Structure and Stability Prediction of Compounds with Evolutionary Algorithms

  • Benjamin C. Revard
  • William W. Tipton
  • Richard G. Hennig
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 345)


Crystal structure prediction is a long-standing challenge in the physical sciences. In recent years, much practical success has been had by framing it as a global optimization problem, leveraging the existence of increasingly robust and accurate free energy calculations. This optimization problem has often been solved using evolutionary algorithms (EAs). However, many choices are possible when designing an EA for structure prediction, and innovation in the field is ongoing. We review the current state of evolutionary algorithms for crystal structure and composition prediction and discuss the details of methodological and algorithmic choices. Finally, we review the application of these algorithms to many systems of practical and fundamental scientific interest.


Structure prediction Genetic algorithm Ccrystal structure Energy landscape Heuristic optimization Phase diagram 



This work was supported by the National Science Foundation under award number CAREER DMR-1056587 and by the Energy Materials Center at Cornell (EMC2) funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award number DE-SC0001086. W.W.T. was supported by the NSF IGERT Fellowship Program “A Graduate Traineeship in Materials for a Sustainable Future” under award number DGE-0903653 and the NSF GK12 Program “Grass Roots: Advancing education in renewable energy and cleaner fuels through collaborative graduate fellow/teacher/grade-school student interactions” under award number DGE-1045513. This research used computational resources of the Texas Advanced Computing Center under Contract Number TG-DMR050028N and of the Computation Center for Nanotechnology Innovation at Rensselaer Polytechnic Institute.


  1. 1.
    van Dover RB, Schneemeyer L, Fleming R (1998) Discovery of a useful thin-film dielectric using a composition-spread approach. Nature 392(6672):162–164Google Scholar
  2. 2.
    Bush TS, Catlow CRA, Battle PD (1995) Evolutionary programming techniques for predicting inorganic crystal structures. J Mater Chem 5:1269–1272Google Scholar
  3. 3.
    Ceder G, Morgan D, Fischer C, Tibbetts K, Curtarolo S (2006) Data-mining-driven quantum mechanics for the prediction of structure. MRS Bull 31(12):981–985Google Scholar
  4. 4.
    Goedecker S (2004) Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems. J Chem Phys 120:9911Google Scholar
  5. 5.
    Martoňnák R, Laio A, Parrinello M (2003) Predicting crystal structures: the Parrinello–Rahman method revisited. Phys Rev Lett 90(7):075503Google Scholar
  6. 6.
    Pannetier J, Bassas-Alsina J, Rodriguez-Carvajal J, Caignaert V (1990) Prediction of crystal structures from crystal chemistry rules by simulated annealing. Nature 346(6282):343–345Google Scholar
  7. 7.
    Pickard CJ, Needs RJ (2011) Ab initio random structure searching. J Phys Condens Matter 23(5):053201Google Scholar
  8. 8.
    Wang Y, Lv J, Zhu L, Ma Y (2012) CALYPSO: a method for crystal structure prediction. Comput Phys Commun 183(10):2063–2070Google Scholar
  9. 9.
    Feng J, Hennig RG, Ashcroft NW, Hoffmann R (2008) Emergent reduction of electronic state dimensionality in dense ordered Li–Be alloys. Nature 451(7177):445–448Google Scholar
  10. 10.
    Rudin SP, Jones MD, Albers RC (2004) Thermal stabilization of the HCP phase in titanium. Phys Rev B 69(9):094117Google Scholar
  11. 11.
    Souvatzis P, Eriksson O, Katsnelson MI, Rudin SP (2008) Entropy driven stabilization of energetically unstable crystal structures explained from first principles theory. Phys Rev Lett 100:095901Google Scholar
  12. 12.
    Woodley MS, Battle DP, Gale DJ, Catlow RAC (1999) The prediction of inorganic crystal structures using a genetic algorithm and energy minimisation. Phys Chem Chem Phys 1:2535–2542Google Scholar
  13. 13.
