Advertisement

A Theoretical and Experimental Chemist’s Joint View on Hydrogen Bonding in Ionic Liquids and Their Binary Mixtures

  • Annegret Stark
  • Martin Brehm
  • Marc Brüssel
  • Sebastian B. C. Lehmann
  • Alfonso S. Pensado
  • Matthias Schöppke
  • Barbara Kirchner
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 351)

Abstract

A combined experimental and theoretical approach including quantum chemistry tools and computational simulation techniques can provide a holistic description of the nature of the interactions present in ionic liquid media. The nature of hydrogen bonding in ionic liquids is an especially intriguing aspect, and it is affected by all types of interactions occurring in this media. Overall, these interactions represent a delicate balance of forces that influence the structure and dynamics, and hence the properties of ionic liquids. An understanding of the fundamental principles can be achieved only by a combination of computations and experimental work. In this contribution we show recent results shedding light on the nature of hydrogen bonding, for certain cases the formation of a three-dimensional network of hydrogen bonding, and its dynamics by comparing 1-ethyl-3-methylimidazolium based acetate, chloride and thiocyanate ionic liquids.

A particularly interesting case to study hydrogen bonding and other interactions is the investigation of binary mixtures of ionic liquids of the type [cation1][anion1]/[cation1][anion2]. In these mixtures, competing interactions are to be expected. We present both a thorough property meta-analysis of the literature and new data covering a wide range of anions, i.e., mixtures of 1-ethyl-3-methylimidazolium acetate with either trifluoroacetate, tetrafluoroborate, methanesulfonate, or bis(trifluoromethanesulfonyl)imide. In most cases, ideal mixing behavior is found, a surprising result considering the multitude of interactions present. However, ideal mixing behavior allows for the prediction of properties such as density, refractive index, surface tension, and, in most cases, viscosity as function of molar composition. Furthermore, we show that the prediction of properties such as the density of binary ionic liquid mixtures is possible by making use of group contribution methods which were originally developed for less complex non-ionic molecules. Notwithstanding this ideal mixing behavior, several exciting applications are discussed where preferential solvation via hydrogen bonding gives rise to non-additive effects leading to performance improvements. The assessment of the excess properties and 1H NMR spectroscopic studies provide information on these structural changes and preferential interactions occurring in binary mixtures of ionic liquid, that clearly support the conclusions drawn from the computational studies.

Keywords

Ab initio methods Binary ionic liquid mixtures Hydrogen bonding Meta-analysis and physicochemical properties Molecular simulation Structure-affecting interactions 

Abbreviations

[Cnmim]+

1-Alkyl-3-methylimidazolium cation

[Cnmpy]+

N-Alkyl-3-methylpyridinium cation

[Cnmpyr]+

N-Alkyl-N-methylpyrrolidinium cation

[EtNH3]+

Ethylammonium cation

[NTf2]

Bis(trifluoromethanesulfonyl)imide anion

[OAc]

Acetate anion

[SCN]

Thiocyanate anion

AIMD

Ab initio molecular dynamics

CDF

Combined distribution function

DFT

Density functional theory

IR

Infra red

MD

Molecular dynamics

MP2

Møller–Plesset perturbation theory

NMR

Nuclear magnetic resonance

u

Uncertainty

Notes

Acknowledgments

This work was supported by the DFG, in particular by the projects KI-768/4-1 and KI-768/4-2 from the ERA-chemistry, KI-768/5-2, KI-768/5-3, STA-1027/2-1, STA-1027/2-2, and STA-1027/2-3 from the priority program on ionic liquids (SPP 1191). The participation of ASP was made possible by a postdoctoral fellowship granted by the DFG through SPP 1191. Computer time from the RZ Leipzig is gratefully acknowledged. Likewise, we would like to thank M. Ramzan, M. Reichelt, H. Rudzik, A. Foerster, C. Birkemeyer, and L. Hennig for experimental support. Figures 3, 4, 5 and 6 were visualised using TRAVIS [131].

