Advertisement

Polymerization of Nonfood Biomass-Derived Monomers to Sustainable Polymers

  • Yuetao ZhangEmail author
  • Eugene Y-X Chen
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 353)

Abstract

The development of sustainable routes to fine chemicals, liquid fuels, and polymeric materials from natural resources has attracted significant attention from academia, industry, the general public, and governments owing to dwindling fossil resources, surging energy demand, global warming concerns, and other environmental problems. Cellulosic material, such as grasses, trees, corn stover, or wheat straw, is the most abundant nonfood renewable biomass resources on earth. Such annually renewable material can potentially meet our future needs with a low carbon footprint if it can be efficiently converted into fuels, value added chemicals, or polymeric materials. This chapter focuses on various renewable monomers derived directly from cellulose or cellulose platforms and corresponding sustainable polymers or copolymers produced therefrom. Recent advances related to the polymerization processes and the properties of novel biomass-derived polymers are also reviewed and discussed.

Keywords

Biomass Cellulose Polymerization Renewable monomer Sustainable polymer 

Abbreviations

βMMBL

β-Methyl-α-methylene-γ-butyrolactone

γMMBL

γ-Methyl-α-methylene-γ-butyrolactone

ATRP

Atom transfer radical polymerization

nBA

n-Butyl acrylate

BM

Bismaleimide

CGC

Me2Si(η 5-(Me4C5)( t BuN)

CL

Caprolactone

CLP

Classical Lewis pair

Cp

η 5-Cyclopentadienyl

DA

Diels–Alder

DIOP

Diisooctyl phthalate

DMAP

4-Dimethylaminopyridine

DMF

N,N-Dimethylformamide

DOE

Department of energy

EBDMI

C2H4(η 5-4,7-dimethylindenyl)2

EBI

C2H4(η 5-indenyl)2

FLP

Frustrated Lewis pair

Flu

η 5- or η 3-Fluorenyl

FA

Furfuryl alcohol

FMA

Furfuryl methacrylate

GHG

Greenhouse gas

GPC

Gel permeation chromatography

GTP

Group transfer polymerization

HMF

5-Hydroxymethylfurfural

ItBu

1,3-Di-tert-butylimidazol-2-ylidene

ICD

β-Isocupreidine

ICD

β-Isocupreidine

IMes

1,3-Bis(2,4,6-trimethylphenyl)imidazol-2-ylidene

it

Isotactic (mm)

LA

Lactic acid or lactide

LPP

Lewis pair polymerization

MBL

α-Methylene-γ-butyrolactone

MEP

1,8-Bis(maleimido)-1-ethylpropane

MIMA

Maleimide methacrylate

MMA

Methyl methacrylate

Mn (Mw)

Number (weight) average molecular weight

MW

Molecular weight

MWD

Molecular weight distribution

NHC

N-Heterocyclic carbene

OSA

Oligo(isosorbide adipate)

OSS

Oligo(isosorbide suberate)

PASA

Poly(aspartic acid)

PDI

Polydispersity index

PET

Poly(ethylene terephthalate)

PFS

Poly(2,5-furandimethylene succinate)

PGA

Poly(glutamic acid)

PHBHV

Bis-hydroxylated poly(3-hydroxybutyrate-co-3-hydroxyvalerate) oligomers

PHUs

Polyhydroxyurethanes

PLA

Polylactide

PMMA

Poly(methyl methacrylate)

PP

Polypropylene

REM

Rare earth metal

ROP

Ring-opening polymerization

RSKA

Trialkylsilyl methyl dimethylketene acetal

RT

Room temperature

st

Syndiotactic (rr)

SA

Succinic acid

SDH

Isosorbide dihexanoate

SEM

Scanning electron microscopy

Tg

Glass transition temperature

THF

Tetrahydrofuran

TOF

Turnover frequency

TPT

1,3,4-Triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene

Notes

Acknowledgments

This work was supported by the 1,000 Talents Young program and National Natural Science Foundation of China (NSFC) program (grant #21374040 to Y. Zhang) and by the US Department of Energy-Office of Basic Energy Sciences, grant DE-FG02-10ER16193 (to E. Y.-X. Chen).

