Advertisement

Beyond Pentacenes: Synthesis and Properties of Higher Acenes

  • Christina Tönshoff
  • Holger F. Bettinger
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 349)

Abstract

Acenes consist of linearly annulated benzene rings. Their reactivity increases quickly with increasing chain length. Therefore acenes longer than pentacene are very sensitive towards oxygen in the presence of light and thus these molecules have not been well studied or have remained elusive in spite of synthetic efforts dating back to the 1930s. This review gives an historical account of the development of the chemistry of acenes larger than pentacene and summarizes the recent progress in the field including strategies for stabilization of higher acenes up to nonacene.

Keywords

Acenes Alternant hydrocarbon Polymer Spectroscopy Synthesis 

Notes

Acknowledgments

We are grateful for continued support from the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

References

  1. 1.
    Clar E, John F (1930) Ber Dtsch Chem Ges 63B:2967CrossRefGoogle Scholar
  2. 2.
    Philippi E (1929) Monatsh Chem 53(54):638Google Scholar
  3. 3.
    Clar E (1939) Chem Ber 72:2137CrossRefGoogle Scholar
  4. 4.
    Wang C, Dong H, Hu W, Liu Y, Zhu D (2012) Chem Rev 112:2208CrossRefGoogle Scholar
  5. 5.
    Pron A, Gawrys P, Zagorska M, Djurado D, Demadrille R (2010) Chem Soc Rev 39:2577CrossRefGoogle Scholar
  6. 6.
    Biermann D, Schmidt W (1980) J Am Chem Soc 102:3163CrossRefGoogle Scholar
  7. 7.
    Anthony JE (2006) Chem Rev 106:5028CrossRefGoogle Scholar
  8. 8.
    Anthony JE (2008) Angew Chem Int Ed 47:452CrossRefGoogle Scholar
  9. 9.
    Würthner F, Schmidt R (2006) Chemphyschem 7:793CrossRefGoogle Scholar
  10. 10.
    Bendikov M, Wudl F, Perepichka DF (2004) Chem Rev 104:4891CrossRefGoogle Scholar
  11. 11.
    Zade SS, Bendikov M (2010) Angew Chem Int Ed 49:4012CrossRefGoogle Scholar
  12. 12.
    Clar E (1939) Ber Dtsch Chem Ges 72B:1817CrossRefGoogle Scholar
  13. 13.
    Marschalk C (1939) Bull Soc Chim Fr 6:1112Google Scholar
  14. 14.
    Clar E (1942) Ber Dtsch Chem Ges B 75B:1283CrossRefGoogle Scholar
  15. 15.
    Bailey WJ, Liao C-W (1955) J Am Chem Soc 77:992CrossRefGoogle Scholar
  16. 16.
    Lang KF, Zander M (1963) Chem Ber 96:707CrossRefGoogle Scholar
  17. 17.
    Satchell MP, Stacey BE (1971) J Chem Soc C 468Google Scholar
  18. 18.
    Campbell RB, Robertson JM, Trotter J (1962) Acta Crystallogr 15:289CrossRefGoogle Scholar
  19. 19.
    Preuss J, Zanker V (1974) Z Naturforsch Teil A 29:352Google Scholar
  20. 20.
    Angliker H, Rommel E, Wirz J (1982) Chem Phys Lett 87:208CrossRefGoogle Scholar
  21. 21.
    Nijegorodov N, Ramachandran V, Winkoun DP (1997) Spectrochim Acta A 53:1813CrossRefGoogle Scholar
  22. 22.
    Mondal R, Tönshoff C, Khon D, Neckers DC, Bettinger HF (2009) J Am Chem Soc 131:14281CrossRefGoogle Scholar
  23. 23.
    Angliker H, Gerson F, Lopez J, Wirz J (1981) Chem Phys Lett 81:242CrossRefGoogle Scholar
  24. 24.
    Boschi R, Clar E, Schmidt W (1974) J Chem Phys 60:4406CrossRefGoogle Scholar
  25. 25.
    Schmidt W (1977) J Chem Phys 66:828CrossRefGoogle Scholar
  26. 26.
    Aust RB, Bentley WH, Drickamer HG (1964) J Chem Phys 41:1856CrossRefGoogle Scholar
  27. 27.
    Minakata T, Ozaki M, Imai H (1993) J Appl Phys 74:1079CrossRefGoogle Scholar
  28. 28.
    Minakata T, Imai H, Ozaki M (1995) Polym Adv Technol 6:602CrossRefGoogle Scholar
  29. 29.
    Mondal R, Adhikari RM, Shah BK, Neckers DC (2007) Org Lett 9:2505CrossRefGoogle Scholar
  30. 30.
    Uno H, Yamashita Y, Kikuchi M, Watanabe H, Yamada H, Okujima T, Ogawa T, Ono N (2005) Tetrahedron Lett 46:1981CrossRefGoogle Scholar
  31. 31.
    Yamada H, Yamashita Y, Kikuchi M, Watanabe H, Okujima T, Uno H, Ogawa T, Ohara K, Ono N (2005) Chem Eur J 11:6212CrossRefGoogle Scholar