    Stillinger FH (1999) Exponential multiplicity of inherent structures. Phys Rev E 59(1):48Google Scholar
  14. 14.
    Venkatesh PK, Cohen MH, Carr RW, Dean AM (1997) Bayesian method for global optimization. Phys Rev E 55:6219–6232Google Scholar
  15. 15.
    Massen CP, Doye JP (2007) Power-law distributions for the areas of the basins of attraction on a potential energy landscape. Phys Rev E 75(3):037101Google Scholar
  16. 16.
    Oganov AR, Glass CW, Ono S (2006) High-pressure phases of CaCO3: crystal structure prediction and experiment. Earth Planet Sci Lett 241(1):95–103Google Scholar
  17. 17.
    Brodmeier T, Pretsch E (1994) Application of genetic algorithms in molecular modeling. J Comput Chem 15(6):588–595Google Scholar
  18. 18.
    Dandekar T, Argos P (1994) Folding the main chain of small proteins with the genetic algorithm. J Mol Biol 236(3):844Google Scholar
  19. 19.
    Lucasius CB, Werten S, van Aert A, Kateman G, Blommers MJ (1991) Conformational analysis of DNA using genetic algorithms. In: Schwefel HP, Maenner R (eds) Parallel problem solving from nature. Springer, Berlin, pp 90–97Google Scholar
  20. 20.
    McGarrah D, Judson RS (1993) Analysis of the genetic algorithm method of molecular conformation determination. J Comput Chem 14(11):1385–1395Google Scholar
  21. 21.
    Sun S (1993) Reduced representation model of protein structure prediction: statistical potential and genetic algorithms. Protein Sci 2(5):762–785Google Scholar
  22. 22.
    Deaven DM, Ho KM (1995) Molecular geometry optimization with a genetic algorithm. Phys Rev Lett 75:288–291Google Scholar
  23. 23.
    Xiao Y, Williams DE (1993) Genetic algorithm: a new approach to the prediction of the structure of molecular clusters. Chem Phys Lett 215(1):17–24Google Scholar
  24. 24.
    Smith RW (1992) Energy minimization in binary alloy models via genetic algorithms. Comput Phys Commun 71(1):134–146Google Scholar
  25. 25.
    Oganov AR, Glass CW (2006) Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J Chem Phys 124(24):244704Google Scholar
  26. 26.
    Tipton WW, Hennig RG (2013) Genetic algorithm for structure and phase prediction. Cornell University. Accessed 22 Oct 2013
  27. 27.
    Tipton WW, Hennig RG (2013) A grand canonical genetic algorithm for the prediction of multicomponent phase diagrams and testing empirical potentials. J Phys Cond Matter 25:495401Google Scholar
  28. 28.
    Pickard CJ, Needs RJ (2006) High-pressure phases of silane. Phys Rev Lett 97:045504Google Scholar
  29. 29.
    Zhu Q, Oganov AR, Glass CW, Stokes HT (2012) Constrained evolutionary algorithm for structure prediction of molecular crystals: methodology and applications. Acta Crystallogr Sect B Struct Sci 68(3):215–226Google Scholar
  30. 30.
    Bahmann S, Kortus J (2013) EVO – evolutionary algorithm for crystal structure prediction. Comput Phys Commun 184(6):1618–1625Google Scholar
  31. 31.
    Lonie DC, Zurek E (2011) Xtalopt: an open-source evolutionary algorithm for crystal structure prediction. Comput Phys Commun 182(2):372–387Google Scholar
  32. 32.
    Glass CW, Oganov AR, Hansen N (2006) USPEX – evolutionary crystal structure prediction. Comput Phys Commun 175(1112):713–720Google Scholar
  33. 33.
    Trimarchi G, Zunger A (2007) Global space-group optimization problem: finding the stablest crystal structure without constraints. Phys Rev B 75:104113Google Scholar
  34. 34.
