Unidirectional Light-Driven Molecular Motors Based on Overcrowded Alkenes

Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 354)


Over the last two decades, interest in nanotechnology has led to the design and synthesis of a toolbox of nanoscale versions of macroscopic devices and components. In molecular nanotechnology, linear motors based on rotaxanes and rotary motors based on overcrowded alkenes are particularly promising for performing work at the nanoscale. In this chapter, progress on light-driven molecular motors based on overcrowded alkenes is reviewed. Both the so-called first and second generation molecular motors are discussed, as well as their potential applications.


Helicity Molecular devices Molecular motors Nanotechnology Photochemistry Photochromism 



Circular dichroism




Enantiomer excess


Electron paramagnetic resonance


Exchange spectroscopy


Liquid crystalline


Photostationary state


Scanning tunneling microscopy




  1. 1.
    Kay ER, Leigh DA, Zerbetto F (2007) Synthetic molecular motors and mechanical machines. Angew Chem Int Ed 46:72CrossRefGoogle Scholar
  2. 2.
    Browne WR, Feringa BL (2006) Making molecular machines work. Nature Nanotechnol 1:25CrossRefGoogle Scholar
  3. 3.
    Balzani V, Credi A, Venturi M (2009) Light powered molecular machines. Chem Soc Rev 38:1542CrossRefGoogle Scholar
  4. 4.
    Meier H (1992) The photochemistry of stilbenoid compounds and their role in materials technology. Angew Chem Int Ed 31:1399CrossRefGoogle Scholar
  5. 5.
    Turro NJ, Ramamurthy V, Scaiano JC (eds) (2009) Principles of molecular photochemistry: an introduction. University Science Books, Sausolito, pp 348–351Google Scholar
  6. 6.
    Jørgensen KB (2010) Photochemical oxidative cyclisation of stilbenes and stilbenoids—the Mallory-reaction. Molecules 15:4334CrossRefGoogle Scholar
  7. 7.
    Feringa BL, Van Delden RA, Koumura N, Geertsema EM (2000) Chiroptical molecular switches. Chem Rev 100:1789CrossRefGoogle Scholar
  8. 8.
    Feringa BL, Browne WR (eds) (2011) Molecular switches. Wiley-VCH, Weinheim, pp 121–179CrossRefGoogle Scholar
  9. 9.
    Feringa BL (2001) In control of motion: from molecular switches to molecular motors. Acc Chem Res 34:504CrossRefGoogle Scholar
  10. 10.
    Feringa BL (2007) The art of building small: from molecular switches to molecular motors. J Org Chem 72:6635CrossRefGoogle Scholar
  11. 11.
    Koumura N, Zijlstra RWJ, Van Delden RA, Harada N, Feringa BL (1999) Light-driven monodirectional molecular rotor. Nature 401:152CrossRefGoogle Scholar
  12. 12.
    Pollard MM, Klok M, Pijper D, Feringa BL (2007) Rate acceleration of light-driven rotary molecular motors. Adv Funct Mater 17:718CrossRefGoogle Scholar
  13. 13.
    Augulis R, Klok M, Feringa BL, Van Loosdrecht PHM (2009) Light-driven rotary molecular motors: an ultrafast optical study. Phys Status Solidi C 6:181CrossRefGoogle Scholar
  14. 14.
    Ter Wiel MKJ, Van Delden RA, Meetsma A, Feringa BL (2005) Light-driven molecular motors: stepwise thermal helix inversion during unidirectional rotation of sterically overcrowded biphenanthrylidenes. J Am Chem Soc 127:14208CrossRefGoogle Scholar
  15. 15.
    Ter Wiel MKJ, Van Delden RA, Meetsma A, Feringa BL (2003) Increased speed of rotation for the smallest light-driven molecular motor. J Am Chem Soc 125:15076CrossRefGoogle Scholar