References

  1. 1.
    Plechkova NV, Seddon KR (2008) Chem Soc Rev 37:123Google Scholar
  2. 2.
    Howlett PC, MacFarlane DR, Hollenkamp AF (2004) Electrochem Solid State Lett 7Google Scholar
  3. 3.
    Markevich E, Baranchugov V, Aurbach D (2006) Electrochem Commun 8:1331Google Scholar
  4. 4.
    Shin JH, Henderson WA, Scaccia S, Prosini PP, Passerini S (2006) J Power Sources 156:560Google Scholar
  5. 5.
    Dai Q, Menzies DB, MacFarlane DR, Batten SR, Forsyth S, Spiccia L, Cheng YB, Forsyth M (2006) C R Chim 9:617Google Scholar
  6. 6.
    Kuang D, Wang P, Ito S, Zakeeruddin SM, Grätzel M (2006) J Am Chem Soc 128:7732Google Scholar
  7. 7.
    Oda T, Tanaka S, Hayase S (2006) Solar Energy Mater Solar Cells 90:2696Google Scholar
  8. 8.
    Wei D (2010) Int J Mol Sci 11:1103Google Scholar
  9. 9.
    Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Nat Mat 8:621Google Scholar
  10. 10.
    Zhang Y, Feng H, Wu X, Wang L, Zhang A, Xia T, Dong H, Li X, Zhang L (2009) Int J Hydrogen Energy 34:4889Google Scholar
  11. 11.
    Jiménez AE, Bermúdez MD (2010) Tribol Lett 37:431Google Scholar
  12. 12.
    Palacio M, Bhushan B (2010) Tribol Lett 40:247Google Scholar
  13. 13.
    Zhou F, Liang Y, Liu W (2009) Chem Soc Rev 38:2590Google Scholar
  14. 14.
    Campbell PS, Podgorsek A, Gutel T, Santini CC, Padua AAH, Costa Gomes MF, Bayard F, Fenet B, Chauvin Y (2010) J Phys Chem B 114:8156Google Scholar
  15. 15.
    Campbell PS, Santini CC, Chauvin Y (2010) Chim Oggi Chem Today 28:36Google Scholar
  16. 16.
    Olivier-Bourbigou H, Magna L, Morvan D (2010) Appl Catal A Gen 373:1Google Scholar
  17. 17.
    Podgorsek A, Salas G, Campbell PS, Santini CC, Padua AAH, Costa Gomes MF, Fenet B, Chauvin Y (2011) J Phys Chem B 115:12150Google Scholar
  18. 18.
    Dupont J, Scholten JD (2010) Chem Soc Rev 39:1780Google Scholar
  19. 19.
    Greaves TL, Drummond CJ (2008) Chem Soc Rev 37:1709Google Scholar
  20. 20.
    Ohno H, Fukaya Y (2009) Chem Lett 38:2Google Scholar
  21. 21.
    Bernard UL, Izgorodina EI, MacFarlane DR (2010) J Phys Chem C 114:20472Google Scholar
  22. 22.
    Grimme S, Hujo W, Kirchner B (2011) Phys Chem Chem Phys 14:4875Google Scholar
  23. 23.
    Hunt PA, Gould IR, Kirchner B (2007) Aust J Chem 60:9Google Scholar
  24. 24.
    Izgorodina EI (2011) Phys Chem Chem Phys 13:4189Google Scholar
  25. 25.
    Izgorodina EI, MacFarlane DR (2011) J Phys Chem B 115:14659Google Scholar
  26. 26.
    Li H, Ibrahim M, Agberemi I, Kobrak MN (2008) J Chem Phys 129:124507Google Scholar
  27. 27.
    Tsuzuki S, Tokuda H, Hayamizu K, Watanabe M (2005) J Phys Chem B 109:16474Google Scholar
  28. 28.
    Tsuzuki S, Tokuda H, Mikami M (2007) Phys Chem Chem Phys 9:4780Google Scholar
  29. 29.
    Zahn S, Bruns G, Thar J, Kirchner B (2008) Phys Chem Chem Phys 10:6921Google Scholar
  30. 30.
