Top Chemical Opportunities from Carbohydrate Biomass: A Chemist’s View of the Biorefinery

  • Michiel Dusselier
  • Mark MascalEmail author
  • Bert F. SelsEmail author
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 353)


Cheap fossil oil resources are becoming depleted and crude oil prices are rising. In this context, alternatives to fossil fuel-derived carbon are examined in an effort to improve the security of carbon resources through the development of novel technologies for the production of chemicals, fuels, and materials from renewable feedstocks such as biomass. The general concept unifying the conversion processes for raw biomass is that of the biorefinery, which integrates biofuels with a selection of pivot points towards value-added chemical end products via so-called “platform chemicals”. While the concept of biorefining is not new, now more than ever there is the motivation to investigate its true potential for the production of carbon-based products. A variety of renewable chemicals have been proposed by many research groups, many of them being categorized as drop-ins, while others are novel chemicals with the potential to displace petrochemicals across several markets. To be competitive with petrochemicals, carbohydrate-derived products should have advantageous chemical properties that can be profitably exploited, and/or their production should offer cost-effective benefits. The production of drop-ins will likely proceed in short term since the markets are familiar, while the commercial introduction of novel chemicals takes longer and demands more technological and marketing effort.

Rather than describing elaborate catalytic routes and giving exhaustive lists of reactions, a large part of this review is devoted to creating a guideline for the selection of the most promising (platform) chemicals derived via chemical-catalytic reaction routes from lignocellulosic biomass. The major rationale behind our recommendations is a maximum conservation of functionality, alongside a high atom economy. Nature provides us with complex molecules like cellulose and hemicellulose, and it should be possible to transform them into chemical products while maintaining aspects of their original structure, rather than taking them completely apart only to put them back together again in a different order, or turning them into metabolites and CO2. Thus, rather than merely pursuing energy content as in the case of biofuels, the chemist sees atom efficiency, functional versatility, and reactivity as the key criteria for the successful valorization of biomass into chemicals.

To guide the choice of renewable chemicals and their production, this review adopts the original van Krevelen plots and develops alternative diagrams by introducing a functionality parameter F and a functionality index F:C (rather than O:C). This index is more powerful than the O index to describe the importance of functional groups. Such plots are ideal to assess the effect of several reaction types on the overall functionality in biomass conversion. The atom economy is an additional arbitrator in the evaluation of the reaction types. The assessment is illustrated in detail for the case of carbohydrate resources, and about 25 chemicals, including drop-ins as well as novel chemicals, are selected.

Most of these chemicals would be difficult to synthesize from petrochemicals feeds, and this highlights the unique potential of carbohydrates as feedstocks, but, importantly, the products should have a strong applied dimension in existing or rising markets. Ultimately, the production scales of those markets must be harmonized to the biomass availability and its collection and storage logistics.


Atom economy Biomass conversion Biomass-to-chemicals Biorefinery Cellulose Functionality index Modified van Krevelen plot Platform chemicals 



M.D. acknowledges FWO Vlaanderen (Research Foundation - Flanders) for a post-doctoral fellowship. B.F.S thanks the Research Council of the KU Leuven (IDO-3E090504) for financial support, as well as the Belgian government for its funding through IAP (Belspo).


  1. 1.
    Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489Google Scholar
  2. 2.
    Levy PF, Sanderson JE, Kispert RG, Wise DL (1981) Biorefining of biomass to liquid fuels and organic chemicals. Enzyme Microb Tech 3:207–215Google Scholar
  3. 3.
    Lipinsky ES (1978) Fuels from biomass: integration with food and materials systems. Science 199:644–651Google Scholar
  4. 4.
    Bracannot H (1819) Sur la conversion du corps ligneux en gomme, en sucre, et en un acide d’une nature particuliere, par le moyen de l’acide sulfurique; conversion de la même substance ligneuse en ulmine par la potasse. Ann Chim Phys 12:172–195Google Scholar
  5. 5.
    Vogel O (1908) History of wood distillation II. Dusseldorf Chem Ztg 32:561Google Scholar
  6. 6.
    Fawsitt CA (1885) Wood naphtha. J Soc Chem Ind Lond 4:319–321Google Scholar
  7. 7.
    Bungay HR (1982) Biomass refining. Science 218:643–646Google Scholar
  8. 8.
    Gunaseelan VN (1997) Anaerobic digestion of biomass for methane production: a review. Biomass Bioenerg 13:83–114Google Scholar
  9. 9.
    Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sust Energ Rev 4:1–73Google Scholar
  10. 10.
    Yung MM, Jablonski WS, Magrini-Bair KA (2009) Review of catalytic conditioning of biomass-derived syngas. Energ Fuel 23:1874–1887Google Scholar
  11. 11.
    Baliban RC, Elia JA, Floudas CA (2013) Biomass to liquid transportation fuels (BTL) systems: process synthesis and global optimization framework. Energ Environ Sci 6:267–287Google Scholar
  12. 12.
    Cheng Y-T, Jae J, Shi J, Fan W, Huber GW (2012) Production of renewable aromatic compounds by catalytic fast pyrolysis of lignocellulosic biomass with bifunctional Ga/ZSM-5 catalysts. Angew Chem Int Ed 51(6):1387–1390Google Scholar
  13. 13.
    Carlson TR, Vispute TP, Huber GW (2008) Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds. ChemSusChem 1(5):397–400Google Scholar
  14. 14.
    Elliott DC, Oasmaa A, Meier D, Preto F, Bridgwater AV (2012) Results of the IEA round robin on viscosity and aging of fast pyrolysis bio-oils: long-term tests and repeatability. Energ Fuel 26:7362–7366Google Scholar
  15. 15.
    Mortensen PM, Grunwaldt J-D, Jensen PA, Knudsen KG, Jensen AD (2011) A review of catalytic upgrading of bio-oil to engine fuels. Appl Catal A Gen 407:1–19Google Scholar
  16. 16.
    Centi G, van Santen RA (eds) (2007) Catalysis for renewables: from feedstock to energy production. Wiley-VCH, WeinheimGoogle Scholar
  17. 17.
    Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502Google Scholar
  18. 18.
    Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306Google Scholar
  19. 19.
    Van de Vyver S, Geboers J, Jacobs PA, Sels BF (2011) Recent advances in the catalytic conversion of cellulose. ChemCatChem 3(1):82–94Google Scholar
  20. 20.
    Geboers JA, Van de Vyver S, Ooms R, Op de Beeck B, Jacobs PA, Sels BF (2011) Chemocatalytic conversion of cellulose: opportunities, advances and pitfalls. Catal Sci Technol 1(5):714–726Google Scholar
  21. 21.
    Saha B (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30(5):279–291Google Scholar
  22. 22.
    Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110(6):3552–3599Google Scholar
  23. 23.
    Biermann U, Bornscheuer U, Meier MAR, Metzger JO, Schäfer HJ (2011) Oils and fats as renewable raw materials in chemistry. Angew Chem Int Ed 50(17):3854–3871Google Scholar
  24. 24.
    Foley PM, Beach ES, Zimmerman JB (2011) Algae as a source of renewable chemicals: opportunities and challenges. Green Chem 13(6):1399–1405Google Scholar
  25. 25.
    Tuck CO, Pérez E, Horváth IT, Sheldon RA, Poliakoff M (2012) Valorization of biomass: deriving more value from waste. Science 337(6095):695–699Google Scholar
  26. 26.
    Lammens TM, De Biase D, Franssen MCR, Scott EL, Sanders JPM (2009) The application of glutamic acid alpha-decarboxylase for the valorization of glutamic acid. Green Chem 11(10):1562–1567Google Scholar
  27. 27.
    Kromus S, Kamm B, Kamm M, Fowler P, Narodoslawsky M (2008) Green biorefineries: the green biorefinery concept – fundamentals and potential. In: Biorefineries-industrial processes and products. Wiley-VCH, Weinheim, pp 253–294Google Scholar
  28. 28.
    Song J, Fan H, Ma J, Han B (2013) Conversion of glucose and cellulose into value-added products in water and ionic liquids. Green Chem 15(10):2619–2635Google Scholar
  29. 29.
    Jarvis M (2003) Chemistry: cellulose stacks up. Nature 426(6967):611–612Google Scholar
  30. 30.
    Rinaldi R, Schüth F (2009) Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem 2(12):1096–1107Google Scholar
  31. 31.
    Vennestrøm PNR, Osmundsen CM, Christensen CH, Taarning E (2011) Beyond petrochemicals: the renewable chemicals industry. Angew Chem Int Ed 50(45):10502–10509Google Scholar
  32. 32.
    ten Dam J, Hanefeld U (2011) Renewable chemicals: dehydroxylation of glycerol and polyols. ChemSusChem 4(8):1017–1034Google Scholar
  33. 33.