    Ji M, Wang CZ, Ho KM (2010) Comparing efficiencies of genetic and minima hopping algorithms for crystal structure prediction. Phys Chem Chem Phys 12(37):11617–11623Google Scholar
  35. 35.
    Woodley SM (2004) Prediction of inorganic crystal framework structures part 2: using a genetic algorithm and a direct approach to exclusion zones. Phys Chem Chem Phys 6:1823–1829Google Scholar
  36. 36.
    Kŕivý I, Gruber B (1976) A unified algorithm for determining the reduced (Niggli) cell. Acta Crystallogr A 32(2):297–298Google Scholar
  37. 37.
    Oganov AR, Glass CW (2008) Evolutionary crystal structure prediction as a tool in materials design. J Phys Condens Matter 20(6):064210Google Scholar
  38. 38.
    Abraham NL, Probert MIJ (2006) A periodic genetic algorithm with real-space representation for crystal structure and polymorph prediction. Phys Rev B 73:224104Google Scholar
  39. 39.
    Johnston RL (2003) Evolving better nanoparticles: genetic algorithms for optimising cluster geometries. Dalton Trans 4193–4207Google Scholar
  40. 40.
    Lyakhov AO, Oganov AR, Valle M (2010) How to predict very large and complex crystal structures. Comput Phys Commun 181(9):1623–1632Google Scholar
  41. 41.
    Oganov AR (2013) Evolutionary crystal structure prediction and computational materials discovery. doi:  10.1007/128_2013_508
  42. 42.
    Lonie DC, Zurek E (2012) Identifying duplicate crystal structures: Xtalcomp, an open-source solution. Comput Phys Commun 183(3):690–697Google Scholar
  43. 43.
    Valle M, Oganov AR (2008) Crystal structures classifier for an evolutionary algorithm structure predictor. In: IEEE symposium on visual analytics science and technology VAST’08, 2008. Columbus, Ohio, pp 11–18Google Scholar
  44. 44.
    Valle M, Oganov AR (2010) Crystal fingerprint space – a novel paradigm for studying crystalstructure sets. Acta Crystallogr A 66(5):507–517Google Scholar
  45. 45.
    Abraham NL, Probert MIJ (2008) Improved real-space genetic algorithm for crystal structure and polymorph prediction. Phys Rev B 77:134117Google Scholar
  46. 46.
    Hartke B (1993) Global geometry optimization of clusters using genetic algorithms. J Phys Chem 97(39):9973–9976Google Scholar
  47. 47.
    Zhang X, Trimarchi G, Zunger A (2009) Possible pitfalls in theoretical determination of groundstate crystal structures: the case of platinum nitride. Phys Rev B 79:092102Google Scholar
  48. 48.
    Tipton WW, Bealing CR, Mathew K, Hennig RG (2013) Structures, phase stabilities, and electrical potentials of Li-Si battery anode materials. Phys Rev B 87:184114Google Scholar
  49. 49.
    Trimarchi G, Freeman AJ, Zunger A (2009) Predicting stable stoichiometries of compounds via evolutionary global space-group optimization. Phys Rev B 80:092101Google Scholar
  50. 50.
    Zurek E, Hoffmann R, Ashcroft NW, Oganov AR, Lyakhov AO (2009) A little bit of lithium does a lot for hydrogen. Proc Natl Acad Sci U S A 106(42):17640–17643Google Scholar
  51. 51.
    Woodley SM, Catlow CRA (2009) Structure prediction of titania phases: implementation of Darwinian versus Lamarckian concepts in an evolutionary algorithm. Comput Mater Sci 45(1):84–95Google Scholar
  52. 52.
    Park H, Fellinger MR, Lenosky TJ, Tipton WW, Trinkle DR, Rudin SP, Woodward C, Wilkins JW, Hennig RG (2012) Ab initio based empirical potential used to study the mechanical properties of molybdenum. Phys Rev B 85:214121Google Scholar
  53. 53.
