Advertisement

Monte Carlo Studies of Electronic Processes in Dye-Sensitized Solar Cells

  • Alison B. Walker
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 352)

Abstract

This topic reviews random walk Monte Carlo simulation models of charge transport in DSSC. The main electron transport approaches used are covered. Monte Carlo methods and results are explained, addressing the continuous time random walk model developed for transport in disordered materials in the context of the large number of trap states present in the electron transporting material. Multiple timescale MC models developed to look at the morphology dependence of electron transport are described. The concluding section looks at future applications of these methods and the related MC models for polymer blend cells.

Keywords

Charge transport Dye-sensitized Excitonic Monte Carlo Simulation Solar power Transport 

Notes

Acknowledgments

The research leading to these results has received funding from the European Union Seventh Framework Programme [FP7/2007–2013] under grant agreement 316494 and from the UK Engineering and Physical Sciences Research Council Supergen Excitonic Solar Cell Consortium and Supergen Supersolar Hub.

References

  1. 1.
    O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740CrossRefGoogle Scholar
  2. 2.
    Peter LM (2007) Characterization and modeling of dye-sensitized solar cells. J Phys Chem C 111:6601–6612CrossRefGoogle Scholar
  3. 3.
    Hardin B, Snaith HJ, McGehee MD (2012) The renaissance of dye-sensitized solar cells. Nat Photon 6:162–169CrossRefGoogle Scholar
  4. 4.
    Lee MM, Teuscher J, Miyasaka TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338:643–647CrossRefGoogle Scholar
  5. 5.
    Ball JM, Lee MM, Hey A, Snaith HJ (2013) Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ Sci 6:1739–1743CrossRefGoogle Scholar
  6. 6.
    Heo HH, Im SH, Noh JH, Mandal TN, Lim C-S, Chang JA, Lee YH, Sarkar A, Nazeeruddin MK, Grätzel M, Seok SI (2013) Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat Photon doi: 10.1038/nphoton.2013.80
  7. 7.
    Groves C, Greenham NC (2013) Monte Carlo simulations of organic photovoltaics. Top Curr Chem. doi: 10.1007/128_2013_467
  8. 8.
    Gregg BA (2013) Excitonic solar cells. J Phys Chem B 107:4688–4698Google Scholar
  9. 9.
    Peter LM (2011) The Grätzel cell: where next? J Phys Chem Lett 2:1861–1867Google Scholar
  10. 10.
    Tétreault N, Grätzel M (2012) Novel nanostructures for next generation dye-sensitized solar cells. Energy Environ Sci 5:8506–8516CrossRefGoogle Scholar
  11. 11.
    Dunn HK, Peter LM, Bingham SJ, Maluta E, Walker AB (2012) In situ detection of free and trapped electrons in dye-sensitized solar cells by photo-induced microwave reflectance measurements. J Phys Chem C 116:22063–22072CrossRefGoogle Scholar
  12. 12.
    Grätzel M (2005) Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem 44:6841–6851CrossRefGoogle Scholar
  13. 13.
    Nelson J (1999) Continuous time random walk model of electron transport in nanocrystalline TiO2 electrodes. Phys Rev B 59:15374CrossRefGoogle Scholar
  14. 14.
    Van de Laagemaat J, Frank AJ (2001) Nonthermalized electron transport in dye sensitized nanocrystalline TiO2 films. J Phys Chem C 105:11194–20005CrossRefGoogle Scholar
  15. 15.
    Fabregat-Santiago F, Mora-Sero I, Garcia-Belmonte G, Bisquert J (2003) Cyclic voltammetry studies of nanoporous semiconductors. Capacitive and reactive properties of nanocrystalline TiO2 electrodes in aqueous electrolyte. J Phys Chem B 107:758–768Google Scholar
  16. 16.
    Jennings JR, Ghicov A, Peter LM, Schmuki P, Walker AB (2008) J Am Chem Soc 130:13364CrossRefGoogle Scholar
  17. 17.
    Kopidakis N, Neale NR, Zhu K, van de Lagemaat J, Frank AJ (2005) Spatial location of transport-limiting traps in TiO2 nanoparticle films in dye-sensitized solar cells. Appl Phys Lett 87:202106CrossRefGoogle Scholar
  18. 18.
    Bisquert J, Vikhrenko VS (2004) Interpretation of the time constants measured by kinetic techniques in nanostructured semiconductor electrodes and dye-sensitized solar cells. J Phys Chem B 108:2313–2322Google Scholar
  19. 19.
    Bisquert J, Marcus RA (2013) Device modeling of dye-sensitized solar cells. Top Curr Chem. doi: 10.1007/128_2013_471
  20. 20.
    Mosconi E, Yum J-H, Kessler F, Gómez Garcia J, Zuccaccia C, Conti A, Nazeeruddin MK, Grätzel M, De Angelis F (2012) J Am Chem Soc 134:19438–19453CrossRefGoogle Scholar
  21. 21.
    Gagliardi A, Mastroianni S, Gentilini D, Giordano F, Reale A, Brown TM, Di Carlo AD (2010) Multiscale modelling of dye solar cells and comparison with experimental data. IEEE J Sel Top Quantum Electron 16:1611–1618CrossRefGoogle Scholar
  22. 22.
