Chiroptical Detectors for the Study of Unusual Phenomena in Chiral Chromatography

Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 340)


Differentiation of enantiomers in chromatography requires specific detectors, based on polarimetry or circular dichroism. Their use is limited to chiral HPLC and SFC. We explain the operating principles of the different chiroptical detectors available and stress the influence of working wavelength and mobile phase on the output signal. Current and relevant applications of chiroptical detectors are absolute configuration assignment, measurement of enantiomeric excesses in complex mixtures and determination of elution order. We focus on the reversals of enantiomeric elution order, an important subject for the understanding of the chiral recognition mechanisms. We review the main parameters which can induce a reversal, show the usefulness of chiroptical detectors to easily identify reversals and emphasize the significance of the isoenantioselective temperature. The aim of this chapter is to highlight the valuable information provided by chiroptical detectors to study unusual behaviour in chiral HPLC and SFC, reversals of enantiomeric elution order and exchange phenomena as dynamic chromatography and self-disproportionation on achiral columns.


Absolute configuration assignment Dynamic chromatography Electronic circular dichroism Isoenantioselective temperature Polarimetry Reversal of enantiomeric elution order Self-disproportionation 







Acetic acid


Electronic circular dichroism


Cahn–Ingold–Prelog priority rule


Chiral stationary phase




Enantiomeric excess


Formic acid


High performance liquid chromatography


Retention factor




Light-emitting diode




Medium pressure liquid chromatography


Not determined




Optical rotatory dispersion


Refractive index


Supercritical or subcritical fluid chromatography


Simulated moving bed


Trifluoroacetic acid




Isoenantioselective temperature




Enantioselectivity, ratio of retention factors for two enantiomers


Phase ratio, ratio of the volume of the mobile phase and stationary phase in the column





Chiral Stationary Phases


α1-Acid glycoprotein

Chiralcel OB

Cellulose tris benzoate (Daicel)

Chiralcel OD

Cellulose tris(3,5-dimethylphenyl-carbamate) coated (Daicel)

Chiralcel OJ

Cellulose tris(4-methylbenzoate) (Daicel)

Chiralpak AD

Amylose tris(3,5-dimethylphenyl-carbamate) coated (Daicel)

Chiralpak AS

Amylose tris([(S)alpha-phenethyl]-carbamate) coated (Daicel)

Chiralpak IA

Amylose tris(3,5-dimethylphenyl-carbamate) immobilised (Daicel)

Chiralpak IB

Cellulose tris(3,5-dimethylphenyl-carbamate) immobilised (Daicel)

Chiralpak IC

Cellulose tris(3,5-dichlorophenyl-carbamate) immobilised (Daicel)

Chiralpak ID

Amylose tris(3-chlorophenyl-carbamate) immobilised (Daicel)


Cellulose tris(3,5-dimethylphenyl-carbamate) coated (Phenomenex)


Cellulose tris(3-chloro-4-methylphenyl-carbamate) coated (Phenomenex)


Cellulose tris(4-chloro-3-methylphenyl-carbamate) coated (Phenomenex)


Amylose tris(3,5-dimethylphenyl-carbamate) coated (Regis Technologies)

Ultron ES-OVM

Ovomucoid protein bonded


(3R,4S)-4-(3,5-Dinitrobenzamido)-3-[3-(dimethylsilyloxy)propyl]-1,2,3,4-tetrahydrophenanthrene (Regis Technologies)