    Ji M, Umemoto K, Wang CZ, Ho KM, Wentzcovitch RM (2011) Ultrahigh-pressure phases of H2O ice predicted using an adaptive genetic algorithm. Phys Rev B 84:220105Google Scholar
  54. 54.
    Kolmogorov AN, Shah S, Margine ER, Bialon AF, Hammerschmidt T, Drautz R (2010) New superconducting and semiconducting Fe–B compounds predicted with an ab initio evolutionary search. Phys Rev Lett 105(21):217003Google Scholar
  55. 55.
    Chuang F, Ciobanu CV, Shenoy V, Wang CZ, Ho KM (2004) Finding the reconstructions of semiconductor surfaces via a genetic algorithm. Surf Sci 573(2):L375–L381Google Scholar
  56. 56.
    Lu N, Ciobanu CV, Chan TL, Chuang FC, Wang CZ, Ho KM (2007) The structure of ultrathin H-passivated [112] silicon nanowires. J Phys Chem C 111(22):7933–7937Google Scholar
  57. 57.
    Woodley SM (2007) Engineering microporous architectures: combining evolutionary algorithms with predefined exclusion zones. Phys Chem Chem Phys 9(9):1070–1077Google Scholar
  58. 58.
    Oganov AR, Chen J, Gatti C, Ma Y, Ma Y, Glass CW, Liu Z, Yu T, Kurakevych OO, Solozhenko VL (2009) Ionic high-pressure form of elemental boron. Nature 457(7231):863–867Google Scholar
  59. 59.
    Taillon JA, Tipton WW, Hennig RG (2012) Ab initio discovery of novel crystal structure stability in barium and sodium-calcium compounds under pressure using DFT. arXiv preprint arXiv:1207.3320Google Scholar
  60. 60.
    Li Q, Ma Y, Oganov AR, Wang H, Wang H, Xu Y, Cui T, Mao HK, Zou G (2009) Superhard monoclinic polymorph of carbon. Phys Rev Lett 102(17):175,506Google Scholar
  61. 61.
    Oganov AR, Lyakhov AO (2010) Towards the theory of hardness of materials. J Superhard Mater 32(3):143–147Google Scholar
  62. 62.
    Bi W, Meng Y, Kumar RS, Cornelius AL, Tipton WW, Hennig RG, Zhang Y, Chen C, Schilling JS (2011) Pressure-induced structural transitions in europium to 92 GPa. Phys Rev B 83(10):104106Google Scholar
  63. 63.
    Ma Y, Oganov AR, Xie Y (2008) High-pressure structures of lithium, potassium, and rubidium predicted by an ab initio evolutionary algorithm. Phys Rev B 78(1):014102Google Scholar
  64. 64.
    Ma Y, Oganov AR, Li Z, Xie Y, Kotakoski J (2009) Novel high pressure structures of polymeric nitrogen. Phys Rev Lett 102(6):065501Google Scholar
  65. 65.
    Ma Y, Eremets M, Oganov AR, Xie Y, Trojan I, Medvedev S, Lyakhov AO, Valle M, Prakapenka V (2009) Transparent dense sodium. Nature 458(7235):182–185Google Scholar
  66. 66.
    Ma Y, Oganov AR, Glass CW (2007) Structure of the metallic ζ-phase of oxygen and isosymmetric nature of the ε-ζ phase transition: ab initio simulations. Phys Rev B 76(6):064101Google Scholar
  67. 67.
    Hooper J, Zurek E (2012) Lithium subhydrides under pressure and their superatom-like building blocks. ChemPlusChem 77(11):969–972Google Scholar
  68. 68.
    Baettig P, Zurek E (2011) Pressure-stabilized sodium polyhydrides: NaHn (n>1). Phys Rev Lett 106(23):237002Google Scholar
  69. 69.