  32. 32.
    Watanabe M, Chang YJ, Liu S-W, Chao T-H, Goto K, IslamMd M, Yuan C-H, Tao Y-T, Shinmyozu T, Chow TJ (2012) Nat Chem 4:574CrossRefGoogle Scholar
  33. 33.
    Purushothaman B, Parkin SR, Anthony JE (2010) Org Lett 12:2060CrossRefGoogle Scholar
  34. 34.
    Watanabe M, Su W-T, Chen K-Y, Chien C-T, Chao T-H, Chang YJ, Liu S-W, Chow TJ (2013) Chem Commun 49:2240CrossRefGoogle Scholar
  35. 35.
    Miller GP, Mack J, Briggs J (2000) Org Lett 2:3983CrossRefGoogle Scholar
  36. 36.
    Anthony JE, Brooks JS, Eaton DL, Parkin SR (2001) J Am Chem Soc 123:9482CrossRefGoogle Scholar
  37. 37.
    Payne MM, Parkin SR, Anthony JE (2005) J Am Chem Soc 127:8028CrossRefGoogle Scholar
  38. 38.
    Berg O, Chronister EL, Yamashita T, Scott GW, Sweet RM, Calabrese J (1999) J Phys Chem A 103:2451CrossRefGoogle Scholar
  39. 39.
    Purushothaman B, Parkin SR, Kendrick MJ, David D, Ward JW, Yu L, Stingelin N, Jurchescu OD, Ostroverkhova O, Anthony JE (2012) Chem Commun 48:8261CrossRefGoogle Scholar
  40. 40.
    Kendrick MJ, Neunzert A, Payne MM, Purushothaman B, Rose BD, Anthony JE, Haley MM, Ostroverkhova O (2012) J Phys Chem C 116:18108CrossRefGoogle Scholar
  41. 41.
    Clar E (1942) Chem Ber 75:1330CrossRefGoogle Scholar
  42. 42.
    Boggiano B, Clar E (1957) J Chem Soc 2681Google Scholar
  43. 43.
    Clar E, McCallum A (1960) Tetrahedron 10:171CrossRefGoogle Scholar
  44. 44.
    Marschalk C (1943) Bull Soc Chim Fr 10:511Google Scholar
  45. 45.
    Marschalk C (1941) Bull Soc Chim Fr 8:354Google Scholar
  46. 46.
    Clar E, Marschalk C (1950) Bull Soc Chim Fr 444Google Scholar
  47. 47.
    Fang T (1986) Heptacene, octacene, nonacene, supercene and related polymers, PhD Thesis, University of California, Los AngelesGoogle Scholar
  48. 48.
    Mondal R, Shah BK, Neckers DC (2006) J Am Chem Soc 128:9612CrossRefGoogle Scholar
  49. 49.
    Strating J, Zwanenburg B, Wagenaar A, Udding AC (1969) Tetrahedron Lett 3:125CrossRefGoogle Scholar
  50. 50.
    Mondal R, Okhrimenko AN, Shah BK, Neckers DC (2008) J Phys Chem B 112:11CrossRefGoogle Scholar
  51. 51.
    Bettinger HF, Mondal R, Krasowska M, Neckers DC (2012) J Org Chem 78:1851–1857. doi: 10.1021/jo301622f CrossRefGoogle Scholar
  52. 52.
    Bettinger HF, Mondal R, Neckers DC (2007) Chem Commun 5209Google Scholar
  53. 53.
    Zade SS, Zamoshchik N, Reddy AR, Fridman-Marueli G, Sheberla D, Bendikov M (2011) J Am Chem Soc 133:10803CrossRefGoogle Scholar
  54. 54.
    Grimme S, Diedrich C, Korth M (2006) Angew Chem Int Ed 45:625CrossRefGoogle Scholar
  55. 55.
    Bendikov M, Duong HM, Starkey K, Houk KN, Carter EA, Wudl F (2004) J Am Chem Soc 126:7416CrossRefGoogle Scholar
  56. 56.
    Chun D, Cheng Y, Wudl F (2008) Angew Chem Int Ed 47:8380CrossRefGoogle Scholar
  57. 57.
    Qu H, Chi C (2010) Org Lett 12:3360CrossRefGoogle Scholar
  58. 58.
    Kaur I, Stein NN, Kopreski RP, Miller GP (2009) J Am Chem Soc 131:3424CrossRefGoogle Scholar
  59. 59.
    Kaur I, Jia W, Kopreski RP, Selvarasah S, Dokmeci MR, Pramanik C, McGruer NE, Miller GP (2008) J Am Chem Soc 130:16274CrossRefGoogle Scholar
  60. 60.
    Tönshoff C, Bettinger HF (2010) Angew Chem Int Ed 49:4125CrossRefGoogle Scholar
  61. 61.
    Purushothaman B, Bruzek M, Parkin SR, Miller A-F, Anthony JE (2011) Angew Chem Int Ed 50:7013CrossRefGoogle Scholar
  62. 62.
    Kaur I, Jazdzyk M, Stein NN, Prusevich P, Miller GP (2010) J Am Chem Soc 132:1261CrossRefGoogle Scholar
  63. 63.
    Gao X, Hodgson JL, Jiang D-E, Zhang SB, Nagase S, Miller GP, Chen Z (2011) Org Lett 13:3316CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institut für Organische ChemieUniversität TübingenTübingenGermany

Personalised recommendations