  16. 16.
    Caroli G, Kwit MG, Feringa BL (2008) Photochemical and thermal behavior of light-driven unidirectional molecular motor with long alkyl chains. Tetrahedron 64:5956CrossRefGoogle Scholar
  17. 17.
    Ter Wiel MKJ, Kwit MG, Meetsma A, Feringa BL (2007) Synthesis, stereochemistry, and photochemical and thermal behaviour of bis-tert-butyl substituted overcrowded alkenes. Org Biomol Chem 5:87CrossRefGoogle Scholar
  18. 18.
    Pollard MM, Meetsma A, Feringa BL (2008) A redesign of light-driven rotary molecular motors. Org Biomol Chem 6:507CrossRefGoogle Scholar
  19. 19.
    Kuwahara S, Fujita T, Harada N (2005) A new model of light-powered chiral molecular motor with higher speed of rotation, part 2 – dynamics of motor rotation. Eur J Org Chem 2005:4544CrossRefGoogle Scholar
  20. 20.
    Harada N, Koumura N, Feringa BL (1997) Chemistry of unique chiral olefins. 3. Synthesis and absolute stereochemistry of trans- and cis-1,1′,2,2′,3,3′,4,4′-octahydro-3,3′-dimethyl-4, 4′-biphenanthrylidenes. J Am Chem Soc 119:7256CrossRefGoogle Scholar
  21. 21.
    Fujita T, Kuwahara S, Harada N (2005) A new model of light-powered chiral molecular motor with higher speed of rotation, part 1 – synthesis and absolute stereostructure. Eur J Org Chem 2005:4533CrossRefGoogle Scholar
  22. 22.
    Ter Wiel MKJ, Feringa BL (2005) Synthesis of functionalized molecular motors. Synthesis 2005:1789CrossRefGoogle Scholar
  23. 23.
    Caroli G (2010), Molecular motors with new topologies. Ph.D. Thesis, University of Groningen, GroningenGoogle Scholar
  24. 24.
    Wang J, Kulago A, Browne WR, Feringa BL (2010) Photoswitchable intramolecular H-stacking of perylenebisimide. J Am Chem Soc 132:4191CrossRefGoogle Scholar
  25. 25.
    Koumura N, Geertsema EM, Meetsma A, Feringa BL (2000) Light-driven molecular rotor: unidirectional rotation controlled by a single stereogenic center. J Am Chem Soc 122:12005CrossRefGoogle Scholar
  26. 26.
    Pérez-Hernández G, González L (2010) Mechanistic insight into light-driven molecular rotors: a conformational search in chiral overcrowded alkenes by a pseudo-random approach. Phys Chem Chem Phys 12:12279Google Scholar
  27. 27.
    Koumura N, Geertsema EM, Van Gelder MB, Meetsma A, Feringa BL (2002) Second generation light-driven molecular motors. Unidirectional rotation controlled by a single stereogenic center with near-perfect photoequilibria and acceleration of the speed of rotation by structural modification. J Am Chem Soc 124:5037CrossRefGoogle Scholar
  28. 28.
    Kulago AA, Mes EM, Klok M, Meetsma A, Brouwer AM, Feringa BL (2010) Ultrafast light-driven nanomotors based on an acridane stator. J Org Chem 75:666CrossRefGoogle Scholar
  29. 29.
    Van Delden RA, Ter Wiel MKJ, De Jong H, Meetsma A, Feringa BL (2004) Exploring the boundaries of a light-driven molecular motor design: new sterically overcrowded alkenes with preferred direction of rotation. Org Biomol Chem 2:1531CrossRefGoogle Scholar
  30. 30.
    Ruangsupapichat N, Pollard MM, Harutyunyan SR, Feringa BL (2011) Reversing the direction in a light-driven rotary molecular motor. Nat Chem 3:53CrossRefGoogle Scholar
  31. 31.
    Pijper D, Van Delden RA, Meetsma A, Feringa BL (2005) Acceleration of a nanomotor: electronic control of the rotary speed of a light-driven molecular rotor. J Am Chem Soc 127:17612CrossRefGoogle Scholar