  1. 1.
    Francotte ER (2001) Enantioselective chromatography as a powerful alternative for the preparation of drug enantiomers. J Chromatogr A 906(1–2):379–397Google Scholar
  2. 2.
    Andersson S, Allenmark SG (2002) Preparative chiral chromatographic resolution of enantiomers in drug discovery. J Biochem Biophys Methods 54(1–3):11–23. doi:10.1016/s0165-022x(02)00126-4 Google Scholar
  3. 3.
    Lämmerhofer M (2010) Chiral recognition by enantioselective liquid chromatography: mechanisms and modern chiral stationary phases. J Chromatogr A 1217(6):814–856. doi:10.1016/j.chroma.2009.10.022 Google Scholar
  4. 4.
    Okamoto Y, Ikai T (2008) Chiral HPLC for efficient resolution of enantiomers. Chem Soc Rev 37(12):2593–2608. doi:10.1039/b808881k Google Scholar
  5. 5.
    Del Rio A (2009) Exploring enantioselective molecular recognition mechanisms with chemoinformatic techniques. J Sep Sci 32(10):1566–1584. doi:10.1002/jssc.200800693 Google Scholar
  6. 6.
    Perry JA, Rateike JD, Szczerba TJ (1987) Eluting trace components before major constituents: I. Sensitivity enhancement in analytical determinations of optical purity. J Chromatogr 389(1):57–64. doi:10.1016/s0021-9673(01)94410-3 Google Scholar
  7. 7.
    Zhou LL, Mao B, Ge ZH (2008) Comparative study of immobilized alpha 1 acid glycoprotein and ovomucoid protein stationary phases for the enantiomeric separation of pharmaceutical compounds. J Pharm Biomed Anal 46(5):898–906. doi:10.1016/j.jpba.2007.07.008 Google Scholar
  8. 8.
    Chen S (2005) The factors that influence the elution order for the resolution of amino acids on vancomycin phase using the polar-organic mobile phases after their pre-column derivatization with electrophilic reagents. Biomed Chromatogr 19(6):426–433. doi:10.1002/bmc.501 Google Scholar
  9. 9.
    Cirilli R, Ferretti R, Gallinella B, Zanitti L, La Torre F (2004) A new application of stopped-flow chiral HPLC: inversion of enantiomer elution order. J Chromatogr A 1061(1):27–34. doi:10.1016/j.cliroma.2004.11.001 Google Scholar
  10. 10.
    Srinivas NR (2009) Reversal in elution order in liquid chromatography-compilation of experimental observations. Biomed Chromatogr 23(2):222–223. doi:10.1002/bmc.1116 Google Scholar
  11. 11.
    Persson BA, Andersson S (2001) Unusual effects of separation conditions on chiral separations. J Chromatogr A 906(1–2):195–203. doi:10.1016/s0021-9673(00)00949-3 Google Scholar
  12. 12.
    Okamoto M (2002) Reversal of elution order during the chiral separation in high performance liquid chromatography. J Pharm Biomed Anal 27(3–4):401–407. doi:10.1016/s0731-7085(01)00646-x Google Scholar
  13. 13.
    Guiochon G, Tarafder A (2011) Fundamental challenges and opportunities for preparative supercritical fluid chromatography. J Chromatogr A 1218(8):1037–1114Google Scholar
  14. 14.
    Hesse G, Hagel R (1976) Chromatographic resolution of racemates. Liebigs Ann Chem 6:996–1008Google Scholar
  15. 15.
    Drake AF, Gould JM, Mason SF (1980) Simultaneous monitoring of light-absorption and optical-activity in the liquid-chromatography of chiral substances. J Chromatogr 202(2):239–245Google Scholar
  16. 16.
    Mannschreck A, Mintas M, Becher G, Stuhler G (1980) Liquid-chromatography of enantiomers: determination of enantiomeric purity in spite of extensive peak overlap. Angew Chem Int Ed 19(6):469–470Google Scholar
  17. 17.
    Mannschreck A, Andert D, Eiglsperger A, Gmahl E, Buchner H (1988) Chiroptical detection – novel possibilities of its application to enantiomers. Chromatographia 25(3):182–188. doi:10.1007/bf02316442 Google Scholar
  18. 18.
    Lloyd DK, Goodall DM (1989) Polarimetric detection in high-performance liquid-chromatography. Chirality 1(4):251–264Google Scholar
  19. 19.
    Salvadori P, Bertucci C, Rosini C (1991) Circular-dichroism detection in hplc. Chirality 3(4):376–385Google Scholar
  20. 20.
    Cirilli R, Ferretti R, Gallinella B, Turchetto L, Bolasco A, Secci D, Chimenti P, Pierini M, Fares V, Befani O, La Torre F (2004) Enantiomers of C-5-chiral 1-acetyl-3,5-diphenyl-4,5-dihydro-(1H)-pyrazole derivatives: analytical and semipreparative HPLC separation, chiroptical properties, absolute configuration, and inhibitory activity against monoamine oxidase. Chirality 16(9):625–636. doi:10.1002/chir.20085 Google Scholar
  21. 21.
    Salvadori P, Rosini C, Bertucci C (1984) Circular dichroic detection in the hplc of chiral molecules – direct determination of elution orders. J Org Chem 49(26):5050–5054Google Scholar
  22. 22.
    Rimbock KH, Kastner F, Mannschreck A (1986) Microcrystalline tribenzoylcellulose – a high-performance liquid-chromatographic sorbent for the separation of enantiomers. J Chromatogr 351(2):346–350Google Scholar
  23. 23.
    Mueller MD, Buser HR (1994) Identification of the (+)-enantiomers and (−)-enantiomers of chiral chlordane compounds using chiral high-performance liquid-chromatography chiroptical detection and chiral high-resolution gas-chromatography mass-spectrometry. Anal Chem 66(13):2155–2162Google Scholar
  24. 24.
    Bertucci C, Rosini C, Pini D, Salvadori P (1987) Chiral stationary phases and circular-dichroism detection in high-performance liquid-chromatography – determination of stereochemical purity of drugs. J Pharm Biomed Anal 5(2):171–176Google Scholar
  25. 25.
    Szokan G, Szarvas S, Majer Z, Szabo D, Kapovits I, Hollosi M (1999) On-line CD detection in chiral separation of spiro-lambda(4)-sulfanes. J Liq Chromatogr Relat Technol 22(7):993–1007. doi:10.1081/jlc-100101713 Google Scholar
  26. 26.
    Okamoto M, Sato R, Nagano E, Nakazawa H (1991) Optical resolution and biological-activities of S-23121, a new cereal herbicide. Agric Biol Chem 55(12):3151–3153Google Scholar
  27. 27.
    Soloshonok VA, Ono T, Ueki H, Vanthuyne N, Balaban TS, Burck J, Fliegl H, Klopper W, Naubron JV, Bui TTT, Drake AF, Roussel C (2010) Ridge-tile-like chiral topology: synthesis, resolution, and complete chiroptical characterization of enantiomers of edge-sharing binuclear square planar complexes of Ni(II) bearing achiral ligands. J Am Chem Soc 132(30):10477–10483Google Scholar
  28. 28.
    Okamoto Y, Aburatani R, Kawashima M, Hatada K, Okamura N (1986) Resolution of 4-hydroxy-2-cyclopentenone derivatives by hplc on cellulose triphenylcarbamate derivatives. Chem Lett 10:1767–1770Google Scholar
  29. 29.
    West BD, Preis S, Schroeder CH, Link KP (1961) Studies on the 4-hydroxycoumarins. The resolution and absolute configuration of warfarin. J Am Chem Soc 83(12):2676–2679. doi:10.1021/ja01473a020 Google Scholar
  30. 30.