    Hooper J, Zurek E (2012) High pressure potassium polyhydrides: a chemical perspective. J Phys Chem C 116(24):13322–13328Google Scholar
  70. 70.
    Hooper J, Zurek E (2012) Rubidium polyhydrides under pressure: emergence of the linear H3 species. Chemistry 18(16):5013–5021Google Scholar
  71. 71.
    Shamp A, Hooper J, Zurek E (2012) Compressed cesium polyhydrides: Cs+ sublattices and H3 three-connected nets. Inorg Chem 51(17):9333–9342Google Scholar
  72. 72.
    Hooper J, Altintas B, Shamp A, Zurek E (2013) Polyhydrides of the alkaline earth metals: a look at the extremes under pressure. J Phys Chem C 117(6):2982–2992Google Scholar
  73. 73.
    Lonie DC, Hooper J, Altintas B, Zurek E (2013) Metallization of magnesium polyhydrides under pressure. Phys Rev B 87(5):054107Google Scholar
  74. 74.
    Labet V, Hoffmann R, Ashcroft NW (2011) Molecular models for WH6 under pressure. New J Chem 35(10):2349–2355Google Scholar
  75. 75.
    Gao G, Oganov AR, Ma Y, Wang H, Li P, Li Y, Iitaka T, Zou G (2010) Dissociation of methane under high pressure. J Chem Phys 133:144508Google Scholar
  76. 76.
    Martinez-Canales M, Oganov AR, Ma Y, Yan Y, Lyakhov AO, Bergara A (2009) Novel structures and superconductivity of silane under pressure. Phys Rev Lett 102(8):087005Google Scholar
  77. 77.
    Gao G, Oganov AR, Bergara A, Martinez-Canales M, Cui T, Iitaka T, Ma Y, Zou G (2008) Superconducting high pressure phase of germane. Phys Rev Lett 101(10):107002Google Scholar
  78. 78.
    Gao G, Oganov AR, Li P, Li Z, Wang H, Cui T, Ma Y, Bergara A, Lyakhov AO, Iitaka T et al (2010) High-pressure crystal structures and superconductivity of stannane (SnH4). Proc Natl Acad Sci U S A 107(4):1317–1320Google Scholar
  79. 79.
    Zaleski-Ejgierd P, Hoffmann R, Ashcroft N (2011) High pressure stabilization and emergent forms of PbH4. Phys Rev Lett 107(3):037002Google Scholar
  80. 80.
    Wen XD, Hand L, Labet V, Yang T, Hoffmann R, Ashcroft N, Oganov AR, Lyakhov AO (2011) Graphane sheets and crystals under pressure. Proc Natl Acad Sci U S A 108(17):6833–6837Google Scholar
  81. 81.
    Zhou XF, Oganov AR, Dong X, Zhang L, Tian Y, Wang HT (2011) Superconducting highpressure phase of platinum hydride from first principles. Phys Rev B 84(5):054543Google Scholar
  82. 82.
    Bazhanova ZG, Oganov AR, Gianola O (2012) Fe–C and Fe–H systems at pressures of the Earth’s inner core. Phys Uspekhi 55(5):489Google Scholar
  83. 83.
    Hu CH, Oganov AR, Lyakhov AO, Zhou HY, Hafner J (2009) Insulating states of LiBeH3 under extreme compression. Phys Rev B 79(13):134116Google Scholar
  84. 84.
    Prasad DL, Ashcroft N, Hoffmann R (2012) Lithium amide (LiNH2) under pressure. J Phys Chem A 116(40):10027–10036Google Scholar
  85. 85.
    Zhou XF, Dong X, Zhao Z, Oganov AR, Tian Y, Wang HT (2012) High-pressure phases of NaAlH4 from first principles. Appl Phys Lett 100(6):061905–061905Google Scholar
  86. 86.