    Zhou C-H, Beltramini JN, Fan Y-X, Lu GQ (2008) Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem Soc Rev 37:527–549Google Scholar
  34. 34.
    Sels B, D’Hondt E, Jacobs P (2007) Catalytic transformation of glycerol. In: Catalysis for renewables. Wiley-VCH, Weinheim, pp 223–255Google Scholar
  35. 35.
    Virent Inc., Accessed 14 Jan 2014
  36. 36.
    Huber GW, Cortright RD, Dumesic JA (2004) Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates. Angew Chem Int Ed 43:1549–1551Google Scholar
  37. 37.
    Huber GW, Chheda JN, Barrett CJ, Dumesic JA (2005) Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 308(5727):1446–1450Google Scholar
  38. 38.
    Kunkes EL, Simonetti DA, West RM, Serrano-Ruiz JC, Gartner CA, Dumesic JA (2008) Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science 322:417–421Google Scholar
  39. 39.
    Corma A, de la Torre O, Renz M, Villandier N (2011) Production of high-quality diesel from biomass waste products. Angew Chem Int Ed 50:2375–2378Google Scholar
  40. 40.
    Tompsett GA, Li N, Huber GW (2011) Catalytic conversion of sugars to fuels. In: Thermochemical processing of biomass. John Wiley & Sons, Ltd, pp 232–279Google Scholar
  41. 41.
    Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12(9):1493–1513Google Scholar
  42. 42.
    Climent MJ, Corma A, Iborra S (2014) Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chem 16(2):516–547Google Scholar
  43. 43.
    Sutton AD, Waldie FD, Wu R, Schlaf M, ‘Pete’ Silks LA, Gordon JC (2013) The hydrodeoxygenation of bioderived furans into alkanes. Nat Chem 5(5):428–432Google Scholar
  44. 44.
    Lange J-P, van der Heide E, van Buijtenen J, Price R (2012) Furfural—a promising platform for lignocellulosic biofuels. ChemSusChem 5(1):150–166Google Scholar
  45. 45.
    Bozell JJ, Moens L, Elliott DC, Wang Y, Neuenscwander GG, Fitzpatrick SW, Bilski RJ, Jarnefeld JL (2000) Production of levulinic acid and use as a platform chemical for derived products. Resour Conservat Recycl 28(3–4):227–239Google Scholar
  46. 46.
    Lange J-P, Price R, Ayoub PM, Louis J, Petrus L, Clarke L, Gosselink H (2010) Valeric biofuels: a platform of cellulosic transportation fuels. Angew Chem Int Ed 49(26):4479–4483Google Scholar
  47. 47.
    Alonso DM, Wettstein SG, Dumesic JA (2013) Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem 15(3):584–595Google Scholar
  48. 48.
    Mascal M, Dutta S, Gandarias I (2014) Hydrodeoxygenation of the Angelica lactone dimer, a cellulose-based feedstock: simple, high-yield synthesis of branched C7–C10 gasoline-like hydrocarbons. Angew Chem Int Ed 53:1854–1857Google Scholar
  49. 49.
    Serrano-Ruiz JC, Wang D, Dumesic JA (2010) Catalytic upgrading of levulinic acid to 5-nonanone. Green Chem 12:574–577Google Scholar
  50. 50.
    Bond JQ, Martin-Alonso D, Wang D, West RM, Dumesic JA (2010) Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels. Science 327:1110–1114Google Scholar
  51. 51.
    Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates – the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554Google Scholar
  52. 52.
    Kobayashi H, Fukuoka A (2013) Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass. Green Chem 15(7):1740–1763Google Scholar
  53. 53.
    Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558Google Scholar
  54. 54.
    Werpy T, Petersen G (2004) Top value added chemicals from biomass. DOE/GO-102004-1992 1.
  55. 55.
    Huber GW, Corma A (2007) Synergies between bio- and oil refineries for the production of fuels from biomass. Angew Chem Int Ed 46(38):7184–7201Google Scholar
  56. 56.
    Chheda JN, Huber GW, Dumesic JA (2007) Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chem Int Ed 46(38):7164–7183Google Scholar
  57. 57.
    Carlos Serrano-Ruiz J, Dumesic JA (2009) Catalytic upgrading of lactic acid to fuels and chemicals by dehydration/hydrogenation and C-C coupling reactions. Green Chem 11(8):1101–1104Google Scholar
  58. 58.
    Serrano-Ruiz JC, Dumesic JA (2011) Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energ Environ Sci 4(1):83–99Google Scholar
  59. 59.
