Advertisement

Molecular Chirality: Language, History, and Significance

  • Joseph Gal
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 340)

Abstract

In this chapter some background material concerning molecular chirality and enantiomerism is presented. First some basic chemical-molecular aspects of chirality are reviewed, after which certain relevant terminology whose use in the literature has been problematic is discussed. Then an overview is provided of some of the early discoveries that laid the foundations of the science of molecular chirality in chemistry and biology, including the discovery of the phenomenon of molecular chirality by L. Pasteur, the proposals for the asymmetric carbon atom by J.H. van ‘t Hoff and J.A. Lebel, Pasteur’s discovery of biological enantioselectivity, the discovery of enantioselectivity at biological receptors by A. Piutti, the studies of enzymatic stereoselectivity by E. Fischer, and the work on enantioselectivity in pharmacology by A. Cushny. Finally, the role of molecular chirality in pharmacotherapy and new-drug development, arguably one of the main driving forces for the current intense interest in the phenomenon of molecular chirality, is discussed.

Keywords

Biological stereoselectivity Drugs Enantiomerism History of chemistry Language of stereochemistry Molecular chirality Molecular recognition Pharmacology 

Notes

Acknowledgments

Helpful information from the following individuals (listed in alphabetical order) is gratefully acknowledged: Prof. Pedro Cintas (University of Extremadura, Spain); Prof. Mark M. Green (New York University, USA); Prof. Andrew J. Hutt (University of Hertfordshire, UK). The author is deeply indebted to the Piutti family, Dr. Claudia Piutti (Nerviano Medical Sciences, Nerviano, Italy), great-granddaughter of Arnaldo Piutti; Pietro Piutti (of Conegliano, Italy), grandson of Arnaldo Piutti; and Pietro’s spouse Caterina (née Rovetto) for providing Arnaldo’s photograph and permission to reproduce it. The author is grateful to John Wiley & Sons, Inc., for permission to use text from some of his previously published articles [9, 17, 20, 35, 41].