    Barnes P, Anderson AY, Durrant JR, O’Regan BC (2011) Simulation and measurement of complete dye sensitized solar cells. Phys Chem Chem Phys 13:5798–5816CrossRefGoogle Scholar
  23. 23.
    Hockney RW, Eastwood JW (1988) Computer simulation using particles. Adam Hilger, LondonCrossRefGoogle Scholar
  24. 24.
    Pastore M, De Angelis F (2013) Modeling materials and processes in dye-sensitized solar cells: understanding the mechanism, improving the efficiency. Top Curr Chem. doi: 10.1007/128_2013_468
  25. 25.
    Anta JA, Guillén E, Tena-Zaera R (2012) ZnO-based dye-sensitized solar cells. J Phys Chem C 116:11413–11425CrossRefGoogle Scholar
  26. 26.
    Stockwell D, Yang Y, Huang J, Anfuso C, Huang Z, Lian T (2010) Comparison of electron-transfer dynamics from coumarin 343 to TiO2, SnO2, and ZnO nanocrystalline thin films. J Phys Chem C 114:6560–6566CrossRefGoogle Scholar
  27. 27.
    Nemec H, Rochford J, Taratula O, Galoppini E, Kuzel P, Polívka T, Yartsev A, Sundstrom V (2010) Impact of electron–cation interaction on electron mobility in dye-sensitized ZnO and TiO2 nanocrystals. Phys Rev Lett 104:197401CrossRefGoogle Scholar
  28. 28.
    Sadoughi G, Sivaram V, Gunning R, Docampo P, Bruder I, Pschirer N, Irajizad A, Snaith HJ (2013) Enhanced electronic contacts in SnO2–dye–P3HT based solid state dye sensitized solar cells. Phys Chem Chem Phys 13:2075–2080CrossRefGoogle Scholar
  29. 29.
    Scher H, Shlesinger MF, Bendler JT (1991) Time-scale invariance in transport and relaxation. Phys Today 1991:26–34CrossRefGoogle Scholar
  30. 30.
    Anta JA (2009) Random walk numerical simulation for solar cell applications. Energy Environ Sci 2:387–392CrossRefGoogle Scholar
  31. 31.
    Nelson J, Haque SA, Klug DR, Durrant JR (2001) Trap-limited recombination in dye-sensitized nanocrystalline metal oxide electrodes. Phys Rev B 63:205321CrossRefGoogle Scholar
  32. 32.
    Barzykin AV, Tachiya M (2002) Mechanism of charge recombination in dye-sensitized nanocrystalline semiconductors. J Phys Chem B 106:4356–4363Google Scholar
  33. 33.
    Haque SA, Tachibana Y, Willis RL, Moser JE, Grätzel M, Klug DR, Durrant JR (2000) Parameters influencing charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films. J Phys Chem B 104:538–547Google Scholar
  34. 34.
    Jennings JR, Li F, Wang Q (2010) Reliable determination of electron diffusion length and charge separation efficiency in dye-sensitized solar cells. J Phys Chem C 114:14665–14674CrossRefGoogle Scholar
  35. 35.
    Ansari-Rad M, Abdi Y, Arzi E (2012) Simulation of non-linear recombination of charge carriers in sensitized nanocrystalline solar cells. J Appl Phys 112:074319CrossRefGoogle Scholar
  36. 36.
    Petrozza A, Groves C, Snaith HJ (2008) Electron transport and recombination in dye-sensitized mesoporous TiO2 probed by photo induced charge-conductivity modulation spectroscopy with Monte Carlo modeling. J Am Chem Soc 130:12912–12920CrossRefGoogle Scholar
  37. 37.
    Anta JA, Morales-Florez V (2008) Combined effect of energetic and spatial disorder on the trap-limited electron diffusion coefficient of metal-oxide nanostructures. J Phys Chem C 112:10287–10293CrossRefGoogle Scholar
  38. 38.
    Gonzalez-Vazquez JP, Morales-Flórez V, Anta JA (2012) How important is working with an ordered electrode to improve the charge collection efficiency in nanostructured solar cells? J Phys Chem Lett 3:386–393Google Scholar
  39. 39.
    Bisquert J (2004) Chemical diffusion coefficient of electrons in nanostructured semiconductor electrodes and dye-sensitized solar cells. J Phys Chem B 108:2323–2332Google Scholar
  40. 40.
    Cass MJ, Qiu FL, Walker AB, Fisher AC, Peter LM (2003) Influence of grain morphology on electron transport in dye sensitized nanocrystalline solar cells. J Phys Chem B 107:113–119Google Scholar
  41. 41.
    Cass MJ, Walker AB, Martínez D, Peter LM (2005) Grain morphology and trapping effects on electron transport in dye sensitized nanocrystalline solar cells. J Phys Chem B 109:5100–5107Google Scholar
  42. 42.
    Walker AB, Peter LM, Cass MJ, Cameron PJ, Martínez D (2005) Grain morphology and trapping effects on electron transport in dye sensitized nanocrystalline solar cells. J Mater Chem 15:1–5Google Scholar
  43. 43.
    Park NG, van de Lagemaat J, Frank AJ (2000) Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells. J Phys Chem B 104:8989–8994Google Scholar
  44. 44.
    Benkstein KD, Kopidakis N, van de Lagemaat J, Frank AJ (2003) Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells. J Phys Chem B 107:7759–7767Google Scholar
  45. 45.
    Abate A, Staff DR, Hollman DJ, Snaith HJ, Walker AB (2013) Influence of ionizing dopants on charge transport in organic semiconductors Phys Chem Chem Phys submittedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of BathBathUK

Personalised recommendations