Advertisement

The Role of Metals and Ligands in Organic Hydroformylation

  • Luca Gonsalvi
  • Antonella Guerriero
  • Eric Monflier
  • Frédéric Hapiot
  • Maurizio Peruzzini
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 342)

Abstract

In this chapter the effect of transition metals and of ancillary stabilizing ligands on the activity, regioselectivity, and chemoselectivity in hydroformylation reactions applied to organic synthesis will be reviewed, highlighting recent cases of particular interest, including examples of both homogeneous and heterogeneous catalytic reactions.

Graphical Abstract

Keywords

Hydroformylation Ligand effects P-based ligands Transition metals 

Abbreviations

acac

Acetylacetonate

bcope

Bis(cyclooctyl)phosphinoethane

BDP

Bisdiazaphospholane

Biphephos

6,6′-[(3,3′-Di-tert-butyl-5,5′-dimethoxy-1,1′-biphenyl-2,2′-diyl)bis(oxy)]bis(dibenzo[d,f][1,3,2]dioxaphosphepin)

Bisbi

2,2′-Bis-((dipheny1phosphino)methyl)-1,l′-biphenyl

Boc

tert-Butoxycarbonyl

BTAC

Benzyl triethylammonium chloride

COD

1,5-Cyclooctadiene

CTAC

Cetyltrimethylammonium chloride

dppb

Bis(diphenylphosphino)butane

dppe

Bis(diphenylphosphino)ethane

dppf

Bis(diphenylphosphino)ferrocene

dr

Diastereomeric ratio

ee

Enantiomeric excess

h

Hour(s)

HPA

Heteropolyacids

i-Pr

Isopropyl

L

Liter(s)

l/b

Linear to branched aldehyde ratio

MeO

Methoxy

mol

Mole(s)

NHC

N-Heterocyclic carbene ligand

NMP

N-Methylpyrrolidone

PhO

Phenoxy

s

Second(s)