References

  1. 1.
    IEA (2007) World energy outlook world energy outlook. International Energy Agency, ParisGoogle Scholar
  2. 2.
    Rass-Hansen J, Falsig H, Jorgensen B, Christensen CH (2007) J Chem Technol Biotechnol 82:329–333Google Scholar
  3. 3.
    Olah GA, Goeppert A, Prakash GKS (2006) Beyond oil and gas: the methanol economy. Wiley-VCH, Weinheim. ISBN 3-527-31275-7Google Scholar
  4. 4.
    Weisz PB (2004) Phys Today 57:47–52Google Scholar
  5. 5.
    IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB et al (eds) Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  6. 6.
    Morschbacker A (2009) Polym Rev 49:79–84Google Scholar
  7. 7.
    Dusselier M, Van Wouwe P, Dewaele A, Makshina E, Sels BF (2013) Energy Environ Sci 6:1415–1442Google Scholar
  8. 8.
    Jin F, Enomoto H (2011) Energy Environ Sci 4:382–397Google Scholar
  9. 9.
    Corma A, Iborra S, Velty A (2007) Chem Rev 107:2411–2502Google Scholar
  10. 10.
    Drumright RE, Gruber PR, Henton DE (2000) Adv Mater 12:1841–1846Google Scholar
  11. 11.
    Vink ETH, Rábago KR, Glassner DA, Gruber PR (2003) Polym Degrad Stab 80:403–419Google Scholar
  12. 12.
    Datta R, Henry M (2006) J Chem Technol Biotechnol 81:1119–1129Google Scholar
  13. 13.
    Fan Y, Zhou C, Zhu X (2009) Catal Rev Sci Eng 51:293–324Google Scholar
  14. 14.
    Bozell JJ, Petersen GR (2010) Green Chem 12:539–554Google Scholar
  15. 15.
    MäKi-Arvela P, Simakova IL, Salmi T, Murzin DY (2014) Chem Rev 114(3):1909–1971Google Scholar
  16. 16.
    Auras R, Lim LT, Selke SEM, Tsuji H (2010) Poly(lactic acid) – synthesis structures, properties, processing, and applications. Wiley, HobokenGoogle Scholar
  17. 17.
    Inkinen S, Hakkarainen M, Albertsson AC, Södergard A (2011) Biomacromolecules 12:523–532Google Scholar
  18. 18.
    Takasu A, Narukawa Y, Hirabayashi T (2006) J Polym Sci Pol Chem 44:5247–5253Google Scholar
  19. 19.
    Kim KW, Woo SI (2002) Macromol Chem Phys 203:2245–2250Google Scholar
  20. 20.
    Kamber NE, Jeong W, Waymouth RM, Pratt RC, Lohmeijer BGG, Hedrick JL (2007) Chem Rev 107:5813–5840Google Scholar
  21. 21.
    Hayashi Y, Sasaki Y (2005) Chem Commun 2716–2718Google Scholar
  22. 22.
    Janssen KPF, Paul JS, Sels BF, Jacobs PA (2007) Stud Surf Sci Catal 170B:1222–1227Google Scholar
  23. 23.
    Roman-Leshkov Y, Moliner M, Labinger JA, Davis ME (2010) Angew Chem Int Ed 49:8954–8957Google Scholar
  24. 24.
    Pescarmona P, Janssen KPF, Delaet C, Stroobants C, Houthoofd K, Philippaerts A, Jonghe CD, Paul JS, Jacobsand PA, Sels BF (2010) Green Chem 12:1083–1089Google Scholar
  25. 25.
    Taarning E, Saravanamurugan S, Holm MS, Xiong JM, West RM, Christensen CH (2009) ChemSusChem 2:625–627Google Scholar
  26. 26.
    West RM, Holm MS, Saravanamurugan S, Xiong JM, Beversdorf Z, Taarning E, Christensen CH (2010) J Catal 269:122–130Google Scholar
  27. 27.
    Rasrendra CB, Fachri BA, Makertihartha GBN, Adisasmito S, Heeres HJ (2011) ChemSusChem 4:768–777Google Scholar
  28. 28.
    Wang J, Masui Y, Onaka M (2011) Appl Catal B 107:135–139Google Scholar
  29. 29.
    de Clippel F, Dusselier M, Rompaey RV, Vanelderen P, Dijkmans J, Makshina E, Giebeler L, Oswald S, Baron GV, Denayer JFM, Pescarmona PP, Jacobs PA, Sels BF (2012) J Am Chem Soc 134:10089–10101Google Scholar
  30. 30.
    Holm MS, Saravanamurugan S, Taarning E (2010) Science 328:602–605Google Scholar
  31. 31.
    Rasrendra CB, Makertihartha IGBN, Adisasmito S, Heeres HJ (2010) Top Catal 53:1241–1247Google Scholar
  32. 32.
    Onda A, Ochi T, Kajiyoshi K, Yanagisawa K (2008) Catal Commun 9:1050–1053Google Scholar
  33. 33.
    Onda A, Ochi T, Kajiyoshi K, Yanagisawa K (2008) Appl Catal A 343:49–54Google Scholar
  34. 34.
    Zeng W, Cheng DG, Chen F, Zhan X (2009) Catal Lett 133:221–226Google Scholar
  35. 35.
    Epane G, Laguerre JC, Wadouachi A, Marek D (2010) Green Chem 12:502–506Google Scholar
  36. 36.
    Holm MS, Pagan-Torres YJ, Saravanamurugan S, Riisager A, Dumesic JA, Taarning E (2012) Green Chem 14:702–706Google Scholar
  37. 37.
    Roman-Leshkov Y, Davis ME (2011) ACS Catal 1:1566–1580Google Scholar
  38. 38.
    Lobo RF (2010) ChemSusChem 3:1237–1240Google Scholar
  39. 39.
    Yan X, Jin F, Tohji K, Moriya T, Enomoto H (2007) J Mater Sci 42:9995–9999Google Scholar
  40. 40.
    Liu Z, Li W, Pan C, Chen P, Lou H, Zheng X (2011) Catal Commun 15:82–87Google Scholar
  41. 41.
    Yan XY, Jin FM, Tohji K, Kishita A, Enomoto H (2010) AIChE J 56:2727–2733Google Scholar
  42. 42.
    Barros dos Santors J, Lins da Silva F, Altino FMRS, Moneira da Silva T, Meneghetti MR, Meneghetti SMP (2013) Catal Sci Technol 3:673–678Google Scholar
  43. 43.
    Wang FW, Huo ZB, Wang YQ, Jin FM (2011) Res Chem Intermediat 37:487–492Google Scholar
  44. 44.
    Zhang S, Jin F, Hu J, Huo Z (2011) Bioresour Technol 102:1998–2003Google Scholar
  45. 45.
    Sanchez C, Eguees I, Garcia A, Llano-Ponte R, Labidi J (2012) Chem Eng J 181:655–660Google Scholar
  46. 46.
    Wang FF, Liu CL, Dong WS (2013) Green Chem 15:2091–2095Google Scholar
  47. 47.
    Stere C, Iovu M, Boborodea A, Vasilescu DS, Fazakas-Anca IS (1998) Polym Adv Technol 9:322–325Google Scholar
  48. 48.