    Driffield M, Bergstrom ET, Goodall DM, Klute AS, Smith DK (2001) High-performance liquid chromatography applications of optical rotation detection with compensation for scattering and absorbance at the laser wavelength. J Chromatogr A 939(1–2):41–48. doi:10.1016/s0021-9673(01)01336-x Google Scholar
  31. 31.
    Liu YS, Yu T, Armstrong DW (1999) HPLC detection and evaluation of chiral compounds with a laser-based chiroptical detector. LCGC North Am 17(10):946–957Google Scholar
  32. 32.
    Däppen R, Voigt P, Maystre F, Bruno AE (1993) Aspects of quantitative-determinations with polarimetric detectors in liquid-chromatography. Anal Chim Acta 282(1):47–54. doi:10.1016/0003-2670(93)80350-t Google Scholar
  33. 33.
    Sanchez FG, Diaz AN, Lama IM (2008) Polarimetric detection in liquid chromatography: an approach to correct refractive index artefacts. J Liq Chromatogr Relat Technol 31(20):3115–3131. doi:10.1080/10826070802480057 Google Scholar
  34. 34.
    Kott L, Holzheuer WB, Wong MM, Webster GK (2007) An evaluation of four commercial HPLC chiral detectors: a comparison of three polarimeters and a circular dichroism detector. J Pharm Biomed Anal 43(1):57–65. doi:10.1016/j.jpba.2006.06.015 Google Scholar
  35. 35.
    Najahi E, Sudor J, Chabchoub F, Nepveu F, Zribi F, Duval R (2010) Synthesis of 6-amino-5-cyano-1,4-disubstituted-2(1H)-pyrimidinones via copper-(I)-catalyzed alkyne-azide “click chemistry” and their reactivity. Molecules 15(12):8841–8855Google Scholar
  36. 36.
    Mannschreck A (1992) Chiroptical detection during liquid-chromatography: 4. Applications to stereoanalysis and stereodynamics. Chirality 4(3):163–169. doi:10.1002/chir.530040306 Google Scholar
  37. 37.
    Champion WL, Lee J, Garrison AW, DiMarco JC, Matabe A, Prickett KB (2004) Liquid chromatographic separation of the enantiomers of trans-chlordane, cis-chlordane, heptachlor, heptachlor epoxide and alpha-hexachlorocyclohexane with application to small-scale preparative separation. J Chromatogr A 1024(1–2):55–62. doi:10.1016/j.chroma.2003.10.026 Google Scholar
  38. 38.
    Linder SW, Yanik GW, Bobbitt DR (2004) Evaluation of laser-based polarimetry for the determination of enantiomeric excess (ee) at the extremes of the ee scale. Microchem J 76(1–2):105–112Google Scholar
  39. 39.
    Nunes JA, Tong WG (2010) Wave-mixing circular dichroism detector for chiral liquid chromatography. Appl Spectrosc 64(1):46–51Google Scholar
  40. 40.
    Roussel C, Del Rio A, Pierrot-Sanders J, Piras P, Vanthuyne N (2004) Chiral liquid chromatography contribution to the determination of the absolute configuration of enantiomers. J Chromatogr A 1037(1–2):311–328. doi:10.1016/j.chroma.2004.01.065 Google Scholar
  41. 41.
    Gaggeri R, Rossi D, Collina S, Mannucci B, Baierl M, Juza M (2011) Quick development of an analytical enantioselective high performance liquid chromatography separation and preparative scale-up for the flavonoid Naringenin. J Chromatogr A 1218(32):5414–5422Google Scholar
  42. 42.
    Lao WJ, Gan J (2012) Enantioselective degradation of warfarin in soils. Chirality 24(1):54–59. doi:10.1002/Chir.21023 Google Scholar
  43. 43.
    Roussel C, Hart N, Bonnet B, Suteu C, Hirtopeanu A, Kravtsov VC, Luboradzki R, Vanthuyne N (2002) Contribution of chiral HPLC in tandem with polarimetric detection in the determination of absolute configuration by chemical interconversion method: example in 1-(thi)oxothiazolinyl-3-(thi)oxothiazolinyl toluene atropisomer series. Chirality 14(8):665–673. doi:10.1002/chir.10125 Google Scholar
  44. 44.
    Brandl G, Kastner F, Mannschreck A, Nolting B, Andert K, Wetzel R (1991) Chiroptical detection during liquid-chromatography: 3. Nonstop acquisition of circular-dichroism spectra during liquid-chromatography. J Chromatogr 586(2):249–254. doi:10.1016/0021-9673(91)85128-3 Google Scholar
  45. 45.
    Scher JM, Zapp J, Becker H, Kather N, Kolz J, Speicher A, Dreyer M, Maksimenka K, Bringmann G (2004) Optically active bisbibenzyls from Bazzania trilobata: isolation and stereochemical analysis by chromatographic, chiroptical, and computational methods. Tetrahedron 60(44):9877–9881. doi:10.1016/j.tet.2004.08.037 Google Scholar
  46. 46.
    Bringmann G, Gulder TAM, Reichert M, Gulder T (2008) The online assignment of the absolute configuration of natural products: HPLC-CD in combination with quantum chemical CD calculations. Chirality 20(5):628–642Google Scholar
  47. 47.
    Bertucci C, Tedesco D (2012) Advantages of electronic circular dichroism detection for the stereochemical analysis and characterization of drugs and natural products by liquid chromatography. J Chromatogr A 1269:69–81Google Scholar
  48. 48.
    Holik M, Mannschreck A (2004) Determining enantiomeric excess from overlapping HPLC peaks: discussion of errors in the methods. Chemometrics Intell Lab Syst 72(2):153–160. doi:10.1016/j.chemolab.2004.01.0090 Google Scholar
  49. 49.
    Edkins TJ, Meier PC, Shah RD, Bobbitt DR, Saranadasa H, Lodevico RD (2002) Quantitative analysis of incomplete HPLC resolution of enantiomers. Fit of polarimetric detection for d- and l-phenylalanine to a Gaussian function. Enantiomer 7(1):11–22. doi:10.1080/10242430210703 Google Scholar
  50. 50.
    Brandl F, Pustet N, Mannschreck A (2001) Chiroptical detection during liquid chromatography 7 – the rotation angle/absorbance ratio of chiral molecules. Its possible use for on-line analysis during preparative separations of enantiomers. J Chromatogr A 909(2):147–154. doi:10.1016/s0021-9673(00)01105-5 Google Scholar
  51. 51.
    Kiesswetter R, Brandl F, Kastner-Pustet N, Mannschreck A (2003) Chiroptical detection during liquid chromatography: deconvolution of overlapping peaks of enantiomers and its applications. Chirality 15:S40–S49. doi:10.1002/chir.10275 Google Scholar
  52. 52.
    Schurig V (1995) Determination of enantiomeric purity by direct methods – overview, by chemical correlation, by polarimetry, by NMR-spectroscopy and by gas chromatography. In: Helmchen G, Hoffmann RW, Mulzer J, Schaumann E (eds) Stereoselective Synthesis, vol E21A. Houben-Weyl, Methods of organic chemistry. Thieme Stuttgart, New York, pp 147–192Google Scholar
  53. 53.
    Horeau A, Guette JP (1974) Diastereoisomeric interactions of antipodes in the liquid phase. Tetrahedron 30(13):1923–1931Google Scholar
  54. 54.
    Boehme W, Wagner G, Oehme U, Priesnitz U (1982) Spectrophotometric and polarimetric detectors in liquid-chromatography for the determination of enantiomer ratios in complex-mixtures. Anal Chem 54(4):709–711Google Scholar
  55. 55.