    Yan X, Inderwildi OR, King DA (2010) Biofuels and synthetic fuels in the US and China: a review of well-to-wheel energy use and greenhouse gas emissions with the impact of land-use change. Energ Environ Sci 3(2):190–197Google Scholar
  60. 60.
    Inderwildi OR, King DA (2009) Quo vadis biofuels? Energ Environ Sci 2(4):343–346Google Scholar
  61. 61.
    Zinoviev S, Müller-Langer F, Das P, Bertero N, Fornasiero P, Kaltschmitt M, Centi G, Miertus S (2010) Next-generation biofuels: survey of emerging technologies and sustainability issues. ChemSusChem 3(10):1106–1133Google Scholar
  62. 62.
    Azapagic A, Perdan S, Clift R (eds) (2004) Sustainable development in practice: case studies for engineers and scientists. John Wiley & Sons Ltd. Chichester, UK.Google Scholar
  63. 63.
    Van Krevelen D (1950) Graphical-statistical method for the study of structure and reaction processes of coal. Fuel 29(12):269–284Google Scholar
  64. 64.
    IFRF Combustion Handbook - file 23 (2000) International Flame Research Foundation (IFRF).
  65. 65.
    Kim S, Kramer RW, Hatcher PG (2003) Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the van Krevelen diagram. Anal Chem 75(20):5336–5344Google Scholar
  66. 66.
    Wildschut J, Iqbal M, Mahfud FH, Cabrera IM, Venderbosch RH, Heeres HJ (2010) Insights in the hydrotreatment of fast pyrolysis oil using a ruthenium on carbon catalyst. Energ Environ Sci 3(7):962–970Google Scholar
  67. 67.
    Van de Vyver S, Thomas J, Geboers J, Keyzer S, Smet M, Dehaen W, Jacobs PA, Sels BF (2011) Catalytic production of levulinic acid from cellulose and other biomass-derived carbohydrates with sulfonated hyperbranched poly(arylene oxindole)s. Energ Environ Sci 4(9):3601–3610Google Scholar
  68. 68.
    de Clippel F, Dusselier M, Van Rompaey R, Vanelderen P, Dijkmans J, Makshina E, Giebeler L, Oswald S, Baron GV, Denayer JFM, Pescarmona PP, Jacobs PA, Sels BF (2012) Fast and selective sugar conversion to alkyl lactate and lactic acid with bifunctional carbon–silica catalysts. J Am Chem Soc 134(24):10089–10101Google Scholar
  69. 69.
    Li J, Ding D-J, Deng L, Guo Q-X, Fu Y (2012) Catalytic air oxidation of biomass-derived carbohydrates to formic acid. ChemSusChem 5(7):1313–1318Google Scholar
  70. 70.
    Ooms R, Dusselier M, Geboers JA, Op de Beeck B, Verhaeven R, Gobechiya E, Martens J, Redl A, Sels BF (2014) Conversion of sugars to ethylene glycol with nickel tungsten carbide in a fed-batch reactor: high productivity and reaction network elucidation. Green Chem 16:695–707Google Scholar
  71. 71.
    Zhang J, Sun M, Liu X, Han Y (2014) Catalytic oxidative conversion of cellulosic biomass to formic acid and acetic acid with exceptionally high yields. Catal Today. doi: 10.1016/j.cattod.2013.12.010
  72. 72.
    Sasaki M, Goto K, Tajima K, Adschiri T, Arai K (2002) Rapid and selective retro-aldol condensation of glucose to glycolaldehyde in supercritical water. Green Chem 4(3):285–287Google Scholar
  73. 73.
    Zhang J, Liu X, Sun M, Ma X, Han Y (2012) Direct conversion of cellulose to glycolic acid with a phosphomolybdic acid catalyst in a water medium. ACS Catal 2(8):1698–1702Google Scholar
  74. 74.
    Dusselier M, Van Wouwe P, Dewaele A, Makshina E, Sels BF (2013) Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis. Energ Environ Sci 6(5):1415–1442Google Scholar
  75. 75.
    Liu Y, Luo C, Liu H (2012) Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst. Angew Chem Int Ed 51(13):3249–3253Google Scholar
  76. 76.
    Biella S, Prati L, Rossi M (2002) Selective oxidation of D-glucose on gold catalyst. J Catal 206(2):242–247Google Scholar
  77. 77.
    Bui L, Luo H, Gunther WR, Román-Leshkov Y (2013) Domino reaction catalyzed by zeolites with brønsted and lewis acid sites for the production of γ-valerolactone from furfural. Angew Chem Int Ed 52(31):8022–8025Google Scholar
  78. 78.