    Bhaw-Luximon A, Jhurry D, Spassky N, Pensec S, Belleney J (2001) Polymer 42:9651–9656Google Scholar
  49. 49.
    McGuinness DS, Marshall EL, Gibson VC, Steed JW (2003) J Polym Sci Pol Chem 41:3798–3803Google Scholar
  50. 50.
    Csihony S, Beaudette TT, Sentman AC, Nyce GW, Waymouth RM, Hedrick JL (2004) Adv Synth Catal 346:1081–1086Google Scholar
  51. 51.
    Barskaya IG, Lyudvig YB, Shifrina RR, Izyumnikov AL (1983) Vysokomol Soedin Ser A 25:1283–1288Google Scholar
  52. 52.
    Emig N, Nguyen H, Krautscheid H, Reau R, Cazaux JB, Bertrand G (1998) Organometallics 17:3599–3608Google Scholar
  53. 53.
    Bourissou D, Martin-Vaca B, Dumitrescu A, Graullier M, Lacombe F (2005) Macromolecules 38:9993–9998Google Scholar
  54. 54.
    Basko M, Kubisa P (2006) J Polym Sci Pol Chem 44:7071–7081Google Scholar
  55. 55.
    Pratt RC, Lohmeijer BGG, Long DA, Waymouth RM, Hedrick JL (2006) J Am Chem Soc 128:4556–4557Google Scholar
  56. 56.
    Chuma A, Horn HW, Swope WC, Pratt RC, Zhang L, Lohmeijer BGG, Wade CG, Waymouth RM, Hedrick JL, Rice JE (2008) J Am Chem Soc 130:6749–6754Google Scholar
  57. 57.
    Becker JM, Tempelaar S, Stanford MJ, Pounder RJ, Covington JA, Dove AP (2010) Chem Eur J 16:6099–6105Google Scholar
  58. 58.
    Dechy-Cabaret O, Martin-Vaca B, Bourissou D (2004) Chem Rev 104:6147–6176Google Scholar
  59. 59.
    Platel RH, Hodgson LM, Williams CK (2008) Polym Rev 48:11–63Google Scholar
  60. 60.
    Wheaton CA, Hayes PG, Ireland BJ (2009) Dalton Trans 4832–4846Google Scholar
  61. 61.
    Wu J, Yu TL, Chen CT, Lin CC (2006) Coord Chem Rev 250:602–626Google Scholar
  62. 62.
    Mehta R, Kumar V, Bhunia H, Upadhyay SN (2005) J Macromol Sci C Polym Rev 45:325–349Google Scholar
  63. 63.
    Kricheldorf HR (2001) Chemosphere 43:49–54Google Scholar
  64. 64.
    Dijkstra PJ, Dum H, Feijen J (2011) Polym Chem 2:520–527Google Scholar
  65. 65.
    Stanford MJ, Dove AP (2010) Chem Soc Rev 39:486–494Google Scholar
  66. 66.
    Thomas CM (2010) Chem Soc Rev 39:165–173Google Scholar
  67. 67.
    Dove AP, Gibson VC, Marshall EL, Rzepa HS, White AJP, Williams DJ (2006) J Am Chem Soc 128:9834–9843Google Scholar
  68. 68.
    Williams CK, Breyfogle LE, Choi SK, Nam W, Young VG, Hillmyer MA, Tolman WB (2003) J Am Chem Soc 125:11350–11359Google Scholar
  69. 69.
    Chamberlain BM, Cheng M, Moore DR, Ovitt TM, Lobkovsky EB, Coates GW (2001) J Am Chem Soc 123:3229–3238Google Scholar
  70. 70.
    Ejfler J, Szafert S, Mierzwicki K, Jerzykiewicz LB, Sobota P (2008) Dalton Trans 6556–6562Google Scholar
  71. 71.
    Wu JC, Huang BH, Hsueh ML, Lai SL, Lin CC (2005) Polymer 46:9784–9792Google Scholar
  72. 72.
    Jones MD, Davidson MG, Keir CG, Hughes LM, Mahon MF, Apperley DC (2009) Eur J Inorg Chem 635–642Google Scholar
  73. 73.
    Zhong ZY, Dijkstra PJ, Feijen J (2002) Angew Chem Int Ed 41:4510–4513Google Scholar
  74. 74.
    Zhong ZY, Dijkstra PJ, Feijen J (2003) J Am Chem Soc 125:11291–11298Google Scholar
  75. 75.
    Ma H, Spaniol TP, Okuda J (2008) Inorg Chem 47:3328–3339Google Scholar
  76. 76.
    Ma H, Spaniol TP, Okuda J (2006) Angew Chem Int Ed 45:7818–7821Google Scholar
  77. 77.
    Peckermann I, Kapelski A, Spaniol TP, Okuda J (2009) Inorg Chem 48:5526–5534Google Scholar
  78. 78.
    Lian B, Ma H, Spaniol TP, Okuda J (2009) Dalton Trans 9033–9042Google Scholar
  79. 79.
    Amgoune A, Thomas CM, Ilinca S, Roisnel T, Carpentier JF (2006) Angew Chem Int Ed 45:2782–2784Google Scholar
  80. 80.
    Abdel-Fattah TM, Pinnavaia TJ (1996) Chem Commun 665–666Google Scholar
  81. 81.
    Tschan MJL, Brulé E, Haquette P, Thomas CM (2012) Polym Chem 3:836–851Google Scholar
  82. 82.
    Spassky N, Wisniewski M, Pluta C, LeBorgne A (1996) Macromol Chem Phys 197:2627–2637Google Scholar
  83. 83.
    Ovitt TM, Coates GW (2000) J Polym Sci Pol Chem 38:4686–4692Google Scholar
  84. 84.
    Ovitt TM, Coates GW (2002) J Am Chem Soc 124:1316–1326Google Scholar
  85. 85.
    Tang Z, Chen X, Pang X, Yang Y, Zhang X, Jing X (2004) Biomacromolecules 5:965–970Google Scholar
  86. 86.
    Tang Z, Chen X, Yang Y, Pang X, Sun J, Zhang X, Jing X (2004) J Polym Sci Pol Chem 42:5974–5982Google Scholar
  87. 87.
    Ishii R, Nomura N, Kondo T (2004) Polym J 36:261–264Google Scholar
  88. 88.
    Nomura N, Ishii R, Yamamoto Y, Kondo T (2007) Chem Eur J 13:4433–4451Google Scholar
  89. 89.
    Bakewell C, Cao T, Long N, Le Goff XF, Auffrant A, Wiliams CK (2012) J Am Chem Soc 134:20577–20580Google Scholar
  90. 90.
    Nederberg F, Connor EF, Moller M, Glauser T, Hedrick JL (2001) AIChE J 40:2712–2715Google Scholar
  91. 91.
    Zhang L, Nederberg F, Messman JM, Pratt RC, Hedrick JL, Wade CG (2007) J Am Chem Soc 129:12610–12611Google Scholar
  92. 92.
    Miyake GM, Chen EY-X (2011) Macromolecules 44:4116–4124Google Scholar
  93. 93.
    Ovitt TM, Coates GW (1999) J Am Chem Soc 121:4072–4073Google Scholar
  94. 94.
    Amgoune A, Thomas CM, Roisnel T, Carpentier JF (2006) Chem Eur J 12:169–179Google Scholar
  95. 95.
    Amgoune A, Thomas CM, Carpentier JF (2007) Macromol Rapid Commun 28:693–697Google Scholar
  96. 96.
    Hormnirun P, Marshall EL, Gibson VC, White AJP, Williams DJ (2004) J Am Chem Soc 126:2688–2689Google Scholar
  97. 97.
    Cai CX, Amgoune A, Lehmann CW, Carpentier JF (2004) Chem Commun 330–331Google Scholar