  32. 32.
    Geertsema EM, Koumura N, Ter Wiel MKJ, Meetsma A, Feringa BL (2002) In control of the speed of rotation in molecular motors. Unexpected retardation of rotary motion. Chem Commun 2002:2962CrossRefGoogle Scholar
  33. 33.
    Vicario J, Meetsma A, Feringa BL (2005) Controlling the speed of rotation in molecular motors. Dramatic acceleration of the rotary motion by structural modification. Chem Commun 2005:5910CrossRefGoogle Scholar
  34. 34.
    Vicario J, Walko M, Meetsma A, Feringa BL (2006) Fine tuning of the rotary motion by structural modification in light-driven unidirectional molecular motors. J Am Chem Soc 128:5127CrossRefGoogle Scholar
  35. 35.
    Pollard MM, Wesenhagen PV, Pijper D, Feringa BL (2008) On the effect of donor and acceptor substituents on the behaviour of light-driven rotary molecular motors. Org Biomol Chem 6:1605CrossRefGoogle Scholar
  36. 36.
    Fernández Landaluce T, London G, Pollard MM, Rudolf P, Feringa BL (2010) Rotary molecular motors: a large increase in speed through a small change in design. J Org Chem 75:5323CrossRefGoogle Scholar
  37. 37.
    Cnossen A, Pijper D, Kudernac T, Pollard MM, Katsonis N, Feringa BL (2009) A trimer of ultrafast nanomotors: synthesis, photochemistry and self-assembly on graphite. Chem Eur J 15:2768CrossRefGoogle Scholar
  38. 38.
    Klok M, Walko M, Geertsema EM, Ruangsupapichat N, Kistemaker JCM, Meetsma A, Feringa BL (2008) New mechanistic insight in the thermal helix inversion of second-generation molecular motors. Chem Eur J 14:11183CrossRefGoogle Scholar
  39. 39.
    Klok M, Boyle N, Pryce MT, Meetsma A, Browne WR, Feringa BL (2008) MHz unidirectional rotation of molecular rotary motors. J Am Chem Soc 130:10484CrossRefGoogle Scholar
  40. 40.
    Ter Wiel MKJ, Vicario J, Davey SG, Meetsma A, Feringa BL (2005) New procedure for the preparation of highly sterically hindered alkenes using a hypervalent iodine reagent. Org Biomol Chem 3:28CrossRefGoogle Scholar
  41. 41.
    Klok M (2009) Motors for use in molecular nanotechnology. Ph.D. Thesis, University of Groningen, GroningenGoogle Scholar
  42. 42.
    Klok M, Browne WR, Feringa BL (2009) Kinetic analysis of the rotation rate of light-driven unidirectional molecular motors. Phys Chem Chem Phys 11:9124CrossRefGoogle Scholar
  43. 43.
    Kulago A (2011) Nanotechnological tools built on synthetic light-driven nanomotors. Ph.D. Thesis, University of Groningen, GroningenGoogle Scholar
  44. 44.
    Barton DHR, Willis BJ (1972) Olefin synthesis by two-fold extrusion processes. Part 1. Preliminary experiments. J Chem Soc Perkin Trans 1 1972:305Google Scholar
  45. 45.
    Buter J, Wassenaar S, Kellogg RM (1972) Thiocarbonyl ylides. Generation, properties, and reactions. J Org Chem 37:4045CrossRefGoogle Scholar
  46. 46.
    Pijper TC, Pijper D, Pollard MM, Dumur F, Davey SG, Meetsma A, Feringa BL (2010) An enantioselective synthetic route toward second-generation light-driven rotary molecular motors. J Org Chem 75:825CrossRefGoogle Scholar
  47. 47.
    Tietze LF, Düfert A, Lotz F, Sölter L, Oum K, Lenzer T, Beck T, Herbst-Irmer R (2009) Synthesis of chiroptical molecular switches by Pd-catalyzed domino reactions. J Am Chem Soc 131:17879CrossRefGoogle Scholar
  48. 48.