    Zahn S, Uhlig F, Thar J, Spickermann C, Kirchner B (2008) Angew Chem Int Ed 47:3639Google Scholar
  31. 31.
    Lehmann SBC, Roatsch M, Schöppke M, Kirchner B (2010) Phys Chem Chem Phys 12:7473Google Scholar
  32. 32.
    Thar J, Brehm M, Seitsonen AP, Kirchner B (2009) J Phys Chem B 113:15129Google Scholar
  33. 33.
    Wendler K, Thar J, Zahn S, Kirchner B (2010) J Phys Chem A 114:9529Google Scholar
  34. 34.
    Goswami M, Arunan E (2009) Phys Chem Chem Phys 11:8974Google Scholar
  35. 35.
    Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Pure Appl Chem 83:1637Google Scholar
  36. 36.
    Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Pure Appl Chem 83:1619Google Scholar
  37. 37.
    Pimentel GC, McCleallan AL (1960) The hydrogen bond. W. H. Freeman and Co., San FranciscoGoogle Scholar
  38. 38.
    Qiao B, Krekeler C, Berger R, Delle Site L, Holm C (2008) J Phys Chem B 112:1743Google Scholar
  39. 39.
    Skarmoutsos I, Dellis D, Matthews RP, Welton T, Hunt PA (2012) J Phys Chem B 116:4921Google Scholar
  40. 40.
    Brehm M, Weber H, Pensado AS, Stark A, Kirchner B (2012) Phys Chem Chem Phys 14:5030Google Scholar
  41. 41.
    Spickermann C, Thar J, Lehmann SBC, Zahn S, Hunger J, Buchner R, Hunt PA, Welton T, Kirchner B (2008) J Chem Phys 129Google Scholar
  42. 42.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, OxfordGoogle Scholar
  43. 43.
    Abdul Sada AK, Greenway AM, Hitchcock PB, Mohammed TJ, Seddon KR, Zora JA (1986) J Chem Soc Chem Commun 1986:1753Google Scholar
  44. 44.
    Bowron DT, D'Agostino C, Gladden LF, Hardacre C, Holbrey JD, Lagunas MC, McGregor J, Mantle MD, Mullan CL, Youngs TGA (2010) J Phys Chem B 114:7760Google Scholar
  45. 45.
    Dhumal NR, Kim HJ, Kiefer J (2009) J Phys Chem A 113:10397Google Scholar
  46. 46.
    Fumino K, Peppel T, Geppert-Rybczynska M, Zaitsau DH, Lehmann JK, Verevkin SP, Koeckerling M, Ludwig R (2011) Phys Chem Chem Phys 13:14064Google Scholar
  47. 47.
    Fumino K, Wulf A, Ludwig R (2008) Angew Chem Int Ed 47:8731Google Scholar
  48. 48.
    Fumino K, Wulf A, Ludwig R (2009) Phys Chem Chem Phys 11:8790Google Scholar
  49. 49.
    Gao Y, Zhang L, Wang Y, Li H (2010) J Phys Chem B 114:2828Google Scholar
  50. 50.
    Kempter V, Kirchner B (2010) J Mol Struct 972:22Google Scholar
  51. 51.
    Kiefer J, Obert K, Boesmann A, Seeger T, Wasserscheid P, Leipertz A (2008) ChemPhysChem 9:1317Google Scholar
  52. 52.
    Kiefer J, Obert K, Himmler S, Schulz PS, Wasserscheid P, Leipertz A (2008) ChemPhysChem 9:2207Google Scholar
  53. 53.
    Noack K, Schulz PS, Paape N, Kiefer J, Wasserscheid P, Leipertz A (2010) Phys Chem Chem Phys 12:14153Google Scholar
  54. 54.
    Papanyan Z, Roth C, Paschek D, Ludwig R (2011) ChemPhysChem 12:2400Google Scholar
  55. 55.
    Peppel T, Roth C, Fumino K, Paschek D, Koeckerling M, Ludwig R (2011) Angew Chem Int Ed 50:6661Google Scholar