  98. 98.
    Liu X, Shang X, Tang T, Hu N, Pei F, Cui D, Chen X, Jing X (2007) Organometallics 26:2747–2757Google Scholar
  99. 99.
    Pietrangelo A, Hillmyer MA, Tolman WB (2009) Chem Commun 2736–2737Google Scholar
  100. 100.
    Dove AP, Li H, Pratt RC, Lohmeijer BGG, Culkin DA, Waymouth RM, Hedrich JL (2006) Chem Commun 2881–2883Google Scholar
  101. 101.
    Win DT (2005) Au J T 8:185–190Google Scholar
  102. 102.
    Thananatthanachon T, Rauchfuss TB (2010) ChemSusChem 3:1139–1141Google Scholar
  103. 103.
    Thananatthanachon T, Rauchfuss TB (2010) Angew Chem Int Ed 49:6616–6618Google Scholar
  104. 104.
    Werpy T, Petersen G (2004) In: U.S. Department of Energy (DOE) report: DOE/GO-102004-1992 (ed) Top value added chemicals from biomass, vol IGoogle Scholar
  105. 105.
    Jacoby M (2009) C&EN July 6:26–28Google Scholar
  106. 106.
    Rosatella AA, Simeonov SP, Frade RFM, Afonso CAM (2011) Green Chem 13:754–793Google Scholar
  107. 107.
    Gandini A (2010) Polym Chem 1:245–251Google Scholar
  108. 108.
    Gandini A (1977) Adv Polym Sci 25:47–96Google Scholar
  109. 109.
    Gandini A (1990) ACS Sym Ser 433:195–208Google Scholar
  110. 110.
    Gandini A, Belgacem MN (1997) Prog Polym Sci 22:1203–1379Google Scholar
  111. 111.
    Moreau C, Belgacem MN, Gandini A (2004) Top Catal 27:11–30Google Scholar
  112. 112.
    Gandini A (2008) Macromolecules 41:9491–9504Google Scholar
  113. 113.
    Gandini A, Belgacem MN (2008) Furan derivatives and furan chemistry at the service of macromolecular materials. Elsevier, Amsterdam, pp 115–152Google Scholar
  114. 114.
    Kawashima D, Aihara T, Kobayashi Y, Kyotani T, Tomita A (2000) Chem Mater 12:3397–3401Google Scholar
  115. 115.
    Yao J, Wang H, Liu J, Chan KY, Zhang L, Xu N (2005) Carbon 43:1709–1715Google Scholar
  116. 116.
    Zarbin AJG, Bertholdo R, Oliveira MAFC (2002) Carbon 40:2413–2422Google Scholar
  117. 117.
    Wang H, Yao J (2006) Ind Eng Chem Res 45:6393–6404Google Scholar
  118. 118.
    Yi B, Rajagopalan R, Foley HC, Kim UJ, Liu X, Ecklund PC (2006) J Am Chem Soc 128:11307–11313Google Scholar
  119. 119.
    Hirasaki T, Meguro T, Wakihara T, Tatami J, Komeya K (2007) J Mater Sci 42:7604–7606Google Scholar
  120. 120.
    Cesano F, Scarano D, Bertarione S, Bonino F, Damin A, Bordiga S, Prestipino C, Lamberti C, Zecchina A (2008) J Photochem Photobiol A 196:143–153Google Scholar
  121. 121.
    Bertarione S, Bonino F, Cesano F, Jain S, Zanetti M, Scarano D, Zecchina A (2009) J Phys Chem B 113:10571–10574Google Scholar
  122. 122.
    Tondi G, Pizzi A, Pasch H, Celzard A, Rode K (2008) Eur Polym J 44:2938–2943Google Scholar
  123. 123.
    Tondi G, Pizzi A, Pasch H, Celzard A (2008) Polym Degrad Stab 93:968–975Google Scholar
  124. 124.
    Pizzi A, Tondi G, Pasch H, Celzard A (2008) J Appl Polym Sci 110:1451–1456Google Scholar
  125. 125.
    Yao J, Wang H (2007) Ind Eng Chem Res 46:6264–6268Google Scholar
  126. 126.
    Zhai Y, Tu B, Zhao D (2009) J Mater Chem 19:131–140Google Scholar
  127. 127.
    Grund S, Kempe P, Baumann G, Seifert A, Spange S (2007) Angew Chem Int Ed 46:628–632Google Scholar
  128. 128.
    Spange S, Grund S (2009) Adv Mater 21:2111–2116Google Scholar
  129. 129.
    Pranger L, Tannenbaum R (2008) Macromolecules 41:8682–8687Google Scholar
  130. 130.
    Tong X, Ma Y, Li Y (2010) Appl Catal Gen 385:1–13Google Scholar
  131. 131.
    Gallezot P (2012) Chem Soc Rev 41:1538–1558Google Scholar
  132. 132.
    Gandini A (2013) Prog Polym Sci 38:1–29Google Scholar
  133. 133.
    Liu Y, Chuo T (2013) Polym Chem 4:2194–2205Google Scholar
  134. 134.
    Syrett JA, Becer CR, Haddleton DM (2010) Polym Chem 1:978–987Google Scholar
  135. 135.
    Bergman SD, Wudl F (2008) J Mater Chem 18:41–62Google Scholar
  136. 136.
    Craven JM (1969) US Pat., 3,435,003Google Scholar
  137. 137.
    Stevens M, Jenkins A (1979) J Polym Sci 17:3675–3685Google Scholar
  138. 138.
    Kuster BFM (1990) Starch Stärke 42:314–321Google Scholar
  139. 139.
    Chujo Y, Sada K, Saegusa T (1990) Macromolecules 23:2636–2641Google Scholar
  140. 140.
    Imai Y, Itoh H, Naka K, Chujo Y (2000) Macromolecules 33:4343–4346Google Scholar
  141. 141.
    Canary SA, Stevens MP (1992) J Polym Sci Polym Chem 30:1755–1760Google Scholar
  142. 142.
    Laita H, Boufi S, Gandini A (1997) Eur Polym J 33:1203–1211Google Scholar
  143. 143.
    Gheneim R, Perez-Berumen C, Gandini A (2002) Macromolecules 35:7246–7253Google Scholar
  144. 144.
    Goiti E, Huglin MB, Rego JM (2001) Polymer 42:10187–10193Google Scholar
  145. 145.
    Goiti E, Huglin MB, Rego JM (2003) Macromol Rapid Commun 24:692–696Google Scholar
  146. 146.
    Goiti E, Huglin MB, Rego JM (2004) Eur Polym J 40:219–226Google Scholar
  147. 147.
    Goiti E, Huglin MB, Rego JM (2004) Eur Polym J 40:1451–1460Google Scholar
  148. 148.
    Tesoro GC, Sastri VR (1986) Ind Eng Chem Prod Res Dev 25:444–448Google Scholar
  149. 149.
    He X, Sastri VR, Tesoro GC (1989) Makromol Chem Rapid Commun 9:191–194Google Scholar
  150. 150.
    O’Dell R (1990). Ph.D. Thesis, Lancaster University, UKGoogle Scholar
  151. 151.
    Kuramoto N, Hayashi K, Nagai K (1994) J Polym Sci Polym Chem 30:2501–2504Google Scholar