    Yi G, Zhang Y (2012) One-pot selective conversion of hemicellulose (xylan) to xylitol under mild conditions. ChemSusChem 5(8):1383–1387Google Scholar
  79. 79.
    Nikolla E, Román-Leshkov Y, Moliner M, Davis ME (2011) “One-pot” synthesis of 5-(hydroxymethyl)furfural from carbohydrates using tin-beta zeolite. ACS Catal 1(4):408–410Google Scholar
  80. 80.
    Wang T, Nolte MW, Shanks BH (2014) Catalytic dehydration of C6 carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical. Green Chem 16(2):548–572Google Scholar
  81. 81.
    Van de Vyver S, Geboers J, Dusselier M, Schepers H, Vosch T, Zhang L, Van Tendeloo G, Jacobs PA, Sels BF (2010) Selective bifunctional catalytic conversion of cellulose over reshaped Ni particles at the tip of carbon nanofibers. ChemSusChem 3(6):698–701Google Scholar
  82. 82.
    Op de Beeck B, Geboers J, Van de Vyver S, Van Lishout J, Snelders J, Huijgen WJJ, Courtin CM, Jacobs PA, Sels BF (2013) Conversion of (ligno)cellulose feeds to isosorbide with heteropoly acids and Ru on carbon. ChemSusChem 6(1):199–208Google Scholar
  83. 83.
    An D, Ye A, Deng W, Zhang Q, Wang Y (2012) Selective conversion of cellobiose and cellulose into gluconic acid in water in the presence of oxygen, catalyzed by polyoxometalate-supported gold nanoparticles. Chem Eur J 18(10):2938–2947Google Scholar
  84. 84.
    Huber GW, Dumesic JA (2006) An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery. Catal Today 111(1–2):119–132Google Scholar
  85. 85.
    Gorbanev YY, Klitgaard SK, Woodley JM, Christensen CH, Riisager A (2009) Gold-catalyzed aerobic oxidation of 5-hydroxymethylfurfural in water at ambient temperature. ChemSusChem 2(7):672–675Google Scholar
  86. 86.
    Assary RS, Curtiss LA (2011) Theoretical study of 1,2-hydride shift associated with the isomerization of glyceraldehyde to dihydroxyacetone by lewis acid active site models. J Phys Chem A 115:8754–8760Google Scholar
  87. 87.
    Schwartz TJ, Goodman SM, Osmundsen CM, Taarning E, Mozuch MD, Gaskell J, Cullen D, Kersten PJ, Dumesic JA (2013) Integration of chemical and biological catalysis: production of furylglycolic acid from glucose via cortalcerone. ACS Catal 3(12):2689–2693Google Scholar
  88. 88.
    Zhang J, Zhao Y, Pan M, Feng X, Ji W, Au C-T (2011) Efficient acrylic acid production through bio lactic acid dehydration over NaY zeolite modified by alkali phosphates. ACS Catal 1:32–41Google Scholar
  89. 89.
    Wolfel R, Taccardi N, Bosmann A, Wasserscheid P (2011) Selective catalytic conversion of biobased carbohydrates to formic acid using molecular oxygen. Green Chem 13(10):2759–2763Google Scholar
  90. 90.
    Albert J, Wolfel R, Bosmann A, Wasserscheid P (2012) Selective oxidation of complex, water-insoluble biomass to formic acid using additives as reaction accelerators. Energ Environ Sci 5(7):7956–7962Google Scholar
  91. 91.
    Zhang J, Liu X, Hedhili MN, Zhu Y, Han Y (2011) Highly selective and complete conversion of cellobiose to gluconic acid over Au/Cs2HPW12O40 nanocomposite catalyst. ChemCatChem 3(8):1294–1298Google Scholar
  92. 92.
    Wang Y, Van de Vyver S, Sharma KK, Roman-Leshkov Y (2014) Insights into the stability of gold nanoparticles supported on metal oxides for the base-free oxidation of glucose to gluconic acid. Green Chem 16(2):719–726Google Scholar
  93. 93.
    Van de Vyver S, Geboers J, Schutyser W, Dusselier M, Eloy P, Dornez E, Seo JW, Courtin CM, Gaigneaux EM, Jacobs PA, Sels BF (2012) Tuning the acid/metal balance of carbon nanofiber-supported nickel catalysts for hydrolytic hydrogenation of cellulose. ChemSusChem 5(8):1549–1558Google Scholar
  94. 94.