  56. 56.
    Roth C, Peppel T, Fumino K, Koeckerling M, Ludwig R (2010) Angew Chem Int Ed 49:10221Google Scholar
  57. 57.
    Stoimenovski J, Izgorodina EI, Macfarlane DR (2010) Phys Chem Chem Phys 12:10341Google Scholar
  58. 58.
    Wulf A, Fumino K, Ludwig R (2010) Angew Chem Int Ed 49:449Google Scholar
  59. 59.
    Wulf A, Fumino K, Michalik D, Ludwig R (2007) ChemPhysChem 8:2265Google Scholar
  60. 60.
    Xing DY, Peng N, Chung T (2011) J Memb Sci 380:87Google Scholar
  61. 61.
    Youngs TGA, Holbrey JD, Mullan CL, Norman SE, Lagunas MC, D'Agostino C, Mantle MD, Gladden LF, Bowron DT, Hardacre C (2011) Chem Sci 2:1594Google Scholar
  62. 62.
    Liu X, Zhao Y, Zhang X, Zhou G, Zhang S (2012) J Phys Chem B 116:4934Google Scholar
  63. 63.
    Mendez-Morales T, Carrete J, Cabeza O, Gallego LJ, Varela LM (2011) J Phys Chem B 115:11170Google Scholar
  64. 64.
    Podgorsek A, Macchiagodena M, Ramondo F, Gomes MFC, Padua AAH (2012) ChemPhysChem 13:1753Google Scholar
  65. 65.
    Rabideau BD, Ismail AE (2012) J Phys Chem B 116:9732Google Scholar
  66. 66.
    Mele A, Tran CD, De Paoli Lacerda SH (2003) Angew Chem Int Ed 42:4364Google Scholar
  67. 67.
    Dupont J (2004) J Braz Chem Soc 15:341Google Scholar
  68. 68.
    Suarez PAZ, Einloft S, Dullius JEL, de Souza RF, Dupont J (1998) J Chem Phys Phys Chim Biol 95:1626Google Scholar
  69. 69.
    Antonietti M, Kuang D, Smarsly B, Zhou Y (2004) Angew Chem Int Ed 43:4988Google Scholar
  70. 70.
    Bonhôte P, Dias A-P, Papageorgiou N, Kalyanasundaram K, Grätzel M (1996) Inorg Chem 35:1168Google Scholar
  71. 71.
    Hunt PA (2007) J Phys Chem B 111:4844Google Scholar
  72. 72.
    Endo T, Kato T, Nishikawa K (2010) J Phys Chem B 114:9201Google Scholar
  73. 73.
    Bhargava BL, Balasubramanian S (2005) J Chem Phys 123:144505Google Scholar
  74. 74.
    Bhargava BL, Balasubramanian S, Klein ML (2008) Chem Comm 3339Google Scholar
  75. 75.
    Krekeler C, Schmidt J, Zhao YY, Qiao B, Berger R, Holm C, Delle Site L (2008) J Chem Phys 129:174503Google Scholar
  76. 76.
    Schmidt J, Krekeler C, Dommert F, Zhao YY, Berger R, Delle Site L, Holm C (2010) J Phys Chem C 114:6150Google Scholar
  77. 77.
    Hunt PA, Kirchner B, Welton T (2006) Chem Eur J 12:6762Google Scholar
  78. 78.
    Tsuzuki S, Tokuda H, Hayamizu K, Watanabe M (2005) J Phys Chem B 109:16474Google Scholar
  79. 79.
    Hunt PA, Gould IR (2006) J Phys Chem A 110:2269Google Scholar
  80. 80.
    Brehm M, Weber H, Pensado AS, Stark A, Kirchner B (2013) Z Phys Chem 227:177Google Scholar
  81. 81.
    Becke A (1988) Phys Rev A 38:3098Google Scholar
  82. 82.
    Lee C, Yang W, Parr R (1988) Phys Rev B 37:785Google Scholar
  83. 83.
    Grimme S (2006) J Comput Chem 27:1787Google Scholar
  84. 84.
    Brüssel M, Brehm M, Pensado AS, Malberg F, Ramzan M, Stark A, Kirchner B (2012) Phys Chem Chem Phys 14:13204Google Scholar