References

  1. 1.
    Eliel EL, Wilen SH (1994) Stereochemistry of organic compounds. Wiley, New York, p 1194Google Scholar
  2. 2.
    Mislow K (1999) Molecular chirality. Top Stereochem 22:1–82Google Scholar
  3. 3.
    Eliel EL, Wilen SH (1994) Stereochemistry of organic compounds. Wiley, New York, p 1197Google Scholar
  4. 4.
    Eliel EL, Wilen SH (1994) Stereochemistry of organic compounds. Wiley, New York, p 1198Google Scholar
  5. 5.
    Anslyn EV, Dougherty DA (2006) Modern physical organic chemistry. University Science Books, Sausalito, pp 298–302Google Scholar
  6. 6.
    Anslyn EV, Dougherty DA (2006) Modern physical organic chemistry. University Science Books, Sausalito, p 300Google Scholar
  7. 7.
    Mislow K, Siegel J (1984) Stereoisomerism and local chirality. J Am Chem Soc 106:3319–3328CrossRefGoogle Scholar
  8. 8.
    Anslyn EV, Dougherty DA (2006) Modern physical organic chemistry. University Science Books, Sausalito, p 301Google Scholar
  9. 9.
    Gal J (2011) Stereochemical vocabulary for structures that are chiral but not asymmetric: history, analysis, and proposal for a rational terminology. Chirality 23:647–659CrossRefGoogle Scholar
  10. 10.
    Eliel EL, Wilen SH (1994) Stereochemistry of organic compounds. Wiley, New YorkGoogle Scholar
  11. 11.
    Anslyn EV, Dougherty DA (2006) Modern physical organic chemistry. University Science Books, Sausalito, pp 297–351Google Scholar
  12. 12.
    Carroll FA (1998) Perspectives on structure and mechanism in organic chemistry. Brooks/Cole Publishing Company, Pacific Grove, pp 58–118Google Scholar
  13. 13.
    Nicolaou KC, Boddy CNC, Siegel JS (2001) Does CIP nomenclature adequately handle multiple stereoelements? A case study of vancomycin and cognates. Angew Chem Int Ed 40:701–704CrossRefGoogle Scholar
  14. 14.
    Davankov VA (1991) Should the terminology used in chirality be more precise? Chirality 3:442CrossRefGoogle Scholar
  15. 15.
    Helmchen G (1997) Glossary of problematic terms in organic stereochemistry. Enantiomer 2:315–318Google Scholar
  16. 16.
    Bentley R (2010) Chiral: a confusing etymology. Chirality 22:1–2CrossRefGoogle Scholar
  17. 17.
    Gal J (2011) Louis Pasteur, language, and molecular chirality–I. Background and dissymmetry. Chirality 23:1–16CrossRefGoogle Scholar
  18. 18.
    Eliel EL (1997) Infelicitous stereochemical nomenclature. Chirality 9:428–430CrossRefGoogle Scholar
  19. 19.
    Gal J (1998) Problems of stereochemical nomenclature and terminology. 1. The homochiral controversy. Its nature, origins, and a proposed solution. Enantiomer 3:263–273Google Scholar
  20. 20.
    Gal J (2007) Carl Friedrich Naumann and the introduction of enantio terminology: a review and analysis on the 150th anniversary. Chirality 19:89–98CrossRefGoogle Scholar
  21. 21.
    Pifferi G, Perucca E (1995) The cost benefit ratio of enantiomeric drugs. Eur J Drug Metab Pharmacokinet 20:15–25CrossRefGoogle Scholar
  22. 22.
    Han H, Yoon J, Janda KD (1998) An efficient asymmetric route to 2,3-diaminobutanoic acids. J Org Chem 63:2045–2048CrossRefGoogle Scholar
  23. 23.
    Kagan H, Gopalaiah K (2011) Early history of asymmetric synthesis: who are the scientists who set up the basic principles and the first experiments? New J Chem 35:1933–1937CrossRefGoogle Scholar
  24. 24.
    Eliel EL, Wilen SH (1994) Stereochemistry of organic compounds. Wiley, New York, p 1192Google Scholar
  25. 25.
    Krebs HA (1970) The history of the tricarboxylic acid cycle. Perspect Biol Med 14:154–170Google Scholar
  26. 26.
    Pasteur L (1922) Recherches sur la dissymétrie moléculaire des produits organiques naturels. In: Pasteur Vallery-Radot L (ed) Œuvres de Pasteur, vol 1. Masson et Cie, Paris, pp 314–344Google Scholar
  27. 27.
    Mauskopf SH (1976) Crystals and compounds: molecular structure and composition in nineteenth-century French science. Trans Am Phil Soc 66:5–80Google Scholar
  28. 28.
    Chautard J (1853) Mémoire sur l’acide camphorique gauche et sur le camphre gauche. Compt Rend Acad Sci 37:166–7Google Scholar
  29. 29.
    Van ‘t Hoff JH (1874) Sur le formules de structure dans l'espace. Arch Neerl 9:1–10Google Scholar
  30. 30.
    Lebel JA (1874) Sur les relations qui existent entre les formules atomiques des corps organiques et le pouvoir rotatoire de leurs dissolutions. Bul Soc Chim Paris 22:337–347Google Scholar
  31. 31.
    Ramberg PJ (2003) Chemical structure, spatial arrangement: the early history of stereochemistry 1874–1914. Ashgate Publishing Limited, Aldershot, pp 53–109Google Scholar
  32. 32.
    Ramsay OB (1981) Stereochemistry. Heyden, London, pp 81–97Google Scholar
  33. 33.