    Geboers J, Van de Vyver S, Carpentier K, Jacobs P, Sels B (2011) Efficient hydrolytic hydrogenation of cellulose in the presence of Ru-loaded zeolites and trace amounts of mineral acid. Chem Commun 47(19):5590–5592Google Scholar
  95. 95.
    Kobayashi H, Ito Y, Komanoya T, Hosaka Y, Dhepe PL, Kasai K, Hara K, Fukuoka A (2011) Synthesis of sugar alcohols by hydrolytic hydrogenation of cellulose over supported metal catalysts. Green Chem 13(2):326–333Google Scholar
  96. 96.
    de Almeida RM, Li J, Nederlof C, O’Connor P, Makkee M, Moulijn JA (2010) Cellulose conversion to isosorbide in molten salt hydrate media. ChemSusChem 3(3):325–328Google Scholar
  97. 97.
    Rose M, Palkovits R (2012) Isosorbide as a renewable platform chemical for versatile applications—Quo Vadis? ChemSusChem 5(1):167–176Google Scholar
  98. 98.
    Rosatella AA, Simeonov SP, Frade RFM, Afonso CAM (2011) 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem 13(4):754–793Google Scholar
  99. 99.
    Saha B, Mosier N, Abu-Omar M (2014) Catalytic dehydration of lignocellulosic derived xylose to furfural. In: McCann MC, Buckeridge MS, Carpita NC (eds) Plants and bioenergy, vol 4, Advances in plant biology. Springer, New York, pp 267–276Google Scholar
  100. 100.
    Dusselier M, Van Wouwe P, de Clippel F, Dijkmans J, Gammon DW, Sels BF (2013) Mechanistic insight into the conversion of tetrose sugars to novel α-hydroxy acid platform molecules. ChemCatChem 5(2):569–575Google Scholar
  101. 101.
    Lin H, Strull J, Liu Y, Karmiol Z, Plank K, Miller G, Guo Z, Yang L (2012) High yield production of levulinic acid by catalytic partial oxidation of cellulose in aqueous media. Energy Environ Sci 5(12):9773–9777Google Scholar
  102. 102.
    Choudhary V, Mushrif SH, Ho C, Anderko A, Nikolakis V, Marinkovic NS, Frenkel AI, Sandler SI, Vlachos DG (2013) Insights into the interplay of Lewis and Brønsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl)furfural and levulinic acid in aqueous media. J Am Chem Soc 135(10):3997–4006Google Scholar
  103. 103.
    Weingarten R, Conner WC, Huber GW (2012) Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst. Energ Environ Sci 5(6):7559–7574Google Scholar
  104. 104.
    Dapsens PY, Mondelli C, Kusema B, Verel R, Perez-Ramirez J (2013) Continuous process for glyoxal valorisation using tailored Lewis-acid zeolite catalysts. Green ChemGoogle Scholar
  105. 105.
    Xu P, Qiu J, Gao C, Ma C (2008) Biotechnological routes to pyruvate production. J Biosci Bioeng 105(3):169–175Google Scholar
  106. 106.
    Vitasari CR, Meindersma GW, de Haan AB (2012) Laboratory scale conceptual process development for the isolation of renewable glycolaldehyde from pyrolysis oil to produce fermentation feedstock. Green Chem 14:321–325Google Scholar
  107. 107.
    Chahal SP, Starr JN (2000) Lactic acid. In: Ullmann’s encyclopedia of industrial chemistry. Wiley, WeinheimGoogle Scholar
  108. 108.
    Peng J, Li X, Tang C, Bai W (2014) Barium sulphate catalyzed dehydration of lactic acid to acrylic acid. Green Chem 16(1):108–111Google Scholar
  109. 109.
    Makshina EV, Janssens W, Sels BF, Jacobs PA (2012) Catalytic study of the conversion of ethanol into 1,3-butadiene. Catal Today 198(1):338–344Google Scholar
  110. 110.
    Bruijnincx PCA, Weckhuysen BM (2013) Shale gas revolution: an opportunity for the production of biobased chemicals? Angew Chem Int Ed 52(46):11980–11987Google Scholar
  111. 111.
    Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R, Estadilla J, Teisan S, Schreyer HB, Andrae S, Yang TH, Lee SY, Burk MJ, Van Dien S (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7(7):445–452Google Scholar
  112. 112.