    Wen XD, Cahill TJ, Gerovac NM, Bucknum MJ, Hoffmann R (2009) Playing the quantum chemical slot machine: an exploration of ABX2 compounds. Inorg Chem 49(1):249–260Google Scholar
  87. 87.
    Zhong Y, Zhou HY, Hu CH, Wang DH, Oganov AR (2012) Theoretical studies of highpressure phases, electronic structure, and vibrational properties of NaNH2. J Phys Chem C 116(15):8387–8393Google Scholar
  88. 88.
    Zhou XF, Oganov AR, Qian GR, Zhu Q (2012) First-principles determination of the structure of magnesium borohydride. Phys Rev Lett 109(24):245503Google Scholar
  89. 89.
    Trimarchi G, Zunger A (2008) Finding the lowest-energy crystal structure starting from randomly selected lattice vectors and atomic positions: first-principles evolutionary study of the Au–Pd, Cd–Pt, Al–Sc, Cu–Pd, Pd–Ti, and Ir–N binary systems. J Phys Condens Matter 20(29):295212Google Scholar
  90. 90.
    Xie Y, Oganov AR, Ma Y (2010) Novel high pressure structures and superconductivity of CaLi2. Phys Rev Lett 104(17):177005Google Scholar
  91. 91.
    Zhu Q, Oganov AR, Lyakhov AO (2012) Evolutionary metadynamics: a novel method to predict crystal structures. CrystEngComm 14(10):3596–3601Google Scholar
  92. 92.
    Ono S, Oganov AR, Brodholt JP, Vočadlo L, Wood IG, Lyakhov A, Glass CW, Côté AS, Price GD (2008) High-pressure phase transformations of FeS: novel phases at conditions of planetary cores. Earth Planet Sci Lett 272(1):481–487Google Scholar
  93. 93.
    Zhang F, Oganov AR (2010) Iron silicides at pressures of the earth’s inner core. Geophys Res Lett 37(2), L02305Google Scholar
  94. 94.
    Zhu Q, Oganov AR, Lyakhov AO (2012) Unexpected stoichiometries in Mg-O system under high pressure. arXiv preprint arXiv:1211.6521Google Scholar
  95. 95.
    Zhang W, Oganov AR, Goncharov AF, Zhu Q, Boulfelfel SE, Lyakhov AO, Somayazulu M, Prakapenka VB (2012) Unexpected stable stoichiometries of sodium chlorides. arXiv preprint arXiv:1211.3644Google Scholar
  96. 96.
    Wu S, Umemoto K, Ji M, Wang CZ, Ho KM, Wentzcovitch RM (2011) Identification of post-pyrite phase transitions in SiO2 by a genetic algorithm. Phys Rev B 83:184102Google Scholar
  97. 97.
    Hermann A, Ashcroft N, Hoffmann R (2012) Making sense of boron-rich binary Be–B phases. Inorg Chem 51(16):9066–9075Google Scholar
  98. 98.
    Xu Y, John ST, Oganov AR, Cui T, Wang H, Ma Y, Zou G (2009) Superconducting high-pressure phase of cesium iodide. Phys Rev B 79(14):144110Google Scholar
  99. 99.
    Hermann A, McSorley A, Ashcroft NW, Hoffmann R (2012) From Wade–Mingos to Zintl–Klemm at 100 GPa: binary compounds of boron and lithium. J Am Chem Soc 134(45):18606–18618Google Scholar
  100. 100.
    Hermann A, Suarez-Alcubilla A, Gurtubay IG, Yang LM, Bergara A, Ashcroft NW, Hoffmann R (2012) LiB and its boron-deficient variants under pressure. Phys Rev B 86(14):144110Google Scholar
  101. 101.
    Ma Y, Wang Y, Oganov AR (2009) Absence of superconductivity in the high-pressure polymorph of MgB2. Phys Rev B 79(5):054101Google Scholar
  102. 102.
