and self-consistent basis. J Chem Phys 133:094103Google Scholar
  180. 180.
    Clarkson JR, Baquero E, Shubert VA, Myshakin EM, Jordan KD, Zwier TS (2005) Laser-initiated shuttling of a water molecule between H-bonding sites. Science 307:1443Google Scholar
  181. 181.
    LeGreve TA, Clarkson JR, Zwier TS (2008) Experimental determination of conformational isomerization energy thresholds in serotonin. J Phys Chem A 112:3911Google Scholar
  182. 182.
    Sohn WY, Cho K-J, Lee SY, Kang SS, Park YD, Kang H (2012) Solvent-assisted conformational isomerization (SACI) of meta-substituted phenols: tuning relative stability, isomerization barrier, and IVR rate. Chem Phys Lett 525–26:37Google Scholar
  183. 183.
    Sohn WY, Kim M, Kim S-S, Park YD, Kang H (2011) Solvent-assisted conformational isomerization and the conformationally-pure REMPI spectrum of 3-aminophenol. Phys Chem Chem Phys 13:7006Google Scholar
  184. 184.
    Miller RD (1988) In: Scoles G (ed) Atomic and molecular beam methods, vol 1. Oxford University Press, New York, p 14Google Scholar
  185. 185.
    Handschuh M, Nettesheim S, Zenobi R (1999) Is infrared laser-induced desorption a thermal process? The case of aniline. J Phys Chem B 103:1719Google Scholar
  186. 186.
    Godfrey PD, Brown RD (1998) Proportions of species observed in jet spectroscopy vibrational energy effects: histamine tautomers and conformers. J Am Chem Soc 120:10724Google Scholar
  187. 187.
    Shubert VA, Baquero EE, Clarkson JR, James WH, Turk JA, Hare AA, Worrel K, Lipton MA, Schofield DP, Jordan KD, Zwier TS (2007) Entropy-driven population distributions in a prototypical molecule with two flexible side chains: O-(2-acetamidoethyl)-N-acetyltyramine. J Chem Phys 127:234315Google Scholar
  188. 188.
    Cabezas C, Varela M, Cortijo V, Jiménez AI, Peña I, Daly AM, López JC, Cativiela C, Alonso JL (2013) The alanine model dipeptide Ac-Ala-NH2 exists as a mixture of C7 eq and C5 conformers. Phys Chem Chem Phys 15:2580Google Scholar
  189. 189.
    Mons M, Piuzzi F, Dimicoli I, Gorb L, Leszczynski J (2006) Near-UV resonant two-photon ionization spectroscopy of gas phase guanine: evidence for the observation of three rare tautomers. J Phys Chem A 110:10921Google Scholar
  190. 190.
    Mons M, Dimicoli I, Piuzzi F (2002) Gas phase hydrogen-bonded complexes of aromatic molecules: photoionization and energetics. Int Rev Phys Chem 21:101Google Scholar
  191. 191.
    Head-Gordon T, Head-Gordon M, Frisch MJ, Brooks CL, Pople JA (1991) Theoretical-study of blocked glycine and alanine peptide analogs. J Am Chem Soc 113:5989Google Scholar
  192. 192.
    Vass E, Hollósi M, Besson F, Buchet R (2003) Vibrational spectroscopic detection of beta- and gamma-turns in synthetic and natural peptides and proteins. Chem Rev 103:1917Google Scholar
  193. 193.
    Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498Google Scholar
  194. 194.
    Chaudret R, de Courcy B, Contreras-García J, Gloaguen E, Zehnacker-Rentien A, Mons M, Piquemal J-P (2014) Unraveling non covalent interactions within flexible biomolecules: from electron density topology to gas phase spectroscopy. Phys Chem Chem Phys 16:2285Google Scholar
  195. 195.