  152. 152.
    Diakoumakos CD, Mikroyannidis JA (1992) J Polym Sci Polym Chem 30:2559–2563Google Scholar
  153. 153.
    Diakoumakos CD, Mikroyannidis JA (1994) Eur Polym J 30:465–472Google Scholar
  154. 154.
    Goussé C, Gandini A (1999) Polym Int 48:723–731Google Scholar
  155. 155.
    Gandini A, Coelho D, Silvestre AJ (2008) Eur Polym J 44:4029–4036Google Scholar
  156. 156.
    Chen X, Dam MA, Ono K, Mal A, Shen H, Nutt SR, Sheran K, Wudl F (2002) Science 295:1698–1702Google Scholar
  157. 157.
    Chen X, Wudl F, Mal AK, Shen H, Nutt SR (2003) Macromolecules 36:1802–1807Google Scholar
  158. 158.
    Kavitha AA, Singha NK (2007) J Polym Sci Pol Chem 45:4441–4449Google Scholar
  159. 159.
    Kavitha AA, Singha NK (2009) ACS Appl Mater Interfaces 1:1427–1436Google Scholar
  160. 160.
    He J, Zhang Y, Chen EYX (2013) J Polym Sci Pol Chem 51:2793–2803Google Scholar
  161. 161.
    Kötteritzsch J, Stumpf S, Hoeppener S, Vitz J, Hager MD, Schubert US (2013) Macromol Chem Phys 214:1636–1649Google Scholar
  162. 162.
    Zeng C, Seino H, Ren J, Hatanaka K, Yoshie N (2013) Macromolecules 46:1794–1802Google Scholar
  163. 163.
    Zeng C, Seino H, Ren J, Hatanaka K, Yoshie N (2013) Polymer 54:5351–5357Google Scholar
  164. 164.
    Franc G, Kakkar AK (2009) Chem Eur J 15:5630–5639Google Scholar
  165. 165.
    Bauer RE, Grimsdale AC, Müllen K (2005) Top Curr Chem 245:253–286Google Scholar
  166. 166.
    Bernhardt S, Baumgarten M, Müllen K (2006) Eur J Org Chem 11:2523–2529Google Scholar
  167. 167.
    Kim C, Kim H, Park K (2003) J Organomet Chem 667:96–102Google Scholar
  168. 168.
    Kim C, Kim H, Park K (2004) J Polym Sci Part A 42:2155–2161Google Scholar
  169. 169.
    Kim C, Lim KI, Song CG (2005) J Organomet Chem 690:3278–3285Google Scholar
  170. 170.
    McElhanon JR, Wheeler DR (2001) Org Lett 3:2681–2683Google Scholar
  171. 171.
    Szalai ML, McGrath DV, Wheeler DR, Zifer T, McElhanon JR (2007) Macromolecules 40:818–823Google Scholar
  172. 172.
    Sullivan PA, Olbricht BC, Akelaitis AJP, Mistry AA, Liao Y, Dalton LR (2007) J Mater Chem 17:2899–2903Google Scholar
  173. 173.
    Kose MM, Yesilbag G, Sanyal A (2008) Org Lett 10:2353–2356Google Scholar
  174. 174.
    Vieyres A, Lam T, Gillet R, Franc G, Castonguay A, Kakkar A (2010) Chem Commun 46:1875–1877Google Scholar
  175. 175.
    Costanzo PJ, Demaree JD, Beyer FL (2006) Langmuir 22:10251–10257Google Scholar
  176. 176.
    Costanzo PJ, Beyer FL (2007) Chem Mater 19:6168–6173Google Scholar
  177. 177.
    Aumsuzan N, Urban MW (2009) Polymer 50:33–36Google Scholar
  178. 178.
    Shi M, Wosnick JH, Ho K, Keating A, Shoihet MS (2007) Angew Chem Int Ed 46:6126–6131Google Scholar
  179. 179.
    Polaske NW, McGrath DV, McElhanon JR (2010) Macromolecules 43:1270–1276Google Scholar
  180. 180.
    Polaske NW, McGrath DV, McElhanon JR (2011) Macromolecules 44:3203–3210Google Scholar
  181. 181.
    Manzer LE (2006) Feedstocks for the future. ACS Sym Ser 921:40–51Google Scholar
  182. 182.
    Fitzpatrick SW (2006) Feedstocks for the future. ACS Sym Ser 921:271–287Google Scholar
  183. 183.
    Hayes DJ, Fitzpatick S, Hayes MHB, Ross JRH (2006) In: Kamm B, Gruber P, Kamm M (eds) Biorefineries-industrial processes and products. Wiley-VCH, WeinheimGoogle Scholar
  184. 184.
    Girisuta B, Janssen LPBM, Heeres HJ (2006) Chem Eng Res Des 84:339–349Google Scholar
  185. 185.
    Manzer LE (2004) Appl Catal A Gen 272:249–256Google Scholar
  186. 186.
    Sauer M, Porro D, Mattanovich D, Branduardi P (2008) Trends Biotechnol 26:100–108Google Scholar
  187. 187.
    Rossum MWPCV, Alberda M, Plas LHWVD (1998) Phytochemistry 49:723–729Google Scholar
  188. 188.
    Hoffman HMR, Rabe J (1985) Angew Chem Int Ed 24:94–110Google Scholar
  189. 189.
    Yokota K, Hirabayashi T (1992) (Iwata Kagaku Kogyo KK, Japan) J.P. Pat. 04049288 AGoogle Scholar
  190. 190.
    Pittman CU, Lee JH (2003) J Polym Sci Pol Chem 41:1759–1777Google Scholar
  191. 191.
    Hu Y, Wang X, Chen Y, Caporaso L, Cavallo L, Chen EYX (2013) Organometallics 32:1459–1465Google Scholar
  192. 192.
    Geilen FMA, Engendahl B, Harwardt A, Marquardt W, Klankermayer J, Leitner W (2010) Angew Chem Int Ed 49:5510–5514Google Scholar
  193. 193.
    Hu Y, Miyake GM, Wang B, Cui D, Chen EYX (2012) Chem Eur J 18:3345–3354Google Scholar
  194. 194.
    Agarwal S, Jin Q, Maji S (2012) ACS Sym Ser 1105:197–212Google Scholar
  195. 195.
    Mullin R (2004) Sustainable specialties. Chem Eng News 82(45):29–37Google Scholar
  196. 196.
    Akkapeddi MK (1979) Polymer 20:1215–1216Google Scholar
  197. 197.
    Stansbury JW, Antonucci JM (1992) Dent Mater 8:270–273Google Scholar
  198. 198.
    Akkapeddi MK (1979) Macromolecules 12:546–551Google Scholar
  199. 199.
    Kimura Y, Nakamura S (2009) JP,046,560 AGoogle Scholar
  200. 200.
    Pickett JE, Ye Q (2007) U.S. Patent 2007/0,122,625Google Scholar
  201. 201.
    Brandenburg CJ (2004) (to E. I. du Pont de Nemours and Company) WO 2004/069,926 A1Google Scholar
  202. 202.
    Miyake GM, Newton SE, Mariott WR, Chen EYX (2010) Dalton Trans 39:6710–6718Google Scholar
  203. 203.
    Chen X, Caporaso L, Cavallo L, Chen EYX (2012) J Am Chem Soc 134:7278–7281Google Scholar