    Wang H, Li Q, Li Y, Xu Y, Cui T, Oganov AR, Ma Y (2009) Ultra-incompressible phases of tungsten dinitride predicted from first principles. Phys Rev B 79(13):132109Google Scholar
  103. 103.
    Kurzydłowski D, Zaleski-Ejgierd P, Grochala W, Hoffmann R (2011) Freezing in resonance structures for better packing: XeF2 becomes (XeF+)(F) at large compression. Inorg Chem 50(8):3832–3840Google Scholar
  104. 104.
    Zhu Q, Jung DY, Oganov AR, Glass CW, Gatti C, Lyakhov AO (2012) Stability of xenon oxides at high pressures. Nat Chem 5(1):61–65Google Scholar
  105. 105.
    Wen XD, Cahill TJ, Hoffmann R, Miura A (2009) Tuning of metal–metal bonding by counterion size in hypothetical AeTiO2 compounds. J Am Chem Soc 131(41):14632–14633Google Scholar
  106. 106.
    Shirako Y, Kojitani H, Oganov A, Fujino K, Miura H, Mori D, Inaguma Y, Yamaura K, Akaogi M (2012) Crystal structure of CaRhO3 polymorph: high-pressure intermediate phase between perovskite and post-perovskite. Am Mineral 97(1):159–163Google Scholar
  107. 107.
    Li Q, Wang M, Oganov AR, Cui T, Ma Y, Zou G (2009) Rhombohedral superhard structure of BC2N. J Appl Phys 105(5):053514–053514Google Scholar
  108. 108.
    Hermann A, Ivanov B, Ashcroft NW, Hoffmann R (2012) LiBeB: a predicted phase with structural and electronic peculiarities. Phys Rev B 86(1):014104Google Scholar
  109. 109.
    Bi W, Souza-Neto NM, Haskel D, Fabbris G, Alp EE, Zhao J, Hennig RG, Abd- Elmeguid MM, Meng Y, McCallum RW, Dennis K, Schilling JS (2012) Synchrotron X-ray spectroscopy studies of valence and magnetic state in europium metal to extreme pressures. Phys Rev B 85:205134Google Scholar
  110. 110.
    Ashcroft NW (1968) Metallic hydrogen: a high-temperature superconductor? Phys Rev Lett 21:1748–1749Google Scholar
  111. 111.
    Feng J, Grochala W, Jaro´n T, Hoffmann R, Bergara A, Ashcroft N (2006) Structures and potential superconductivity in SiH4 at high pressure: en route to metallic hydrogen. Phys Rev Lett 96(1):017006Google Scholar
  112. 112.
    dAvezac M, Zunger A (2008) Identifying the minimum-energy atomic configuration on a lattice: Lamarckian twist on Darwinian evolution. Phys Rev B 78(6):064102Google Scholar
  113. 113.
    Agrawal J (1998) Recent trends in high-energy materials. Prog Energ Combust 24(1):1–30Google Scholar
  114. 114.
    Baburin I, Leoni S, Seifert G (2008) Enumeration of not-yet-synthesized zeolitic zinc imidazolate MOF networks: a topological and DFT approach. J Phys Chem B 112(31):9437–9443Google Scholar
  115. 115.
    Price SL (2004) The computational prediction of pharmaceutical crystal structures and polymorphism. Adv Drug Deliv Rev 56(3):301–319Google Scholar
  116. 116.
    Hermann A, Ashcroft NW, Hoffmann R (2012) High pressure ices. Proc Natl Acad Sci U S A 109(3):745–750Google Scholar
  117. 117.
    Johannesson GH, Bligaard T, Ruban AV, Skriver HL, Jacobsen KW, Nørskov JK (2002) Combined electronic structure and evolutionary search approach to materials design. Phys Rev Lett 88(25):255506Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Benjamin C. Revard
    • 1
  • William W. Tipton
    • 1
  • Richard G. Hennig
    • 1
  1. 1.Department of Materials Science and EngineeringCornell UniversityIthacaUSA

Personalised recommendations