    Scott BS, Dunn DL (1985) High-performance liquid-chromatographic analysis of epinephrine enantiomers using a UV detector in series with an optical-activity detector. J Chromatogr 319(3):419–426Google Scholar
  56. 56.
    Meinard C, Bruneau P, Perronnet J (1985) High-performance liquid chromatograph coupled with 2 detectors – a UV spectrometer and a polarimeter – example in the field of pyrethroids – identification of enantiomers. J Chromatogr 349(1):109–116Google Scholar
  57. 57.
    Reitsma BH, Yeung ES (1986) High-performance liquid-chromatographic determination of enantiomeric ratios of amino-acids without chiral separation. J Chromatogr 362(3):353–362Google Scholar
  58. 58.
    Zukowski J, Tang YB, Berthod A, Armstrong DW (1992) Investigation of a circular-dichroism spectrophotometer as a liquid-chromatography detector for enantiomers – sensitivity, advantages and limitations. Anal Chim Acta 258(1):83–92. doi:10.1016/0003-2670(92)85200-p Google Scholar
  59. 59.
    Bossu E, Cotichini V, Gostoli G, Farina A (2001) Determination of optical purity by nonenantioselective LC using CD detection. J Pharm Biomed Anal 26(5–6):837–848. doi:10.1016/s0731-7085(01)00483-6 Google Scholar
  60. 60.
    Shaw CJ, Huang AH, Zhang XN (2003) Quantitation and test of enantiomeric purity of the l-ketohexoses by liquid chromatography with dual refractive index and laser-based chiroptical detection. J Chromatogr A 987(1–2):439–443. doi:10.1016/s0021-9673(02)01413-9 Google Scholar
  61. 61.
    Lorin M, Delepee R, Maurizot JC, Ribet JP, Morin P (2007) Sensitivity improvement of circular dichroism detection in HPLC by using a low-pass electronic noise filter: application to the enantiomeric determination purity of a basic drug. Chirality 19(2):106–113. doi:10.1002/chir.20352 Google Scholar
  62. 62.
    Reetz MT, Kuhling KM, Hinrichs H, Deege A (2000) Circular dichroism as a detection method in the screening of enantioselective catalysts. Chirality 12(5–6):479–482Google Scholar
  63. 63.
    Welch CJ, Gong XY, Schafer W, Pratt EC, Brkovic T, Pirzada Z, Cuff JF, Kosjek B (2010) MISER chromatography (multiple injections in a single experimental run): the chromatogram is the graph. Tetrahedron Asymmetry 21(13–14):1674–1681. doi:10.1016/j.tetasy.2010.05.029 Google Scholar
  64. 64.
    Roussel C, Vanthuyne N, Jobert JL, Loas AI, Tanase AE, Gherase D (2007) HPLC on chiral support with polarimetric detection: application to conglomerate discovery. Chirality 19(6):497–502. doi:10.1002/chir.20405 Google Scholar
  65. 65.
    Kanazawa H, Kunito Y, Matsushima Y, Okubo S, Mashige F (2000) Stereospecific analysis of lorazepam in plasma by chiral column chromatography with a circular dichroism-based detector. J Chromatogr A 871(1–2):181–188. doi:10.1016/s0021-9673(99)01244-3 Google Scholar
  66. 66.
    Dahmane EM, Aamouche A, Vanthuyne N, Jean M, Vanloot P, Taourirte M, Dupuy N, Roussel C (2013) Attempts to separate (−)-α-thujone, (+)-β-thujone epimers from camphor enantiomers by enantioselective HPLC with polarimetric detection. J Sep Sci 36(5):832–839Google Scholar
  67. 67.
    Roussel C, Vanthuyne N, Serradeil-Albalat M, Vallejos JC (2003) True or apparent reversal of elution order during chiral high-performance liquid chromatography monitored by a polarimetric detector under different mobile phase conditions. J Chromatogr A 995(1–2):79–85. doi:10.1016/s0021-9673(03)00533-8 Google Scholar
  68. 68.
    Cirilli R, Ferretti R, Gallinella B, La Torre F, La Regina G, Silvestri R (2005) Comparative study between the polysaccharide-based Chiralcel OJ and Chiralcel OD CSPs in chromatographic enantioseparation of imidazole analogues of fluoxetine and miconazole. J Sep Sci 28(7):627–634. doi:10.1002/jssc.200400102 Google Scholar
  69. 69.
    Ghanem A (2006) True and false reversal of the elution order of barbiturates on a bonded cellulose-based chiral stationary phase. J Chromatogr A 1132(1–2):329–332. doi:10.1016/j.chroma.2006.09.043 Google Scholar
  70. 70.
    Lv CG, Zhou ZQ (2011) Chiral HPLC separation and absolute configuration assignment of a series of new triazole compounds. J Sep Sci 34(4):363–370. doi:10.1002/jssc.201000762 Google Scholar
  71. 71.
    Andersson S, Nelander H, Ohlen K (2007) Preparative chiral chromatography and chiroptical characterization of enantiomers of omeprazole and related benzimidazoles. Chirality 19(9):706–715. doi:10.1002/chir.20375 Google Scholar
  72. 72.
    Ramillien M, Vanthuyne N, Jean M, Gherase D, Giorgi M, Naubron JV, Piras P, Roussel C (2012) Enantiomers of dimethyl [(2E)-1,3-diphenylprop-2-en-1-yl]propanedioate resulting from allylic alkylation reaction: elution order on major high-performance liquid chromatography chiral columns. J Chromatogr A 1269:82–93Google Scholar
  73. 73.
    Macaudiere P, Lienne M, Caude M, Rosset R, Tambute A (1989) Resolution of pi-acid racemates on pi-acid chiral stationary phases in normal-phase liquid and subcritical fluid chromatographic modes – a unique reversal of elution order on changing the nature of the achiral modifier. J Chromatogr 467(2):357–372. doi:10.1016/s0021-9673(01)93989-5 Google Scholar
  74. 74.
    Stalcup AM, Chang SC, Armstrong DW (1991) Effect of the configuration of the substituents of derivatized beta-cyclodextrin bonded phases on enantioselectivity in normal-phase liquid-chromatography. J Chromatogr 540(1–2):113–128. doi:10.1016/s0021-9673(01)88802-6 Google Scholar
  75. 75.
    Xiao TL, Zhang B, Lee JT, Hui F, Armstrong DW (2001) Reversal of enantiomeric elution order on macrocyclic glycopeptide chiral stationary phases. J Liq Chromatogr Relat Technol 24(17):2673–2684. doi:10.1081/jlc-100106094 Google Scholar
  76. 76.
    Wang T, Chen YDW, Vailaya A (2000) Enantiomeric separation of some pharmaceutical intermediates and reversal of elution orders by high-performance liquid chromatography using cellulose and amylose tris(3,5-dimethylphenylcarbamate) derivatives as stationary phases. J Chromatogr A 902(2):345–355. doi:10.1016/s0021-9673(00)00862-1 Google Scholar
  77. 77.
    Aboul-Enein HY, Ali I (2001) Studies on the effect of alcohols on the chiral discrimination mechanisms of amylose stationary phase on the enantioseparation of nebivolol by HPLC. J Biochem Biophys Methods 48(2):175–188. doi:10.1016/s0165-022x(01)00148-8 Google Scholar
  78. 78.
    Francotte E, Zhang T (1995) Supramolecular effects in the chiral discrimination of meta-methylbenzoyl cellulose in high-performance liquid chromatography. J Chromatogr A 718(2):257–266Google Scholar
  79. 79.