    Pasteur L (1857) Mémoire sur la fermentation alcoolique. C R Séances Acad Sci 45:1032–1036Google Scholar
  34. 34.
    Pasteur L (1858) Mémoire sur la fermentation de l'acide tartrique. C R Séances Acad Sci 46:615–618Google Scholar
  35. 35.
    Gal J (2008) The discovery of biological enantioselectivity: Louis Pasteur and the fermentation of tartaric acid – a review and analysis 150 years later. Chirality 20:5–19CrossRefGoogle Scholar
  36. 36.
    Lichtenthaler FW (1992) Emil Fischer’s proof of the configuration of sugars. A centennial tribute. Angew Chem Int Ed 31:1541–1546CrossRefGoogle Scholar
  37. 37.
    Fischer E (1894) Einfluss der Konfiguration auf der Wirkung der Enzyme. Ber Dtsch Chem Ges 27:2985–2993CrossRefGoogle Scholar
  38. 38.
    Fischer E (1891) Ueber die Configuration des Traubezuckers und seiner Isomeren Ber dtsch chem. Ges 24:1836–1845CrossRefGoogle Scholar
  39. 39.
    Ramberg PJ (2003) Chemical structure, spatial arrangement: the early history of stereochemistry 1874–1914. Ashgate Publishing Limited, Aldershot, pp 243–276Google Scholar
  40. 40.
    Piutti A (1886) Ein neues Asparagin. Ber Dtsch Chem Ges 19:1691–1695CrossRefGoogle Scholar
  41. 41.
    Gal J (2012) The discovery of stereoselectivity at biological receptors: Arnaldo Piutti and the taste of the asparagine enantiomers – history and analysis on the 125th anniversary. Chirality 24:959–976CrossRefGoogle Scholar
  42. 42.
    Prüll C-R, Maehle A-H, Halliwell RF (2009) A short history of the drug receptor concept. Palgrave MacMillan, Basingstoke, p 1CrossRefGoogle Scholar
  43. 43.
    Ehrlich P, Morgenroth J (1900) Ueber Haemolysine. Dritte Mittheilung. Berliner klin Wochenschrift 37:453–458Google Scholar
  44. 44.
    Langley JN (1905) On the reaction of cells and nerve-endings to certain poisons, chiefly as regards the reaction of striated muscle to nicotine and to curare. J Physiol 33:374–413Google Scholar
  45. 45.
    Vauquelin LN, Robiquet PJ (1806) La découverte d'un nouveau principe végétal dans le suc des asperges. Ann Chim 57:88–93Google Scholar
  46. 46.
    Piutti A (1888) Sintesi e costituzione delle asparagine. Gazz Chim Ital 18:457–472Google Scholar
  47. 47.
    Cushny AR (1920) On optical isomers. V Tropeines J Pharmacol 15:105–127Google Scholar
  48. 48.
    Cushny AR (1909) Further note on adrenalin isomers. J Physiol 38:259–262Google Scholar
  49. 49.
    Cushny AR (1926) Biological relations of optically isomeric substances. The Williams and Wilkins Company, BaltimoreGoogle Scholar
  50. 50.
    Crossley R (1992) The relevance of chirality to the study of biological activity. Tetrahedron 48:8155–8178CrossRefGoogle Scholar
  51. 51.
    Patel BK, Hutt AJ (2004) Stereoselectivity in drug action and disposition: an overview. In: Reddy IK, Mehvar R (eds) Chirality in drug design and development. Marcel Dekker, New YorkGoogle Scholar
  52. 52.
    Eichelbaum M, Testa B, Somogyi A (eds) (2003) Stereochemical aspects of drug action and disposition. Springer, BerlinGoogle Scholar
  53. 53.
    Ariëns EJ, Soudijn W, Timmermans PBMWM (eds) (1983) Stereochemistry and biological activity of drugs. Blackwell Scientific Publications, OxfordGoogle Scholar
  54. 54.
    Ariëns EJ (1984) Stereochemistry, a basis for sophisticated nonsense in pharmacokinetics and clinical pharmacology. Eur J Clin Pharmacol 26:663–668CrossRefGoogle Scholar
  55. 55.
    Ariëns EJ, Wuis EW (1987) Bias in pharmacokinetics and clinical pharmacology. Clin Pharmacol Ther 42:361–363CrossRefGoogle Scholar
  56. 56.
    Shah RR, Midgley JM, Branch SK (1998) Stereochemical origin of some clinically significant drug safety concerns: lessons for future drug development. Adverse Drug React Toxicol Rev 17:145–190Google Scholar
  57. 57.
    Anonymous (1992) Fed Reg 5(102):22249Google Scholar
  58. 58.
    Reist M, Testa B, Carrupt PA, Jung M, Schurig V (1995) Racemization, enantiomerization, diastereomerization, and epimerization – their meaning and pharmacological significance. Chirality 7:396–400CrossRefGoogle Scholar
  59. 59.
    Caldwell J, Hutt AJ, Fournel-Gigleux S (1988) The metabolic chiral inversion and dispositional enantioselectivity of the 2-arylpropionic acids and their biological consequences. Biochem Pharmacol 37:105–114CrossRefGoogle Scholar
  60. 60.
    Vogel P (2003) Recent advances in asymmetric organic synthesis: principles and examples. In: Eichelbaum M, Testa B, Somogyi A (eds) Stereochemical aspects of drug action and disposition. Springer, Berlin, pp 3–44CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Departments of Medicine and Pathology, School of MedicineUniversity of ColoradoDenverUSA

Personalised recommendations