    Zhou P, Tian F, Lv F, Shang Z (2009) Geometric characteristics of hydrogen bonds involving sulfur atoms in proteins. Proteins Struct Funct Bioinf 76:151Google Scholar
  196. 196.
    Han WG, Jalkanen KJ, Elstner M, Suhai S (1998) Theoretical study of aqueous N-acetyl-L-alanine N′-methylamide: structures and Raman, VCD, and ROA spectra. J Phys Chem B 102:2587Google Scholar
  197. 197.
    Cocinero EJ, Çarçabal P, Vaden TD, Davis BG, Simons JP (2011) Exploring carbohydrate-peptide interactions in the gas phase: structure and selectivity in complexes of pyranosides with N-acetylphenylalanine methylamide. J Am Chem Soc 133:4548Google Scholar
  198. 198.
    Cocinero EJ, Çarçabal P, Vaden TD, Simons JP, Davis BG (2011) Sensing the anomeric effect in a solvent-free environment. Nature 469:76Google Scholar
  199. 199.
    Zhigilei LV, Leveugle E, Garrison BJ, Yingling YG, Zeifman MI (2003) Computer simulations of laser ablation of molecular substrates. Chem Rev 103:321Google Scholar
  200. 200.
    Loquais Y, Gloaguen E, Habka S, Vaquero-Vara V, Brenner V, Tardivel B, Mons M (2014) Secondary structures in phe-containing isolated dipeptide chains: laser spectroscopy vs quantum chemistry. J Phys Chem A. doi: 10.1021/jp509494c Google Scholar
  201. 201.
    Christiansen O, Koch H, Jorgensen P (1995) The 2nd-order approximate coupled-cluster singles and doubles model CC2. Chem Phys Lett 243:409Google Scholar
  202. 202.
    Shemesh D, Domcke W (2011) Effect of the chirality of residues and gamma-turns on the electronic excitation spectra, excited-state reaction paths and conical intersections of capped phenylalanine-alanine dipeptides. ChemPhysChem 12:1833Google Scholar
  203. 203.
    Shemesh D, Hättig C, Domcke W (2009) Photophysics of the Trp-Gly dipeptide: role of electron and proton transfer processes for efficient excited-state deactivation. Chem Phys Lett 482:38Google Scholar
  204. 204.
    Shemesh D, Sobolewski AL, Domcke W (2009) Efficient excited-state deactivation of the Gly-Phe-Ala tripeptide via an electron-driven proton-transfer process. J Am Chem Soc 131:1374Google Scholar
  205. 205.
    Shemesh D, Sobolewski AL, Domcke W (2010) Role of excited-state hydrogen detachment and hydrogen-transfer processes for the excited-state deactivation of an aromatic dipeptide: N-acetyl tryptophan methyl amide. Phys Chem Chem Phys 12:4899Google Scholar
  206. 206.
    Sobolewski AL, Domcke W (2006) Relevance of electron-driven proton-transfer processes for the photostability of proteins. ChemPhysChem 7:561Google Scholar
  207. 207.
    Sobolewski AL, Shemesh D, Domcke W (2009) Computational studies of the photophysics of neutral and zwitterionic amino acids in an aqueous environment: tyrosine-(H2O)2 and tryptophan-(H2O)2 clusters. J Phys Chem A 113:542Google Scholar
  208. 208.
    Clavaguéra C, Piuzzi F, Dognon JP (2009) Electronic spectrum of tryptophan-phenylalanine. A correlated ab initio and time-dependent density functional theory study. J Phys Chem B 113:16443Google Scholar
  209. 209.
    Pollet R, Brenner V (2008) Assessment of time-dependent density functional theory for predicting excitation energies of bichromophoric peptides: case of tryptophan-phenylalanine. Theor Chem Acc 121:307Google Scholar
  210. 210.
    Sobolewski AL, Domcke W, Dedonder-Lardeux C, Jouvet C (2002) Excited-state hydrogen detachment and hydrogen transfer driven by repulsive 1πσ* states: a new paradigm for nonradiative decay in aromatic biomolecules. Phys Chem Chem Phys 4:1093Google Scholar
  211. 211.