    Liu H, El-Salfiti M, Lautens M (2012) Expeditious synthesis of tetrasubstituted helical alkenes by a cascade of palladium-catalyzed C–H activations. Angew Chem Int Ed 51:9846CrossRefGoogle Scholar
  49. 49.
    Ruangsupapichat N (2012) Controlling the motion of molecular machines at the nanoscale. Ph.D. Thesis, University of Groningen, GroningenGoogle Scholar
  50. 50.
    Pijper D, Jongejan MGM, Meetsma A, Feringa BL (2008) Light-controlled supramolecular helicity of a liquid crystalline phase using a helical polymer functionalized with a single chiroptical molecular switch. J Am Chem Soc 130:4541CrossRefGoogle Scholar
  51. 51.
    Cnossen A, Hou L, Pollard MM, Wesenhagen PV, Browne WR, Feringa BL (2012) Driving unidirectional molecular rotary motors with visible light by intra- and intermolecular energy transfer from palladium porphyrin. J Am Chem Soc 134:17613CrossRefGoogle Scholar
  52. 52.
    London G (2011) Light-driven molecular motors and switches in confined environments. Ph.D. Thesis, University of Groningen, GroningenGoogle Scholar
  53. 53.
    Coskun A, Banaszak M, Astumian RD, Stoddart JF, Grzybowski BA (2012) Great expectations: can artificial molecular machines deliver on their promise? Chem Soc Rev 41:19CrossRefGoogle Scholar
  54. 54.
    Kottas GS, Clarke LI, Horinek D, Michl J (2005) Artificial molecular rotors. Chem Rev 105:1281CrossRefGoogle Scholar
  55. 55.
    Haberbauer G (2011) A molecular four-stroke motor. Angew Chem Int Ed 50:6415CrossRefGoogle Scholar
  56. 56.
    Geertsema EM, Van der Molen SJ, Martens M, Feringa BL (2009) Optimizing rotary processes in synthetic molecular motors. Proc Natl Acad Sci U S A 106:16919CrossRefGoogle Scholar
  57. 57.
    Ter Wiel MKJ, Van Delden RA, Meetsma A, Feringa BL (2005) Control of rotor motion in a light-driven molecular motor: towards a molecular gearbox. Org Biomol Chem 3:4071CrossRefGoogle Scholar
  58. 58.
    Morin JF, Shirai Y, Tour JM (2006) En route to a motorized nanocar. Org Lett 8:1713CrossRefGoogle Scholar
  59. 59.
    Leigh DA, Pérez EM (2006) Dynamic chirality: molecular shuttles and motors. In: Crego-Calama M, Reinhoudt DN (eds) Topics in current chemistry, vol 265, p 185–208Google Scholar
  60. 60.
    Astumian RD (2007) Design principles for Brownian molecular machines: how to swim in molasses and walk in a hurricane. Phys Chem Chem Phys 9:5067CrossRefGoogle Scholar
  61. 61.
    Katsonis N, Lubomska M, Pollard MM, Feringa BL, Rudolf P (2007) Synthetic light-activated molecular switches and motors on surfaces. Prog Surf Sci 82:407CrossRefGoogle Scholar
  62. 62.
    Van Delden RA, Ter Wiel MKJ, Pollard MM, Vicario J, Koumura N, Feringa BL (2005) Unidirectional molecular motor on a gold surface. Nature 437:1337CrossRefGoogle Scholar
  63. 63.
    Pollard MM, Ter Wiel MKJ, Van Delden RA, Vicario J, Koumura N, Van den Brom CR, Meetsma A, Feringa BL (2008) Light-driven rotary molecular motors on gold nanoparticles. Chem Eur J 14:11610CrossRefGoogle Scholar
  64. 64.
    Carroll GT, Pollard MM, Van Delden RA, Feringa BL (2010) Controlled rotary motion of light-driven molecular motors assembled on a gold film. Chem Sci 1:97CrossRefGoogle Scholar
  65. 65.
    Pollard MM, Lubomska M, Rudolf P, Feringa BL (2007) Controlled rotary motion in a monolayer of molecular motors. Angew Chem Int Ed 46:1278CrossRefGoogle Scholar
  66. 66.