  85. 85.
    Brüssel M, Brehm M, Voigt T, Kirchner B (2011) Phys Chem Chem Phys 13:13617Google Scholar
  86. 86.
    Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) J Am Chem Soc 124:4974Google Scholar
  87. 87.
    Sellin M, Ondruschka B, Stark A (2010) In: Liebert TF and Edgar KJ (eds) Cellulose solvents: for analysis, shaping and chemical modification, vol 1033. American Chemical Society, Washington, DCGoogle Scholar
  88. 88.
    Stark A, Sellin M, Ondruschka B, Massonne K (2012) Sci China Chem 55:1663Google Scholar
  89. 89.
    Pensado AS, Brehm M, Thar J, Seitsonen AP, Kirchner B (2012) ChemPhysChem 13:1845Google Scholar
  90. 90.
    Gilli P, Bertolasi V, Ferretti V, Gilli G (1994) J Am Chem Soc 116:909Google Scholar
  91. 91.
    Gilli P, Bertolasi V, Pretto L, Ferretti V, Gilli G (2004) J Am Chem Soc 126:3845Google Scholar
  92. 92.
    Gilli P, Pretto L, Gilli G (2007) J Mol Struct 844:328Google Scholar
  93. 93.
    Seddon KR (1999) In: Boghosian S, Dracopoulos V, Kontoyannis CG, Voyiatzis GA (eds) The international George Papatheodorou symposium, Patras, p 131Google Scholar
  94. 94.
    Niedermeyer H, Hallett JP, Villar-Garcia IJ, Hunt PA, Welton T (2012) Chem Soc Rev 41:7780Google Scholar
  95. 95.
    Castiglione F, Raos G, Battista Appetecchi G, Montanino S, Passerini S, Moreno M, Famulari A, Mele A (2010) Phys Chem Chem Phys 12:1784Google Scholar
  96. 96.
    Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) J Am Chem Soc 124:4974Google Scholar
  97. 97.
    Vagt U (2010) In: Wasserscheid P, Stark A, Anastas PT (eds) Handbook of green chemistry, vol 6. Wiley-VCH, Weinheim, p 123Google Scholar
  98. 98.
    Ebner G, Schihser S, Potthast A, Rosenau T (2008) Tetrahedron Lett 49:7322Google Scholar
  99. 99.
    Heinze T, Dorn S, Schoebitz M, Liebert T, Koehler S, Meister F (2008) Macromol Symp 262:8Google Scholar
  100. 100.
    Liebert T (2008) Macromol Symp 262:28Google Scholar
  101. 101.
    Bini R, Chiappe C, Marmugi E, Pieraccini D (2006) Chem Commun 897Google Scholar
  102. 102.
    Garcia S, Larriba M, Garcia J, Torrecilla JS, Rodriguez F (2012) Chem Eng J 180:210Google Scholar
  103. 103.
    Finotello A, Bara JE, Narayan S, Camper D, Noble RD (2008) J Phys Chem B 112:2335Google Scholar
  104. 104.
    Lungwitz R, Friedrich M, Linert W, Spange S (2008) New J Chem 32:1493Google Scholar
  105. 105.
    Lungwitz R, Spange S (2008) New J Chem 32:392Google Scholar
  106. 106.
    Canongia Lopes JN, Cordeiro TC, Esperanca JMSS, Guedes HJR, Huq S, Rebelo LPN, Seddon KR (2005) J Phys Chem B 109:3519Google Scholar
  107. 107.
    Navia P, Troncoso J, Romani L (2007) J Chem Eng Data 52:1369Google Scholar
  108. 108.
    Shiflett MB, Yokozeki A (2009) J Chem Eng Data 54:108Google Scholar
  109. 109.
    Stoppa A, Buchner R, Hefter G (2010) J Mol Liq 153:46Google Scholar