    Doyle TD, Wainer IW (1984) A unique reversal of elution order during direct enantiomeric resolution of amide derivatives of 1-phenyl-2-aminopropane by high-performance liquid-chromatography on chiral stationary phases. J High Resolut Chromatogr Chromatogr Commun 7(1):38–40. doi:10.1002/jhrc.1240070107 Google Scholar
  80. 80.
    Pittler E, Schmid MG (2010) Enantioseparation of dansyl amino acids by HPLC on a monolithic column dynamically coated with a vancomycin derivative. Biomed Chromatogr 24(11):1213–1219. doi:10.1002/bmc.1430 Google Scholar
  81. 81.
    Vanthuyne N, Andreoli F, Fernandez S, Roman M, Roussel C (2005) Synthesis, chiral separation, barrier to rotation and absolute configuration of N-(O-functionalized-aryl)-4-alkyl-thiazolin-2-one and thiazoline-2-thione atropisomers. Lett Org Chem 2(5):433–443. doi:10.2174/1570178054405931 Google Scholar
  82. 82.
    Chankvetadze L, Ghibradze N, Karchkhadze M, Peng L, Farkas T, Chankvetadze B (2011) Enantiomer elution order reversal of fluorenylmethoxycarbonyl-isoleucine in high-performance liquid chromatography by changing the mobile phase temperature and composition. J Chromatogr A 1218(37):6554–6560. doi:10.1016/j.chroma.2011.06.068 Google Scholar
  83. 83.
    Karlsson A, Nystrom A (2001) Addition of organic modifiers to control retention order of enantiomers of dihydropyridines on chiral-AGP. Chromatographia 53(3–4):135–139Google Scholar
  84. 84.
    Alfredson TV, Towne R, Elliott M, Griffin B, Abubakari A, Dyson N, Kertesz DJ (1996) Enantioselectivity of azalanstat and its ketal tosylate intermediate in chiral high performance liquid chromatography separations. J Liq Chromatogr Relat Technol 19(10):1653–1668. doi:10.1080/10826079608005499 Google Scholar
  85. 85.
    Haginaka J, Wakai J, Takahashi K, Yasuda H, Katagi T (1990) Chiral separation of propranolol and its ester derivatives on an ovomucoid-bonded silica – influence of pH, ionic-strength and organic modifier on retention, enantioselectivity and enantiomeric elution order. Chromatographia 29(11–12):587–592Google Scholar
  86. 86.
    Gaffney MH, Stiffin RM, Wainer IW (1989) The effect of alcoholic mobile phase modifiers on retention and stereoselectivity on a commercially available cellulose-based hplc chiral stationary phase – an unexpected reversal in enantiometric elution order. Chromatographia 27(1–2):15–18. doi:10.1007/bf02290397 Google Scholar
  87. 87.
    Okamoto M, Nakazawa H (1991) Reversal of elution order during direct enantiomeric separation of pyriproxyfen on a cellulose-based chiral stationary phase. J Chromatogr 588(1–2):177–180. doi:10.1016/0021-9673(91)85020-g Google Scholar
  88. 88.
    Okamoto M, Nakazawa H (1991) Direct enantiomeric resolution of pyriproxyfen on a cellulose-based chiral stationary phase. A unique reversal of elution order on changing the nature of the mobile phase modifier. Anal Sci 7:147–150. doi:10.2116/analsci.7.Supple_147 Google Scholar
  89. 89.
    Zhan FP, Yu GY, Yao BX, Guo XP, Liang T, Yu MG, Zeng QL, Weng W (2010) Solvent effect in the chromatographic enantioseparation of 1,1′-bi-2-naphthol on a polysaccharide-based chiral stationary phase. J Chromatogr A 1217(26):4278–4284. doi:10.1016/j.chroma.2010.04.016 Google Scholar
  90. 90.
    Wang T, Chen YDW (1999) Application and comparison of derivatized cellulose and amylose chiral stationary phases for the separation of enantiomers of pharmaceutical compounds by high-performance liquid chromatography. J Chromatogr A 855(2):411–421. doi:10.1016/s0021-9673(99)00733-5 Google Scholar
  91. 91.
    Balmer K, Persson BA, Lagerstrom PO (1994) Stereoselective effects in the separation of enantiomers of omeprazole and other substituted benzimidazoles on different chiral stationary phases. J Chromatogr A 660(1–2):269–273Google Scholar
  92. 92.
    Bielejewska A, Duszczyk K, Zukowski J (2005) HPLC separation of linezolid enantiomers using polysaccharide-based chiral stationary phases. Acta Chromatogr 15:183–191Google Scholar
  93. 93.
    Tatini R, Sadik O, Bernhard S, Abruna H (2005) Direct resolution of chiral “pineno” fused terpyridyl ligands on amylose based chiral stationary phase using long chain alcohol modifiers. Anal Chim Acta 534(2):193–198. doi:10.1016/j.aca.2004.11.032 Google Scholar
  94. 94.
    Gyllenhaal O, Stefansson M (2008) Reversal of elution order for profen acid enantiomers in normal phase LC on Chiralpak AD. J Pharm Biomed Anal 46(5):860–863. doi:10.1016/j.jpba.2007.03.009 Google Scholar
  95. 95.
    Toribio L, Alonso C, del Nozal MJ, Bernal JL, Jimenez JJ (2006) Enantiomeric separation of chiral sulfoxides by supercritical fluid chromatography. J Sep Sci 29(10):1363–1372. doi:10.1002/jssc.20060009 Google Scholar
  96. 96.
    Gyllenhaal O, Stefansson M (2005) Reversal of elution order for profen acid enantiomers in packed-column SFC on Chiralpak AD. Chirality 17(5):257–265. doi:10.1002/chir.20160 Google Scholar
  97. 97.
    Cirilli R, Ferretti R, Gallinella B, De Santis E, Zanitti L, La Torre F (2008) High-performance liquid chromatography enantioseparation of proton pump inhibitors using the immobilized amylose-based Chiralpak IA chiral stationary phase in normal-phase, polar organic and reversed-phase conditions. J Chromatogr A 1177(1):105–113. doi:10.1016/j.chroma.2007.11.027 Google Scholar
  98. 98.
    Schlauch M, Volk FJ, Fondekar KP, Wede J, Frahm AW (2000) Enantiomeric and diastereomeric high-performance liquid chromatographic separation of cyclic beta-substituted alpha-amino acids on a copper(II)-d-penicillamine chiral stationary phase. J Chromatogr A 897(1–2):145–152. doi:10.1016/s0021-9673(00)00808-6 Google Scholar
  99. 99.
    Balmer K, Lagerstrom PO, Persson BA, Schill G (1992) Reversed retention order and other stereoselective effects in the separation of amino-alcohols on chiralcel OD. J Chromatogr 592(1–2):331–337Google Scholar
  100. 100.
    Ma S, Shen S, Lee H, Eriksson M, Zeng X, Xu J, Fandrick K, Yee N, Senanayake C, Grinberg N (2009) Mechanistic studies on the chiral recognition of polysaccharide-based chiral stationary phases using liquid chromatography and vibrational circular dichroism reversal of elution order of N-substituted alpha-methyl phenylalanine esters. J Chromatogr A 1216(18):3784–3793. doi:10.1016/j.chroma.2009.02.046 Google Scholar
  101. 101.
    Cui X, Liu GQ, Kang SS, Guo XP, Yao BX, Wen W, Zeng QL (2011) Unusual chromatographic enantioseparation behavior of naproxen on an immobilized polysaccharide-based chiral stationary phase. J Chromatogr A 1218(48):8718–8721. doi:10.1016/j.chroma.2011.10.014 Google Scholar
  102. 102.