  204. 204.
    Mosnáček J, Yoon JA, Juhari A, Koynov K, Matyjaszewski K (2009) Polymer 50:2087–2094Google Scholar
  205. 205.
    Mosnáček J, Matyjaszewski K (2008) Macromolecules 41:5509–5511Google Scholar
  206. 206.
    Ueda M, Takahashi M, Imai Y, Pittman CU Jr (1982) J Polym Sci Polym Chem Ed 20:2819–2828Google Scholar
  207. 207.
    Gridnev AA, Ittel SD (2000) (to E. I. du Pont de Nemours and Company) WO 00/35,960 A2Google Scholar
  208. 208.
    Sogah DY, Hertler WR, Webster OW, Cohen GM (1987) Macromolecules 20:1473–1488Google Scholar
  209. 209.
    Van den Brink M, Smulders W, van Herk AM, German AL (1999) J Polym Sci Pol Chem 37:3804–3816Google Scholar
  210. 210.
    Koinuma H, Sato K, Hirai H (1982) Makromol Chem Rapid Commun 3:311–315Google Scholar
  211. 211.
    Lee C, Hall HK Jr (1989) Macromolecules 22:21–25Google Scholar
  212. 212.
    Trumbo DL (1991) Polym Bull 26:271–275Google Scholar
  213. 213.
    Brandenburg CJ (2005) (to E. I. du Pont de Nemours and Company) U.S. Pat. 6,841,627 B2Google Scholar
  214. 214.
    Qi G, Nolan M, Schork FJ, Jones CW (2008) J Polym Sci Pol Chem 46:5929–5944Google Scholar
  215. 215.
    Suenaga J, Sutherlin DM, Stille JK (1984) Macromolecules 17:2913–2916Google Scholar
  216. 216.
    Cockburn RA, McKenna TFL, Hutchinson RA (2010) Macromol Chem Phys 211:501–509Google Scholar
  217. 217.
    Cockburn RA, Siegmann R, Payne KA, Beuermann S, McKenna TFL, Hutchinson RA (2011) Biomacromolecules 12:2319–2326Google Scholar
  218. 218.
    Hu Y, Xu X, Zhang Y, Chen Y, Chen EYX (2010) Macromolecules 43:9328–9336Google Scholar
  219. 219.
    Gowda RR, Chen EYX (2013) Dalton Trans 42:9263–9273Google Scholar
  220. 220.
    Miyake GM, Zhang Y, Chen EYX (2010) Macromolecules 43:4902–4908Google Scholar
  221. 221.
    Zhang Y, Gustafson LO, Chen EYX (2011) J Am Chem Soc 133:13674–13684Google Scholar
  222. 222.
    Hu Y, Gustafson LO, Zhu H, Chen EYX (2011) J Polym Sci Pol Chem 49:2008–2017Google Scholar
  223. 223.
    Zhang Y, Chen EYX (2012) Angew Chem Int Ed 51:2465–2469Google Scholar
  224. 224.
    Zhang Y, Schmitt M, Falivene L, Caporaso L, Cavallo LI, Chen EYX (2013) J Am Chem Soc 135:19725–19742Google Scholar
  225. 225.
    Zhang Y, Miyake GM, Chen EYX (2010) Angew Chem Int Ed 49:10158–10162Google Scholar
  226. 226.
    Zhang Y, Miyake GM, John MG, Falivene L, Caporaso L, Cavallo L, Chen EYX (2012) Dalton Trans 41:9119–9134Google Scholar
  227. 227.
    Brandenburg CJ (2003) (to E. I. du Pont de Nemours and Company) WO 03/048220 A2Google Scholar
  228. 228.
    Brandenburg CJ, Manzer LE, Subramanian P (2005) (to E. I. du Pont de Nemours and Company) WO 2005/028,529 A2Google Scholar
  229. 229.
    Ohrbom WH (2008) (to BASF Corporation) U.S. Pat. 2008/0,293,901 A1Google Scholar
  230. 230.
    Sakashita K (2007) (to Mitsubishi Rayon Co., Ltd) E.P. Pat. 1,834,968 A1Google Scholar
  231. 231.
    Chen EYX (2009) Chem Rev 109:5157–5214Google Scholar
  232. 232.
    Gowda RR, Chen EYX (2013) Encycl Polym Sci Technol, in pressGoogle Scholar
  233. 233.
    Evans WJ, Grate JW, Choi HW, Bloom I, Hunter WE, Atwood JL (1985) J Am Chem Soc 107:941–946Google Scholar
  234. 234.
    Schuetz SA, Day VW, Sommer RD, Rheingold AL, Belot JA (2001) Inorg Chem 40:5292–5295Google Scholar
  235. 235.
    Xu X, Chen Y, Sun J (2009) Chem Eur J 15:846–850Google Scholar
  236. 236.
    Xu X, Chen Y, Feng J, Zou G, Sun J (2010) Organometallics 29:549–553Google Scholar
  237. 237.
    Wang B, Cui D, Lv K (2008) Macromolecules 41:1983–1988Google Scholar
  238. 238.
    Fedushikin IL, Dechert S, Schumann H (2001) Angew Chem Int Ed 40:561–563Google Scholar
  239. 239.
    Li Y, Ward EG, Reddy SS, Collins S (1997) Macromolecules 30:1875–1883Google Scholar
  240. 240.
    Ning Y, Zhu H, Chen EYX (2007) J Organomet Chem 692:4535–4544Google Scholar
  241. 241.
    Yang X, Stern CL, Marks TJ (1994) J Am Chem Soc 116:10015–10031Google Scholar
  242. 242.
    Rodriguez-Delgado A, Mariott WR, Chen EYX (2004) Macromolecules 37:3092–3100Google Scholar
  243. 243.
    Zhang Y, Ning Y, Caporaso L, Cavallo L, Chen EYX (2010) J Am Chem Soc 132:2695–2709Google Scholar
  244. 244.
    Rodriguez-Delgado A, Chen EYX (2005) Macromolecules 38:2587–2594Google Scholar
  245. 245.
    Bolig AD, Chen EYX (2004) J Am Chem Soc 126:4897–4906Google Scholar
  246. 246.
    Zhang Y, Chen EYX (2008) Macromolecules 41:36–42Google Scholar
  247. 247.
    Zhang Y, Chen EYX (2008) Macromolecules 41:6353–6360Google Scholar
  248. 248.
    Webster OW (2004) Adv Polym Sci 167:1–34Google Scholar
  249. 249.
    Webster OW, Hertler WR, Sogah DY, Farnham WB, RajanBabu TV (1983) J Am Chem Soc 105:5706–5708Google Scholar
  250. 250.
    Ryan SJ, Candish L, Lupton DW (2013) Chem Soc Rev 42:4906–4917Google Scholar
  251. 251.
    Grossmann A, Enders D (2012) Angew Chem Int Ed 51:314–325Google Scholar
  252. 252.
    Bugaut X, Glorius F (2012) Chem Soc Rev 41:3511–3522Google Scholar
  253. 253.
    Biju AT, Kuhl N, Glorius F (2011) Acc Chem Res 44:1182–1195Google Scholar
  254. 254.
    Dröge T, Glorius F (2010) Angew Chem Int Ed 50:6940–6952Google Scholar
  255. 255.
    Chiang PC, Bode JW (2010) In: RSC catalysis series. Royal Society of Chemistry, Cambridge, pp 399–435Google Scholar