  110. 110.
    Ning H, Hou MQ, Mei QQ, Liu YH, Yang DZ, Han BX (2012) Sci China Chem 55:1509Google Scholar
  111. 111.
    Aparicio S, Atilhan M (2012) J Phys Chem B 116:2526Google Scholar
  112. 112.
    Larriba M, Garcia S, Navarro P, Garcia J, Rodriguez F (2012) J Chem Eng Data 57:1318Google Scholar
  113. 113.
    Fox ET, Weaver JEF, Henderson WA (2012) Phys Chem Chem Phys 116:5270Google Scholar
  114. 114.
    Tariq M, Freire MG, Saramago B, Coutinho JAP, Canongia Lopes JN, Rebelo LPN (2012) Chem Soc Rev 41:829Google Scholar
  115. 115.
    Stark A, Wild M, Ramzan M, Azim MM, Schmidt A (2013) In: Bröckel U, Wagner G, Meier W (eds) Product design and engineering, volume III: liquid, paste and gel formulations. Wiley-VCH, WeinheimGoogle Scholar
  116. 116.
    Navia P, Troncoso J, Romani L (2008) J Solut Chem 37:677Google Scholar
  117. 117.
    Annat G, Forsyth M, MacFarlane DR (2012) J Phys Chem C 116:8251Google Scholar
  118. 118.
    Shimizu K, Tariq M, Rebelo LPN, Canongia Lopes JN (2010) J Mol Liq 153:52Google Scholar
  119. 119.
    Deetlefs M, Seddon KR, Shara M (2006) Phys Chem Chem Phys 8:642Google Scholar
  120. 120.
    Macleod DB (1923) Trans Faraday Soc 38Google Scholar
  121. 121.
    Sudgen S (1924) J Chem Soc Trans 125:32Google Scholar
  122. 122.
    Knotts TA, Wilding WW, Oscarson JL, Rowley RL (2001) J Chem Eng Data 46:1007Google Scholar
  123. 123.
    Wildman SA, Crippen GM (1999) J Chem Inf Comput Sci 39:868Google Scholar
  124. 124.
    Gardas RL, Coutinho JAP (2012) Fluid Phase Equilib 263:26Google Scholar
  125. 125.
    Almeida HFD, Teles ARR, Lopes-da-Silva JA, Freire MG, Coutinho JAP (2012) J Chem Thermodyn 46:1007Google Scholar
  126. 126.
    Kilaru P, Baker GA, Scovazzo P (2007) J Chem Eng Data 52:2306Google Scholar
  127. 127.
    Every H, Bishop AG, Forsyth M, MacFarlane DR (2000) Electrochim Acta 45:127Google Scholar
  128. 128.
    Seddon KR, Stark A, Torres MJ (2000) Pure Appl Chem 72:2275Google Scholar
  129. 129.
    Arce A, Earle MJ, Katdare SP, Rodriguez H, Seddon KR (2007) Fluid Phase Equilib 261:427Google Scholar
  130. 130.
    Arce A, Earle MJ, Katdare SP, Rodriguez H, Seddon KR (2006) Chem Commun 2548Google Scholar
  131. 131.
    Brehm M, Kirchner B (2011) J Chem Inf Model 51:2007Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Annegret Stark
    • 1
  • Martin Brehm
    • 2
  • Marc Brüssel
    • 2
  • Sebastian B. C. Lehmann
    • 2
  • Alfonso S. Pensado
    • 2
    • 3
  • Matthias Schöppke
    • 2
  • Barbara Kirchner
    • 3
  1. 1.Institute for Chemical TechnologyUniversität LeipzigLeipzigGermany
  2. 2.Wilhelm-Ostwald-Institute for Physical and Theoretical ChemistryUniversität LeipzigLeipzigGermany
  3. 3.Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical ChemistryUniversität BonnBonnGermany

Personalised recommendations