    Yao BX, Liu GQ, Kang SS, Xiang C, Huang B, Weng W, Zeng QL (2011) Reversal of elution order between enantiomers of binaphthol on an immobilized polysaccharide-based chiral stationary phase. Chromatographia 74(7–8):625–631. doi:10.1007/s10337-011-2104-5 Google Scholar
  103. 103.
    Svensson S, Vessman J, Karlsson A (1999) Direct high-performance liquid chromatographic separations of metoprolol analogues on a chiralcel OD column using chemometrics. J Chromatogr A 839(1–2):23–39Google Scholar
  104. 104.
    Dossou KSS, Chiap P, Servais AC, Fillet M, Crommen J (2011) Development and validation of a LC method for the enantiomeric purity determination of S-ropivacaine in a pharmaceutical formulation using a recently commercialized cellulose-based chiral stationary phase and polar non-aqueous mobile phase. J Pharm Biomed Anal 54(4):687–693. doi:10.1016/j.jpba.2010.10.020 Google Scholar
  105. 105.
    Dossou KSS, Edorh PA, Chiap P, Chankvetadze B, Servais AC, Fillet M, Crommen J (2011) Determination of enantiomeric purity of S-amlodipine by chiral LC with emphasis on reversal of enantiomer elution order. J Sep Sci 34(15):1772–1780. doi:10.1002/jssc.201100339 Google Scholar
  106. 106.
    Jibuti G, Mskhiladze A, Takaishvili N, Karchkhadze M, Chankvetadze L, Farkas T, Chankvetadze B (2012) HPLC separation of dihydropyridine derivatives enantiomers with emphasis on elution order using polysaccharide-based chiral columns. J Sep Sci 35(19):2529–2537. doi:10.1002/jssc.201200443 Google Scholar
  107. 107.
    Roussel C, Stein JL, Beauvais F, Chemlal A (1989) Example of the concentration-dependence of elution order in the resolution of enantiomers on microcrystalline triacetylcellulose chiral stationary phase. J Chromatogr 462:95–103Google Scholar
  108. 108.
    Golshanshirazi S, Guiochon G (1991) Use of the levan – vermeulen isotherm model for the calculation of elution band profiles in nonlinear chromatography. J Chromatogr 545(1):1–26. doi:10.1016/s0021-9673(01)88692-1 Google Scholar
  109. 109.
    Haginaka J, Seyama C, Yasuda H, Takahashi K (1992) Investigation of enantioselectivity and enantiomeric elution order of propranolol and its ester derivatives on an ovomucoid-bonded column. J Chromatogr 598(1):67–72. doi:10.1016/0021-9673(92)85115-a Google Scholar
  110. 110.
    Haginaka J, Seyama C, Yasuda H, Takahashi K (1992) Retention, enantioselectivity and enantiomeric elution order of propranolol and its ester derivatives on an α1-acid glycoprotein-bonded column. Chromatographia 33(3–4):127–132. doi:10.1007/bf02275892 Google Scholar
  111. 111.
    Karlsson A, Aspegren A (1998) The use of mobile phase pH and column temperature to reverse the retention order of enantiomers on chiral-AGP. Chromatographia 47(3–4):189–196. doi:10.1007/bf02466580 Google Scholar
  112. 112.
    Gasparrini F, Marini F, Misiti D, Pierini M, Villani C (1999) Temperature dependent elution order of enantiomers on a two-armed receptor HPLC chiral stationary phase. Enantiomer 4(3–4):325–332Google Scholar
  113. 113.
    Kurganov AA, Zhuchkova LY, Davankov VA (1978) Stereoselectivity in bis(alpha amino acid) copper(II) complexes thermodynamics of N-benzylproline coordination to copper(II). J Inorg Nucl Chem 40(6):1081–1083Google Scholar
  114. 114.
    Schurig V (1984) Gas-chromatographic separation of enantiomers on optically-active metal-complex free stationary phases. Angew Chem Int Ed Engl 23(10):747–765Google Scholar
  115. 115.
    Schurig V, Ossig J, Link R (1989) Evidence for a temperature-dependent reversal of the enantioselectivity in complexation gas-chromatography on chiral phases. Angew Chem Int Ed Engl 28(2):194–196Google Scholar
  116. 116.
    Watabe K, Charles R, Gil-Av E (1989) Temperature-dependent inversion of elution sequence in the resolution of alpha-amino-acid enantiomers on chiral diamide selectors. Angew Chem Int Ed Engl 28(2):192–194Google Scholar
  117. 117.
    Jiang ZJ, Schurig V (2008) Existence of a low isoenantioselective temperature in complexation gas chromatography – profound change of enantioselectivity of a nickel(II) chiral selector either bonded to, or dissolved in, poly(dimethylsiloxane). J Chromatogr A 1186(1–2):262–270Google Scholar
  118. 118.
    Pirkle WH (1991) Unusual effect of temperature on the retention of enantiomers on a chiral column. J Chromatogr 558(1):1–6Google Scholar
  119. 119.
    West C, Bouet A, Routier S, Lesellier E (2012) Effects of mobile phase composition and temperature on the supercritical fluid chromatography enantioseparation of chiral fluoro-oxoindole-type compounds with chlorinated polysaccharide stationary phases. J Chromatogr A 1269:325–335. doi:10.1016/j.chroma.2012.09.078 Google Scholar
  120. 120.
    Stringham RW, Blackwell JA (1996) “Entropically driven” chiral separations in supercritical fluid chromatography. Confirmation of isoelution temperature and reversal of elution order. Anal Chem 68(13):2179–2185. doi:10.1021/ac960029e Google Scholar
  121. 121.
    Chester TL, Coym JW (2003) Effect of phase ratio on van’t Hoff analysis in reversed-phase liquid chromatography, and phase-ratio-independent estimation of transfer enthalpy. J Chromatogr A 1003(1–2):101–111Google Scholar
  122. 122.
    Fornstedt T, Sajonz P, Guiochon G (1997) Thermodynamic study of an unusual chiral separation. Propranolol enantiomers on an immobilized cellulase. J Am Chem Soc 119(6):1254–1264Google Scholar
  123. 123.
    Pirkle WH, Murray PG (1993) An instance of temperature-dependent elution order of enantiomers from a chiral brush-type HPLC column. J High Resolut Chromatogr 16(5):285–288Google Scholar
  124. 124.
    Fulde K, Fraham AW (1999) Temperature-induced inversion of elution order in the enantioseparation of sotalol on a cellobiohydrolase I-based stationary phase. J Chromatogr A 858(1):33–43Google Scholar
  125. 125.
    Yao B, Zhan F, Yu G, Chen Z, Fan W, Zeng X, Zeng Q, Weng W (2009) Temperature-induced inversion of elution order in the chromatographic enantioseparation of 1,1′-bi-2-naphthol on an immobilized polysaccharide-based chiral stationary phase. J Chromatogr A 1216(28):5429–5435. doi:10.1016/j.chroma.2009.05.032 Google Scholar
  126. 126.
    Aranyi A, Ilisz I, Pataj Z, Szatmari I, Fulop F, Peter A (2011) High-performance liquid chromatographic enantioseparation of 1-(phenylethylamino)- or 1-(naphthylethylamino)methyl-2-naphthol analogs and a temperature-induced inversion of the elution sequence on polysaccharide-based chiral stationary phases. J Chromatogr A 1218(30):4869–4876. doi:10.1016/j.chroma.2011.01.027 Google Scholar
  127. 127.