    Boucher-Jacobs C, Nicholas KM (2013) Catalytic deoxydehydration of glycols with alcohol reductants. ChemSusChem 6(4):597–599Google Scholar
  113. 113.
    Yi J, Liu S, Abu-Omar MM (2012) Rhenium-catalyzed transfer hydrogenation and deoxygenation of biomass-derived polyols to small and useful organics. ChemSusChem 5(8):1401–1404Google Scholar
  114. 114.
    Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Chen JG (2008) Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. Angew Chem 120(44):8638–8641Google Scholar
  115. 115.
    Wang S, Yin K, Zhang Y, Liu H (2013) Glycerol hydrogenolysis to propylene glycol and ethylene glycol on zirconia supported noble metal catalysts. ACS Catal 3(9):2112–2121Google Scholar
  116. 116.
    Zhao G, Zheng M, Zhang J, Wang A, Zhang T (2013) Catalytic conversion of concentrated glucose to ethylene glycol with semicontinuous reaction system. Ind Eng Chem Res 52(28):9566–9572Google Scholar
  117. 117.
    Dry ME (2002) The Fischer–Tropsch process: 1950–2000. Catal Today 71(3–4):227–241Google Scholar
  118. 118.
    Cortright RD, Davda RR, Dumesic JA (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418(6901):964–967Google Scholar
  119. 119.
    D’Hondt E, Van de Vyver S, Sels BF, Jacobs PA (2008) Catalytic glycerol conversion into 1,2-propanediol in absence of added hydrogen. Chem Commun (Cambridge):6011–6012Google Scholar
  120. 120.
    Corthals S, Van Nederkassel J, De Winne H, Geboers J, Jacobs P, Sels B (2011) Design of active and stable NiCeO2ZrO2MgAl2O4 dry reforming catalysts. Appl Catal B 105(3–4):263–275Google Scholar
  121. 121.
    Corthals S, Van Nederkassel J, Geboers J, De Winne H, Van Noyen J, Moens B, Sels B, Jacobs P (2008) Influence of composition of MgAl2O4 supported NiCeO2ZrO2 catalysts on coke formation and catalyst stability for dry reforming of methane. Catal Today 138(1–2):28–32Google Scholar
  122. 122.
    Palo DR, Dagle RA, Holladay JD (2007) Methanol steam reforming for hydrogen production. Chem Rev 107(10):3992–4021Google Scholar
  123. 123.
    Trost B (1991) The atom economy–a search for synthetic efficiency. Science 254(5037):1471–1477Google Scholar
  124. 124.
    Sheldon RA (2012) Fundamentals of green chemistry: efficiency in reaction design. Chem Soc Rev 41(4):1437–1451Google Scholar
  125. 125.
    Sheldon RA (2008) E factors, green chemistry and catalysis: an odyssey. Chem Commun 29:3352–3365Google Scholar
  126. 126.
    Sheldon RA (2007) The E factor: fifteen years on. Green Chem 9(12):1273–1283Google Scholar
  127. 127.
    Trost BM (1995) Atom economy—a challenge for organic synthesis: homogeneous catalysis leads the way. Angew Chem Int Ed English 34(3):259–281Google Scholar
  128. 128.
    Danon B, Marcotullio G, de Jong W (2014) Mechanistic and kinetic aspects of pentose dehydration towards furfural in aqueous media employing homogeneous catalysis. Green Chem 16(1):39–54Google Scholar
  129. 129.
    Hayashi Y, Sasaki Y (2005) Tin-catalyzed conversion of trioses to alkyl lactates in alcohol solution. Chem Commun 2716–2718Google Scholar
  130. 130.
    Genomatica (2013) Successful commercial-scale production of BDO.
  131. 131.
    Burk MJ, Van DSJ, Burgard A, Niu W (2008) A synthetic metabolic pathway for the biosynthesis of 1,4-butanediol and a transgenic microorganism for the fermentation of the diol. WO2008115840A2Google Scholar
  132. 132.
    Mascal M (2012) Chemicals from biobutanol: technologies and markets. Biofuel Bioprod Biorefining 6(4):483–493Google Scholar
  133. 133.
    West RM, Braden DJ, Dumesic JA (2009) Dehydration of butanol to butene over solid acid catalysts in high water environments. J Catal 262(1):134–143Google Scholar
  134. 134.
    Le Van MR, Levesque P, McLaughlin G, Dao LH (1987) Ethylene from ethanol over zeolite catalysts. Appl Catal 34:163–179Google Scholar
  135. 135.