  256. 256.
    Moore JL, Rovis T (2009) Top Curr Chem 291:77–144Google Scholar
  257. 257.
    Hahn FE, Jahnke MC (2008) Angew Chem Int Ed 47:3122–3172Google Scholar
  258. 258.
    Nair V, Vellalath S, Babu BP (2008) Chem Soc Rev 37:2691–2698Google Scholar
  259. 259.
    Marion N, Díez-González S, Nolan SP (2007) Angew Chem Int Ed 46:2988–3000Google Scholar
  260. 260.
    Enders D, Niemeier O, Henseler A (2007) Chem Rev 107:5606–5655Google Scholar
  261. 261.
    Bourissou D, Guerret O, Gabbaï FP, Bertrand G (2000) Chem Rev 100:39–91Google Scholar
  262. 262.
    Nyce GW, Glauser T, Connor EF, Möck A, Waymouth RM, Hedrick JL (2003) J Am Chem Soc 125:3046–3056Google Scholar
  263. 263.
    Connor EF, Nyce GW, Myers M, Möck A, Hedrick JL (2002) J Am Chem Soc 124:914–915Google Scholar
  264. 264.
    Nederberg F, Connor EF, Möller M, Glauser T, Hedrick JL (2001) Angew Chem Int Ed 40:2712–2715Google Scholar
  265. 265.
    Brown HA, Waymouth RM (2013) Acc Chem Res 46:2585–2596Google Scholar
  266. 266.
    Fèvre M, Pinaud J, Gnanou Y, Vignolle J, Taton D (2013) Chem Soc Rev 42:2142–2172Google Scholar
  267. 267.
    Kiesewetter MK, Shin EJ, Hedrick JL, Waymouth RM (2010) Macromolecules 43:2093–2107Google Scholar
  268. 268.
    Jeong W, Shin EJ, Culkin DA, Hedrick JL, Waymouth RM (2009) J Am Chem Soc 131:4884–4891Google Scholar
  269. 269.
    Culkin DA, Jeong W, Csihony S, Gomez ED, Balsara NP, Hedrick JL, Waymouth RM (2007) Angew Chem Int Ed 46:2627–2630Google Scholar
  270. 270.
    Dove AP, Li H, Pratt RC, Lohmeijer BGG, Culkin DA, Waymouth RM, Hedrick JL (2006) Chem Commun 2881–2883Google Scholar
  271. 271.
    Coulembier O, Dove AP, Pratt RC, Sentman AC, Culkin DA, Mespouille L, Dubois P, Waymouth RM, Hedrick JL (2005) Angew Chem Int Ed 44:4964–4968Google Scholar
  272. 272.
    Csihony S, Culkin DA, Sentman AC, Dove AP, Waymouth RM, Hedrick JL (2005) J Am Chem Soc 127:9079–9084Google Scholar
  273. 273.
    Shin EJ, Brown HA, Gonzalez S, Jeong W, Hedrick JL, Waymouth RM (2011) Angew Chem Int Ed 50:6388–6391Google Scholar
  274. 274.
    Sen TK, Sau SC, Mukherjee A, Modak A, Mandal SK, Koley D (2011) Chem Commun 47:11972–11974Google Scholar
  275. 275.
    Kamber NE, Jeong W, Gonzalez S, Hedrick JL, Waymouth RM (2009) Macromolecules 42:1634–1639Google Scholar
  276. 276.
    Jeong W, Hedrick JL, Waymouth RM (2007) J Am Chem Soc 129:8414–8415Google Scholar
  277. 277.
    Raynaud J, Absalon C, Gnanou Y, Taton D (2010) Macromolecules 43:2814–2823Google Scholar
  278. 278.
    Raynaud J, Ottou WN, Gnanou Y, Taton D (2010) Chem Commun 46:3203–3205Google Scholar
  279. 279.
    Raynaud J, Absalon C, Gnanou Y, Taton D (2009) J Am Chem Soc 131:3201–3209Google Scholar
  280. 280.
    Nederberg F, Lohmeijer BGG, Leibfarth F, Pratt RC, Choi J, Dove AP, Waymouth RM, Hedrick JL (2007) Biomacromolecules 8:153–160Google Scholar
  281. 281.
    Rodriguez M, Marrot S, Kato T, Stérin S, Fleury E, Baceiredo A (2007) J Organomet Chem 692:705–708Google Scholar
  282. 282.
    Lohmeijer BGG, Dubois G, Leibfarth F, Pratt RC, Nederberg F, Nelson A, Waymouth RM, Wade C, Hedrick JL (2006) Org Lett 8:4683–4686Google Scholar
  283. 283.
    Guo L, Lahasky SH, Ghale K, Zhang D (2012) J Am Chem Soc 134:9163–9171Google Scholar
  284. 284.
    Guo L, Zhang D (2009) J Am Chem Soc 131:18072–18074Google Scholar
  285. 285.
    Coutelier O, El Ezzi M, Destarac M, Bonnette F, Kato T, Baceiredo A, Sivasankarapillai G, Gnanou Y, Taton D (2012) Polym Chem 3:605–608Google Scholar
  286. 286.
    Pinaud J, Vijayakrishna K, Taton D, Gnanou Y (2009) Macromolecules 42:4932–4936Google Scholar
  287. 287.
    Nyce GW, Lamboy JA, Connor EF, Waymouth RM, Hedrick JL (2002) Org Lett 4:3587–3590Google Scholar
  288. 288.
    McCahill JSJ, Welch GC, Stephan DW (2007) Angew Chem Int Ed 46:4968–4971Google Scholar
  289. 289.
    Chase PA, Welch GC, Jurca T, Stephan DW (2007) Angew Chem Int Ed 46:8050–8053Google Scholar
  290. 290.
    Welch GC, Stephan DW (2007) J Am Chem Soc 129:1880–1881Google Scholar
  291. 291.
    Spies P, Erker G, Kehr G, Bergander K, Frohlich R, Grimme S, Stephan DW (2007) Chem Commun 5072–5074Google Scholar
  292. 292.
    Welch GC, Juan RRS, Masuda JD, Stephan DW (2006) Science 314:1124–1126Google Scholar
  293. 293.
    Erker G, Stephan DW (2013) Frustrated Lewis pairs I—uncovering and understanding. Topics in current chemistry 332Google Scholar
  294. 294.
    Erker G, Stephan DW (2013) Frustrated Lewis pairs II-expanding the scope. Top Curr Chem 334Google Scholar
  295. 295.
    Stephan DW, Erker G (2010) Angew Chem Int Ed 49:46–76Google Scholar
  296. 296.
    Chen EYX (2013) Top Curr Chem 334:239–260Google Scholar
  297. 297.
    Vogel R (2000) Ullmann’s encyclopedia of industrial chemistry. Wiley, on lineGoogle Scholar
  298. 298.
    Hill K, Rhode O (1999) Fett/Lipid 101:25–33Google Scholar
  299. 299.
    Corma A, Hamid SBA, Iborra S, Velty A (2008) ChemSuSChem 1:85–90Google Scholar
  300. 300.
    Gallezot P, Cérino P, Blanc B, Flèche G, Fuertes P (1994) J Catal 146:93–102Google Scholar
  301. 301.
    van Gorpa K, Boermana E, Cavenaghib CV, Berben PH (1999) Catal Today 52:349–361Google Scholar
  302. 302.