    Vachon J, Harthong S, Jeanneau E, Aronica C, Vanthuyne N, Roussel C, Dutasta JP (2011) Inherently chiral phosphonatocavitands as artificial chemo- and enantio-selective receptors of natural ammoniums. Org Biomol Chem 9(14):5086–5091. doi:10.1039/C1ob05194f Google Scholar
  128. 128.
    Vachon J, Harthong S, Dubessy B, Dutasta JP, Vanthuyne N, Roussel C, Naubron JV (2010) The absolute configuration of an inherently chiral phosphonatocavitand and its use toward the enantioselective recognition of l-adrenaline. Tetrahedron Asymmetry 21(11–12):1534–1541. doi:10.1016/j.tetasy.2010.03.028 Google Scholar
  129. 129.
    Norel L, Rudolph M, Vanthuyne N, Williams JAG, Lescop C, Roussel C, Autschbach J, Crassous J, Reau R (2010) Metallahelicenes: easily accessible helicene derivatives with large and tunable chiroptical properties. Angew Chem Int Ed Engl 49(1):99–102. doi:10.1002/anie.200905099 Google Scholar
  130. 130.
    Bürkle W, Karfunkel H, Schurig V (1984) Dynamic phenomena during enantiomer resolution by complexation gas-chromatography – a kinetic-study of enantiomerization. J Chromatogr 288(1):1–14Google Scholar
  131. 131.
    Eiglsperger A, Kastner F, Mannschreck A (1985) The enantiomers of N,N-dimethylthiobenzamides – chromatographic behavior and rotational barriers. J Mol Struct 126(Jan):421–432Google Scholar
  132. 132.
    Alkorta I, Elguero J, Roussel C, Vanthuyne N, Piras P (2012) Atropisomerism and axial chirality in heteroaromatic compounds. Adv Heterocycl Chem 105:1–188Google Scholar
  133. 133.
    Nishikawa T, Hayashi Y, Suzuki S, Kubo H, Ohtani H (1997) On-column enantiomerization of 3-hydroxybenzodiazepines during chiral liquid chromatography with optical rotation detection. J Chromatogr A 767(1–2):93–100. doi:10.1016/s0021-9673(96)01097-7 Google Scholar
  134. 134.
    Mannschreck A, Kiessl L (1989) Chiroptical detection after liquid-chromatography: 2. Enantiomerization during HPLC on an optically-active sorbent – deconvolution of experimental chromatograms. Chromatographia 28(5–6):263–266. doi:10.1007/bf02260772 Google Scholar
  135. 135.
    Gasparrini F, Lunazzi L, Misiti D, Villani C (1995) Organic stereochemistry and conformational-analysis from enantioselective chromatography and dynamic nuclear-magnetic-resonance measurements. Acc Chem Res 28(4):163–170. doi:10.1021/ar00052a001 Google Scholar
  136. 136.
    Veciana J, Crespo MI (1991) Dynamic HPLC – a method for determining rate constants, energy barriers, and equilibrium-constants of molecular dynamic processes. Angew Chem Int Ed 30(1):74–76. doi:10.1002/anie.199100741 Google Scholar
  137. 137.
    Trapp O, Schurig V (2002) Novel direct access to enantiomerization barriers from peak profiles in enantioselective dynamic chromatography: enantiomerization of dialkyl-1,3-allenedicarboxylates. Chirality 14(6):465–470Google Scholar
  138. 138.
    Trapp O (2006) Fast and precise access to enantiomerization rate constants in dynamic chromatography. Chirality 18(7):489–497Google Scholar
  139. 139.
    Trapp O (2008) A novel software tool for high throughput measurements of interconversion barriers: DCXplorer. J Chromatogr B 875(1):42–47Google Scholar
  140. 140.
    Cirilli R, Costi R, Di Santo R, La Torre F, Pierini M, Siani G (2009) Perturbing effects of chiral stationary phase on enantiomerization second-order rate constants determined by enantioselective dynamic high-performance liquid chromatography: a practical tool to quantify the accessible acid and basic catalytic sites bonded on chromatographic supports. Anal Chem 81(9):3560–3570. doi:10.1021/ac802212s Google Scholar
  141. 141.
    Maier F, Trapp O (2012) Effects of the stationary phase and the solvent on the stereodynamics of biphep ligands quantified by dynamic three-column HPLC. Angew Chem Int Ed Engl 51(12):2985–2988Google Scholar
  142. 142.
    Wolf C, Xu H (2007) Analysis of the stereodynamics of 2,2′-disubstituted biphenyls by dynamic chromatography. Tetrahedron Lett 48(39):6886–6889Google Scholar
  143. 143.
    Roussel C, Vanthuyne N, Shineva N, Bouchekara M, Djafri A (2008) Atropisomerism in the 2-arylimino-N-(2-aryl)-thiazoline series. Arkivoc (viii):28–41Google Scholar
  144. 144.
    Villani C, Gasparrini F, Pierini M, Mortera SL, D'Acquarica I, Ciogli A, Zappia G (2009) Dynamic HPLC of stereolabile iron(II) complexes on chiral stationary phases. Chirality 21(1):97–103Google Scholar
  145. 145.
    Bu X, Skrdla PJ, Dormer PG, Bereznitski Y (2010) Separation of triphenyl atropisomers of a pharmaceutical compound on a novel mixed mode stationary phase. A case study involving dynamic chromatography, dynamic NMR and molecular modeling. J Chromatogr A 1217(46):7255–7264Google Scholar
  146. 146.
    Cannazza G, Carrozzo MM, Battisti U, Braghiroli D, Parenti C, Troisi A, Troisi L (2010) Determination of kinetic parameters of enantiomerization of benzothiadiazines by DCXplorer. Chirality 22(9):789–797Google Scholar
  147. 147.
    Ciogli A, Bicker W, Lindner W (2010) Determination of enantiomerization barriers of hypericin and pseudohypericin by dynamic high-performance liquid chromatography on immobilized polysaccharide-type chiral stationary phases and off-column racemization experiments. Chirality 22(5):463–471Google Scholar
  148. 148.
    Lunazzi L, Mancinelli M, Mazzanti A, Pierini M (2010) Stereomutation of axially chiral aryl coumarins. J Org Chem 75(17):5927–5933Google Scholar
  149. 149.
    Uray G, Jahangir S, Fabian WMF (2010) On- and off column enantiomerization of 4,4′-bisquinolin-2-ones: a comparison of Auto-, DHPLcy2k and DCXplorer calculated thermodynamic data generated by dynamic high performance liquid chromatography with theoretically calculated data. J Chromatogr A 1217(7):1017–1023Google Scholar
  150. 150.
    Kamuf M, Trapp O (2011) Stereodynamics of tetramezine. Chirality 23(2):113–117Google Scholar
  151. 151.
    Rotzler J, Gsellinger H, Neuburger M, Vonlanthen D, Haussinger D, Mayor M (2011) Racemisation dynamics of torsion angle restricted biphenyl push-pull cyclophanes. Org Biomol Chem 9(1):86–91Google Scholar
  152. 152.
    Rizzo S, Benincori T, Bonometti V, Cirilli R, Mussini PR, Pierini M, Pilati T, Sannicolo F (2013) Steric and electronic effects on the configurational stability of residual chiral phosphorus-centered three-bladed propellers: tris-aryl phosphanes. Chemistry 19(1):182–194Google Scholar
  153. 153.
    Wolf C (2008) Dynamic stereochemistry of chiral compounds: principles and applications. Roy Soc Chem. doi:10.1039/9781847558091-00006
  154. 154.