    Tubergen MJ, Cable JR, Levy DH (1990) Substituent effects on the electronic spectroscopy of tryptophan derivatives in jet expansions. J Chem Phys 92:51Google Scholar
  212. 212.
    Ovejas V, Fernández-Fernández M, Montero R, Castaño F, Longarte A (2013) Ultrafast nonradiative relaxation channels of tryptophan. J Phys Chem Lett 4:1928Google Scholar
  213. 213.
    Nosenko Y, Kunitski M, Riehn C, Harbach PHP, Dreuw A, Brutschy B (2010) The structure of adenine monohydrates studied by femtosecond multiphoton ionization detected IR spectroscopy and quantum chemical calculations. Phys Chem Chem Phys 12:863Google Scholar
  214. 214.
    León I, Montero R, Castaño F, Longarte A, Fernández JA (2012) Mass-resolved infrared spectroscopy of complexes without chromophore by nonresonant femtosecond ionization detection. J Phys Chem A 116:6798Google Scholar
  215. 215.
    Choi MY, Miller RE (2006) Four tautomers of isolated guanine from infrared laser spectroscopy in helium nanodroplets. J Am Chem Soc 128:7320Google Scholar
  216. 216.
    Seurre N, Le Barbu-Debus K, Lahmani F, Zehnacker-Rentien A, Sepiol J (2003) Electronic and vibrational spectroscopy of jet-cooled m-cyanophenol and its dimer: laser-induced fluorescence and fluorescence-dip IR spectra in the S0 and S1 states. Chem Phys 295:21Google Scholar
  217. 217.
    Dian BC, Longarte A, Zwier TS (2003) Hydride stretch infrared spectra in the excited electronic states of indole and its derivatives: direct evidence for the 1πσ* state. J Chem Phys 118:2696Google Scholar
  218. 218.
    Bartl K, Funk A, Gerhards M (2008) IR/UV spectroscopy on jet cooled 3-hydroxyflavone (H2O)n (n = 1,2) clusters along proton transfer coordinates in the electronic ground and excited states. J Chem Phys 129:234306Google Scholar
  219. 219.
    Weiler M, Bartl K, Gerhards M (2012) Infrared/ultraviolet quadruple resonance spectroscopy to investigate structures of electronically excited states. J Chem Phys 136:114202Google Scholar
  220. 220.
    Asplund MC, Zanni MT, Hochstrasser RM (2000) Two-dimensional infrared spectroscopy of peptides by phase-controlled femtosecond vibrational photon echoes. Proc Natl Acad Sci U S A 97:8219Google Scholar
  221. 221.
    Xie YM, Schaefer HF, Silaghi-Dumitrescu R, Peng B, Li QS, Stearns JA, Rizzo TR (2012) Conformational preferences of gas-phase helices: experiment and theory struggle to agree: the seven-residue peptide Ac-Phe-(Ala)5-Lys-H+. Chem Eur J 18:12941Google Scholar
  222. 222.
    Stearns JA, Seaiby C, Boyarkin OV, Rizzo TR (2009) Spectroscopy and conformational preferences of gas-phase helices. Phys Chem Chem Phys 11:125Google Scholar
  223. 223.
    Altmayer-Henzien A, Declerck V, Merlet D, Baltaze JP, Farjon J, Guillot R, Aitken DJ (2013) Solution state conformational preferences of dipeptides derived from n-aminoazetidinecarboxylic acid: an assessment of the hydrazino turn. J Org Chem 78:6031Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.CNRS, INC and INP, Lab. Francis PerrinGif-sur-YvetteFrance
  2. 2.CEA, IRAMIS, Laboratoire Interactions, Dynamique et LasersGif-sur-YvetteFrance

Personalised recommendations