    London G, Carroll GT, Fernández Landaluce T, Pollard MM, Rudolf P, Feringa BL (2009) Light-driven altitudinal molecular motors on surfaces. Chem Commun 2009:1712CrossRefGoogle Scholar
  67. 67.
    Carroll GT, London G, Fernández Landaluce T, Rudolf P, Feringa BL (2011) Adhesion of photon-driven molecular motors to surfaces via 1,3-dipolar cycloadditions: effect of interfacial interactions on molecular motion. ACS Nano 5:622CrossRefGoogle Scholar
  68. 68.
    Frantz DK, Linden A, Baldridge KK, Siegel JS (2012) Molecular spur gears comprising triptycene rotators and bibenzimidazole-based stators. J Am Chem Soc 134:1528CrossRefGoogle Scholar
  69. 69.
    Ter Wiel MKJ, Feringa BL (2009) Fine tuning of molecular rotor function in photochemical molecular switches. Tetrahedron 65:4332CrossRefGoogle Scholar
  70. 70.
    Lubbe AS, Ruangsupapichat N, Caroli G, Feringa BL (2011) Control of rotor function in light-driven molecular motors. J Org Chem 76:8599CrossRefGoogle Scholar
  71. 71.
    Kistemaker J (2010) Master’s Thesis, University of Groningen, GroningenGoogle Scholar
  72. 72.
    Green MM, Peterson NC, Sato T, Teramoto A, Cook R, Lifson S (1995) A helical polymer with a cooperative response to chiral information. Science 268:1860CrossRefGoogle Scholar
  73. 73.
    Pijper D, Feringa BL (2007) Molecular transmission: controlling the twist sense of a helical polymer with a single light-driven molecular motor. Angew Chem Int Ed 46:3693CrossRefGoogle Scholar
  74. 74.
    Eelkema R (2006) Liquid crystals as amplifiers of molecular chirality. Ph.D. Thesis, University of Groningen, GroningenGoogle Scholar
  75. 75.
    Jongejan MGM (2010) Control of supramolecular phenomena via molecular motors. Ph.D. Thesis, University of Groningen, GroningenGoogle Scholar
  76. 76.
    For details on the nature of the interaction between the dopant and the LC host, see: Bosco A, Jongejan MGM, Eelkema R, Katsonis N, Lacaze E, Ferrarini A, Feringa BL (2008) Photoinduced reorganization of motor-doped chiral liquid crystals: bridging molecular isomerization and texture rotation. J Am Chem Soc 130:14615CrossRefGoogle Scholar
  77. 77.
    Eelkema R, Pollard MM, Vicario J, Katsonis N, Serrano Ramon B, Bastiaansen CMW, Broer DJ, Feringa BL (2006) Molecular machines: nanomotor rotates microscale objects. Nature 440:163CrossRefGoogle Scholar
  78. 78.
    Eelkema R, Pollard MM, Katsonis N, Vicario J, Broer DJ, Feringa BL (2006) Rotational reorganization of doped cholesteric liquid crystalline films. J Am Chem Soc 128:14397CrossRefGoogle Scholar
  79. 79.
    Wang J, Hou L, Browne WR, Feringa BL (2011) Photoswitchable intramolecular through-space magnetic interaction. J Am Chem Soc 133:8162CrossRefGoogle Scholar
  80. 80.
    Wang J, Feringa BL (2011) Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor. Science 331:1429CrossRefGoogle Scholar
  81. 81.
    Vives G, Tour JM (2009) Synthesis of single-molecule nanocars. Acc Chem Res 42:473CrossRefGoogle Scholar
  82. 82.
    Kudernac T, Ruangsupapichat N, Parschau M, Maciá B, Katsonis N, Harutyunyan SR, Ernst KH, Feringa BL (2011) Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature 479:208CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Stratingh Institute for ChemistryUniversity of GroningenGroningenThe Netherlands

Personalised recommendations