    Sun P, Long X, He H, Xia C, Li F (2013) Conversion of cellulose into isosorbide over bifunctional ruthenium nanoparticles supported on niobium phosphate. ChemSusChem 6(11):2190–2197Google Scholar
  136. 136.
    Liang G, Wu C, He L, Ming J, Cheng H, Zhuo L, Zhao F (2011) Selective conversion of concentrated microcrystalline cellulose to isosorbide over Ru/C catalyst. Green Chem 13(4):839–842Google Scholar
  137. 137.
    Chung P-W, Charmot A, Olatunji-Ojo OA, Durkin KA, Katz A (2014) Hydrolysis catalysis of miscanthus xylan to xylose using weak-acid surface sites. ACS Catal 4(1):302–310Google Scholar
  138. 138.
    Dusselier M, Van Wouwe P, De Smet S, De Clercq R, Verbelen L, Van Puyvelde P, Du Prez FE, Sels BF (2013) Toward functional polyester building blocks from renewable glycolaldehyde with Sn cascade catalysis. ACS Catal 3:1786–1800Google Scholar
  139. 139.
    Jin F, Yun J, Li G, Kishita A, Tohji K, Enomoto H (2008) Hydrothermal conversion of carbohydrate biomass into formic acid at mild temperatures. Green Chem 10(6):612–615Google Scholar
  140. 140.
    Comotti M, Della Pina C, Falletta E, Rossi M (2006) Aerobic oxidation of glucose with gold catalyst: hydrogen peroxide as intermediate and reagent. Adv Synth Catal 348(3):313–316Google Scholar
  141. 141.
    Onda A, Ochi T, Kajiyoshi K, Yanagisawa K (2008) A new chemical process for catalytic conversion of d-glucose into lactic acid and gluconic acid. Appl Catal A 343:49–54Google Scholar
  142. 142.
    Komanoya T, Kobayashi H, Hara K, Chun W-J, Fukuoka A (2013) Simultaneous formation of sorbitol and gluconic acid from cellobiose using carbon-supported ruthenium catalysts. J Energ Chem 22(2):290–295Google Scholar
  143. 143.
    Schiweck H, Bär A, Vogel R, Schwarz E, Kunz M, Dusautois C, Clement A, Lefranc C, Lüssem B, Moser M, Peters S (2000) Sugar alcohols. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, WeinheimGoogle Scholar
  144. 144.
    Geboers J, Van de Vyver S, Carpentier K, de Blochouse K, Jacobs P, Sels B (2010) Efficient catalytic conversion of concentrated cellulose feeds to hexitols with heteropoly acids and Ru on carbon. Chem Commun 46(20):3577–3579Google Scholar
  145. 145.
    Ruppert AM, Weinberg K, Palkovits R (2012) Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. Angew Chem Int Ed 51(11):2564–2601Google Scholar
  146. 146.
    Bilik V (1972) Reactions of saccharides catalyzed by molybdate ions. II. Epimerization of d-glucose and d-mannose. Chem Zvesti 26:183–186Google Scholar
  147. 147.
    Gunther WR, Wang Y, Ji Y, Michaelis VK, Hunt ST, Griffin RG, Román-Leshkov Y (2012) Sn-beta zeolites with borate salts catalyse the epimerization of carbohydrates via an intramolecular carbon shift. Nat Commun 3:1109Google Scholar
  148. 148.
    Bermejo-Deval R, Assary RS, Nikolla E, Moliner M, Román-Leshkov Y, Hwang S-J, Palsdottir A, Silverman D, Lobo RF, Curtiss LA, Davis ME (2012) Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites. Proc Natl Acad Sci U S A 109(25):9727–9732Google Scholar
  149. 149.
    Roman-Leshkov Y, Moliner M, Labinger JA, Davis ME (2010) Mechanism of glucose isomerization using a solid Lewis acid catalyst in water. Angew Chem Int Ed 49:8954–8957Google Scholar
  150. 150.
    Nakagawa Y, Tamura M, Tomishige K (2013) Catalytic reduction of biomass-derived furanic compounds with hydrogen. ACS Catal 3(12):2655–2668Google Scholar
  151. 151.
    Gounder R, Davis ME (2013) Titanium-beta zeolites catalyze the stereospecific isomerization of d-glucose to l-sorbose via intramolecular C5–C1 hydride shift. ACS Catal 3(7):1469–1476Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Center for Surface Chemistry and CatalysisKU LeuvenLeuvenBelgium
  2. 2.Department of ChemistryUniversity of California DavisDavisUSA

Personalised recommendations