    Gallezot P, Nicolaus N, Flèche G, Fuertes P, Perrard A (1998) J Catal 180:51–55Google Scholar
  303. 303.
    Van de Vyver S, Geboers J, Jacobs PA, Sels BF (2011) ChemCatChem 3:82–94Google Scholar
  304. 304.
    Fléche G, Huchette M (1986) Starch/Staerke 38:26–30Google Scholar
  305. 305.
    Kurszewska M, Skorupowa E, Madaj J, Konitz A, Wojnowski W, Wisniewski A (2002) Carbohydr Res 337:1261–1268Google Scholar
  306. 306.
    Xia J, Yu D, Hu Y, Zou B, Sun P, Li H, Huang H (2011) Catal Commun 12:544–547Google Scholar
  307. 307.
    Xi J, Zhang Y, Ding D, Xia Q, Wang J, Liu X, Lu G, Wang Y (2014) Appl Catal Gen 469:108–115Google Scholar
  308. 308.
    Fenouillot F, Rousseau A, Colomines G, Saint-Loup R, Pascault JP (2010) Prog Polym Sci 35:578–622Google Scholar
  309. 309.
    Yin B, Hakkarainen M (2011) J Appl Polym Sci 119:2400–2407Google Scholar
  310. 310.
    Rivera-Armenta JL, Heinze TH, Mendoza-Martínez AM (2004) Eur Polym J 40:2803–2812Google Scholar
  311. 311.
    Park HS, Gong MS, Knowles JC (2013) J Mater Sci Mater Med 24:281–294Google Scholar
  312. 312.
    Lorenzini C, Renard E, Bensemhoun J, Babinot J, Versace DL, Langlois V (2013) React Funct Polym 73:1656–1661Google Scholar
  313. 313.
    Karol MH, Kramarik JA (1996) Toxicol Lett 89:139–146Google Scholar
  314. 314.
    Besse V, Auvergne R, Carlotti S, Boutevin G, Otazaghine B, Caillol S, Pascault JP, Boutevin B (2013) React Funct Polym 73:588–594Google Scholar
  315. 315.
    Kricheldorf H, Weidner SM (2013) Eur Poly J 49:2293–2302Google Scholar
  316. 316.
    Kricheldorf H, Weidner SM (2013) Macromol Chem Phys 214:726–733Google Scholar
  317. 317.
    Williams CL, Chang CC, Do P, Nikbin N, Caratzoulas S, Vlachos DG, Lobo RF, Fan W, Dauenhauer PJ (2012) ACS Catal 2:935–939Google Scholar
  318. 318.
    Shiramizu M, Toste MFD (2012) Chem Eur J 17:12452–12457Google Scholar
  319. 319.
    Colonna M, Berti C, Fiorini M, Binassi F, Mazzacurati M, Vanini M, Kuranam S (2012) Presented at the ACS meeting “Polycondensation 2012”, San Francisco, September 2012Google Scholar
  320. 320.
    Werpy T, Petersen G (2004) Top value added chemicals from biomass, vol 1. U.S. Department of Energy, Oak RidgeGoogle Scholar
  321. 321.
    Fumagalli C (1997) Kirk–Othmer encyclopedia of chemical technology, vol 22, 4th edn. Wiley, New York, p 1074Google Scholar
  322. 322.
    Luo L, Voet EVD, Huppes G (2010) Bioresour Technol 101:5023–5032Google Scholar
  323. 323.
    Pipper G, Koch EM (1990) US Patent 5,030,709Google Scholar
  324. 324.
    Gaymans RJ, Venkatraman VS, Schuijer J (1984) J Polym Sci Polym Chem Ed 22:1373–1382Google Scholar
  325. 325.
    Carothers WH (1938). US Patent 2,130,948Google Scholar
  326. 326.
    Katsarava RD, Kharadze DP, Aualkhuili LM (1986) Makromol Chem 187:2053–2062Google Scholar
  327. 327.
    Bechthold I, Bretz K, Kabasci S, Kopitzky R, Springer A (2008) Chem Eng Technol 31:647–654Google Scholar
  328. 328.
    Coffman DD, Berchet GJ, Peterson WR, Spanagel EW (1947) J Polym Sci 2:306–313Google Scholar
  329. 329.
    Katsarava RD, Katsarava RD, Kharadze DP, Bendiashvili TM, Urman YG, Slonim IY, Alekseeva SG, Cefelin P, Janout V (1988) Acta Polym 39:523–533Google Scholar
  330. 330.
    Katsarava RD (2003) Macromol Sym 199:419–429Google Scholar
  331. 331.
    Wang Q, Shao Z, Yu T (1996) Polym Bull 36:659–665Google Scholar
  332. 332.
    Habeych DI, Eggink G, Boeriu CG (2011) Biocatal Biotransfor 29:299–310Google Scholar
  333. 333.
    Decker C, Moussa K, Bendaikha T (1991) J Polym Sci Pol Chem 29:739–747Google Scholar
  334. 334.
    Allen NS, Edge M, Mahammadian M, Jones K (1993) Polym Degrad Stab 41:191–196Google Scholar
  335. 335.
    Luda MP, Tauriello R, Camino G (2000) Eur Coat J 74:76–79Google Scholar
  336. 336.
    Hult A, Raanby B (1984) Polym Degrad Stab 8:75–87Google Scholar
  337. 337.
    Garaleh M, Yashiro T, Kricheldorf HR, Simon P, Chatti S (2010) Macromol Chem Phys 211:1206–1214Google Scholar
  338. 338.
    Chatti S, Weidner SM, Fildier A, Kricheldorf HR (2013) J Polym Sci Pol Chem 51:2464–2471Google Scholar
  339. 339.
    Shih IL, Van YT (2001) Bioresour Technol 79:207–225Google Scholar
  340. 340.
    Li C, Yu DF, Newman A, Cabra FL, Stephens C, Hunter NR, Milas L, Wallace S (1998) Cancer Res 58:2404–2409Google Scholar
  341. 341.
    Gross RA, Kalra B (2002) Science 297:803–807Google Scholar
  342. 342.
    Hasson D, Shemer H, Sher A (2011) Ind Eng Chem Res 50:7601–7607Google Scholar
  343. 343.
    Low KC, Wheeler AP, Koskan LP (1996) Adv Chem ACS 248:99–111Google Scholar
  344. 344.
    Zahuriaan-Mehr MJ, Pourjavadi A, Salimi H, Kurdtabar M (2009) Polym Adv Technol 20:655–671Google Scholar
  345. 345.
    Willke KD (2001) Appl Microbiol Biotechnol 56:289–295Google Scholar
  346. 346.
    Kiely DE, Chen L, Lin TH (1994) Polymers from agricultural coproducts. ACS Sym Ser 575:149–158Google Scholar
  347. 347.
    Kiely DE, Chen L, Lin TH (1994) J Am Chem Soc 116:571–578Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Supramolecular Structure and Materials, College of ChemistryJilin UniversityChangchunPeople’s Republic of China
  2. 2.Department of ChemistryColorado State UniversityFort CollinsUSA

Personalised recommendations