    Piron F, Vanthuyne N, Joulin B, Naubron JV, Cismas C, Terec A, Varga RA, Roussel C, Roncali J, Grosu I (2009) Synthesis, structural analysis, and chiral investigations of some atropisomers with ee-tetrahalogeno-1,3-butadiene core. J Org Chem 74(23):9062–9070Google Scholar
  155. 155.
    Soloshonok VA (2006) Remarkable amplification of the self-disproportionation of enantiomers on achiral-phase chromatography columns. Angew Chem Int Ed Engl 45(5):766–769Google Scholar
  156. 156.
    Soloshonok VA, Berbasov DO (2006) Self-disproportionation of enantiomers on achiral phase chromatography. One more example of fluorine’s magic powers. Chim Oggi 24(3):44–47Google Scholar
  157. 157.
    Cundy KC, Crooks PA (1983) Unexpected phenomenon in the high-performance liquid-chromatographic analysis of racemic C-14-labeled nicotine – separation of enantiomers in a totally achiral system. J Chromatogr 281(Dec):17–33Google Scholar
  158. 158.
    Monde K, Harada N, Takasugi M, Kutschy P, Suchy M, Dzurilla M (2000) Enantiomeric excess of a cruciferous phytoalexin, spirobrassinin, and its enantiomeric enrichment in an achiral HPLC system. J Nat Prod 63(9):1312–1314Google Scholar
  159. 159.
    Suchy M, Kutschy P, Monde K, Goto H, Harada N, Takasugi M, Dzurilla M, Balentova E (2001) Synthesis, absolute configuration, and enantiomeric enrichment of a cruciferous oxindole phytoalexin, (S)-(−)-spirobrassinin, and its oxazoline analog. J Org Chem 66(11):3940–3947Google Scholar
  160. 160.
    Charles R, Gil-Av E (1984) Self-amplification of optical-activity by chromatography on an achiral adsorbent. J Chromatogr 298(3):516–520. doi:10.1016/s0021-9673(01)92750-5 Google Scholar
  161. 161.
    Matusch R, Coors C (1989) Chromatographic-separation of the excess enantiomer under achiral conditions. Angew Chem Int Ed Engl 28(5):626–627. doi:10.1002/anie.198906261 Google Scholar
  162. 162.
    Dobashi A, Motoyama Y, Kinoshita K, Hara S, Fukasaku N (1987) Self-induced chiral recognition in the association of enantiomeric mixtures on silica-gel chromatography. Anal Chem 59(17):2209–2211Google Scholar
  163. 163.
    Soloshonok VA, Berbasov DO (2006) Self-disproportionation of enantiomers of (R)-ethyl 3-(3,5-dinitrobenzamido)-4,4,4-trifluorobutanoate on achiral silica gel stationary phase. J Fluorine Chem 127(4–5):597–603Google Scholar
  164. 164.
    Tsai WL, Hermann K, Hug E, Rohde B, Dreiding AS (1985) Enantiomer-differentiation induced by an enantiomeric excess during chromatography with achiral phases. Helv Chim Acta 68(8):2238–2243. doi:10.1002/hlca.19850680818 Google Scholar
  165. 165.
    Diter P, Taudien S, Samuel O, Kagan HB (1994) Enantiomeric enrichment of sulfoxides by preparative flash chromatography on an achiral phase. J Org Chem 59(2):370–373. doi:10.1021/jo00081a015 Google Scholar
  166. 166.
    Nakajima M, Kanayama K, Miyoshi I, Hashimoto S (1995) Catalytic asymmetric synthesis of binaphthol derivatives by aerobic oxidative coupling of 3-hydroxy-2-naphthoates with chiral diamine-copper complex. Tetrahedron Lett 36(52):9519–9520. doi:10.1016/0040-4039(95)02063-2 Google Scholar
  167. 167.
    Nakajima M, Miyoshi I, Kanayama K, Hashimoto S, Noji M, Koga K (1999) Enantioselective synthesis of binaphthol derivatives by oxidative coupling of naphthol derivatives catalyzed by chiral diamine copper complexes. J Org Chem 64(7):2264–2271. doi:10.1021/jo981808t Google Scholar
  168. 168.
    Takahashi M, Tanabe H, Nakamura T, Kuribara D, Yamazaki T, Kitagawa O (2010) Atropisomeric lactam chemistry: catalytic enantioselective synthesis, application to asymmetric enolate chemistry and synthesis of key intermediates for NET inhibitors. Tetrahedron 66(1):288–296Google Scholar
  169. 169.
    Takahata H, Takahashi S, Kouno S, Momose T (1998) Symmetry-assisted synthesis of C-2-symmetric trans-alpha, alpha′-bis(hydroxymethyl)pyrrolidine and -piperidine derivatives via double sharpless asymmetric dihydroxylation of alpha, omega-terminal dienes. J Org Chem 63(7):2224–2231Google Scholar
  170. 170.
    Tanaka K, Osuga H, Suzuki H, Shogase Y, Kitahara Y (1998) Synthesis, enzymic resolution and enantiomeric enhancement of bis(hydroxymethyl) 7 thiaheterohelicenes. J Chem Soc Perkin Trans 1(5):935–940. doi:10.1039/a707196e Google Scholar
  171. 171.
    Soloshonok VA, Roussel C, Kitagawa O, Sorochinsky AE (2012) Self-disproportionation of enantiomers via achiral chromatography: a warning and an extra dimension in optical purifications. Chem Soc Rev 41(11):4180–4188Google Scholar
  172. 172.
    Sorochinsky AE, Acena JL, Soloshonok VA (2013) Self-disproportionation of enantiomers of chiral, non-racemic fluoroorganic compounds: role of fluorine as enabling element. Synthesis 45(2):141–152Google Scholar
  173. 173.
    Ogawa S, Nishimine T, Tokunaga E, Nakamura S, Shibata N (2010) Self-disproportionation of enantiomers of heterocyclic compounds having a tertiary trifluoromethyl alcohol center on chromatography with a non-chiral system. J Fluorine Chem 131(4):521–524Google Scholar
  174. 174.
    Baciocchi R, Zenoni G, Mazzotti M, Morbidelli M (2002) Separation of binaphthol enantiomers through achiral chromatography. J Chromatogr A 944(1–2):225–240Google Scholar
  175. 175.
    Gil-Av E, Schurig V (1994) Resolution of non-racemic mixtures in achiral chromatographic systems – a model for the enantioselective effects observed. J Chromatogr A 666(1–2):519–525. doi:10.1016/0021-9673(94)80413-3 Google Scholar
  176. 176.
    Trapp O, Schurig V (2010) Nonlinear effects in enantioselective chromatography: prediction of unusual elution profiles of enantiomers in non-racemic mixtures on an achiral stationary phase doped with small amounts of a chiral selector. Tetrahedron Asymmetry 21(11–12):1334–1340. doi:10.1016/j.tetasy.2010.04.027 Google Scholar
  177. 177.
    Jung M, Schurig V (1992) Computer-simulation of 3 scenarios for the separation of nonracemic mixtures by chromatography on achiral stationary phases. J Chromatogr 605(2):161–166. doi:10.1016/0021-9673(92)85233-j Google Scholar
  178. 178.
    Baciocchi R, Mazzotti M, Morbidelli M (2004) General model for the achiral chromatography of enantiomers forming dimers: application to binaphthol. J Chromatogr A 1024(1–2):15–20. doi:10.1016/j.chroma.2003.10.071 Google Scholar
  179. 179.
    Nicoud RM, Jaubert JN, Rupprecht I, Kinkel J (1996) Enantiomeric enrichment of non-racemic mixtures of binaphthol with non-chiral packings. Chirality 8(3):234–243. doi:10.1002/(sici)1520-636x(1996)8:3<234::aid-chir2>;2-h Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.iSm2 CNRS, Aix Marseille UniversityMarseille Cedex 20France

Personalised recommendations