Tangphos

(1S,1S′,2R,2R′)-1,1′-Di-tert-butyl-(2,2′)-diphospholane

t-Bu

tert-Butyl

TMS

Trimethylsilyl

TOF

Turnover frequency

TPPMS

(Meta-sulfonatophenyl)diphenylphosphine

TPPTS

Tris(meta-sulfonatophenyl)phosphine

Xanthphos

4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene

References

  1. 1.
    Bohnen HW, Cornils B (2002) Adv Catal 47:1Google Scholar
  2. 2.
    Parshall GW (1980) Homogeneous catalysis. Wiley-Interscience, New YorkGoogle Scholar
  3. 3.
    Beller M, Bohm C (eds) (2004) Transition metals for organic synthesis: building blocks and fine chemicals, vol 1&2. Wiley-VCH, WeinheimGoogle Scholar
  4. 4.
    van Leeuwen PWNM, Claver C (2001) Rhodium catalyzed hydroformylation. Kluwer, DordrechtGoogle Scholar
  5. 5.
    Cornils B, Herrmann WA (eds) (1998) Aqueous-phase organometallic catalysis. Wiley-VCH, WeinheimGoogle Scholar
  6. 6.
    Ungvary F (2002) Coord Chem Rev 228:61–82Google Scholar
  7. 7.
    Ungvary F (2003) Coord Chem Rev 241:295–312Google Scholar
  8. 8.
    Ungvary F (2004) Coord Chem Rev 248:867–880Google Scholar
  9. 9.
    Ungvary F (2005) Coord Chem Rev 249:2946–2961Google Scholar
  10. 10.
    Ungvary F (2007) Coord Chem Rev 251:2072–2086Google Scholar
  11. 11.
    Ungvary F (2007) Coord Chem Rev 251:2087–2102Google Scholar
  12. 12.
    Wiese K-D, Obst D (2006) Top Organomet Chem 18:1–33Google Scholar
  13. 13.
    Behr A, Vorholt AJ (2012) Top Organomet Chem 39:103–128Google Scholar
  14. 14.
    Whiteker GT, Cobley CJ (2012) Top Organomet Chem 42:35–46Google Scholar
  15. 15.
    Chaudhari RV (2012) Top Catal 55:439–445Google Scholar
  16. 16.
    Puckette TA (2012) Top Catal 55:421–425Google Scholar
  17. 17.
    Cornils B, Kuntz EG (1985) J Organomet Chem 502:177–186Google Scholar
  18. 18.
    Barbaro P, Liguori F (eds) (2010) Heterogenized homogeneous catalysts for fine chemicals production: materials and processes. Springer, DordrechtGoogle Scholar
  19. 19.
    Frohning CD, Kohlpaintner CD, Bohnen H-W (2002) In: Cornils B, Hermann WA (eds) Applied homogeneous catalysis with organometallic compounds. Wiley-VCH Verlag GmbH, WeinheimGoogle Scholar
  20. 20.
    Pruchnik FP (1990) Organometallic chemistry of transition elements. Plenum, New YorkGoogle Scholar
  21. 21.
    Li C, Widjaja E, Chew W, Garland M (2002) Angew Chem Int Ed 41:3785–3789Google Scholar
  22. 22.
    Hebrard F, Kalck P (2009) Chem Rev 109:4272–4282Google Scholar
  23. 23.
    Kamer PCJ, van Rooy A, Schoemaker GC, van Leeuwen PNWM (2004) Coord Chem Rev 248:2409–2424Google Scholar
  24. 24.
    Damoense L, Datt M, Green M, Steenkamp C (2004) Coord Chem Rev 248:2393–2407Google Scholar
  25. 25.
    Gil W, Trzeciak AM (2011) Coord Chem Rev 255:473–483Google Scholar
  26. 26.
    Arntz D, Wiegand N (1991) US Patent 5,015,789Google Scholar
  27. 27.
    Tsunoi S, Ryu I, Sonoda N (1994) J Am Chem Soc 116:5473Google Scholar
  28. 28.
    Fell B, Rupilius W (1969) Tetrahedron Lett 2721–2723Google Scholar
  29. 29.
    Fell B, Bahrmann H (1977) J Mol Catal 2:211–218Google Scholar
  30. 30.
    Fell B, Hermanns P (1994) EP 643.031Google Scholar
  31. 31.
    Pagar NS, Deshpande RM, Chaudhari RV (2006) Catal Lett 110:129–133Google Scholar
  32. 32.
    He D, Pang D, Wei L, Chen Y, Wang T, Wang Z, Liu J, Liu Y, Zhu Q (2002) Catal Commun 3:429–433Google Scholar
  33. 33.
    Bortenschlager M, Schütz J, von Preysing D, Nuyken O, Herrmann WA, Weberskirch R (2005) J Organomet Chem 690:6233–6237Google Scholar
  34. 34.
    Moores A, Mezailles N, Ricard L, Le Floch P (2005) Organometallics 24:508–513Google Scholar
  35. 35.
    El Ali B, Tijani J, Fettouhi M, Al-Arfaj A, El-Faer M (2005) Appl Organomet Chem 19:329–338Google Scholar
  36. 36.
    Bruss AJ, Gelesky MA, Machado G, Dupont J (2006) J Mol Catal A Chem 252:212–218Google Scholar
  37. 37.
    Xu Y, Wang Y, Zeng Y, Jiang J, Jin Z (2012) Catal Lett 142:914–919Google Scholar
  38. 38.
    Van Winkle JL, Lorenzo S, Morris RC, Mason RF (1969) US Patent 3,420,898Google Scholar
  39. 39.
    Birbeck JM, Haynes A, Adams H, Damoense L, Otto S (2012) ACS Catal 2:2512–2523Google Scholar
  40. 40.
    Steynberg JP, van Rensburg H, Cronje CJ, Otto S, Crause C (2003) WO Patent 2003068719Google Scholar
  41. 41.
    Frankel EN, Metlin S, Rohwedder WK, Wender I (1969) J Am Oil Chem Soc 46:133–138Google Scholar
  42. 42.
    Srivastava VK, Bhatt SD, Shukla RS, Bajaj HC, Jasra RV (2005) React Kinet Catal Lett 85:3–9Google Scholar
  43. 43.
    Rosi L, Bini A, Frediani P, Bianchi M, Salvini A (1996) J Mol Catal A Chem 112:367–383Google Scholar
  44. 44.
    Li B, Li X, Asami K, Fujimoto K (2003) Energy Fuel 17:810–816Google Scholar
  45. 45.
    Ma L, Peng Q, He D (2009) Catal Lett 130:137–146Google Scholar
  46. 46.
    Cai Z, Wang H, Ziao C, Zhong M, Ma D, Kou Y (2010) J Mol Catal A Chem 330:94–98Google Scholar
  47. 47.
    Süss-Fink G, Reiner J (1982) J Mol Catal 16:231–242Google Scholar
  48. 48.
    Süss-Fink G, Schmidt GF (1987) J Mol Catal 42:361–366Google Scholar
  49. 49.
    Knifton JF (1988) J Mol Catal 43:65–77Google Scholar
  50. 50.
    Hayashi T, Gu ZH, Sakakura T, Tanaka M (1988) J Organomet Chem 352:373–378Google Scholar
  51. 51.
    Mitsudo T, Suzuki N, Kondo T, Watanabe Y (1996) J Mol Catal A Chem 109:219–225Google Scholar
  52. 52.
    Melean LG, Rodriguez M, Romero M, Alvarado ML, Rosales M, Baricelli PJ (2011) Appl Catal A Gen 394:117–123Google Scholar
  53. 53.
    Takahashi K, Yamashita M, Tanaka Y, Nozaki K (2012) Angew Chem Int Ed 51:4383–4387Google Scholar
  54. 54.
    Tominaga K, Sasaki Y (2000) Catal Commun 1:1–3Google Scholar
  55. 55.
    Tominaga K, Sasaki Y (2000) J Mol Catal A Gen 220:159–165Google Scholar
  56. 56.
    Srivastava VK, Eilbracht P (2009) Catal Commun 10:1791–1795Google Scholar
  57. 57.
    Clarke ML (2001) Polyhedron 20:151–164Google Scholar
  58. 58.
    Van der Vlugt JI, Van Duren R, Batema GD, Den Heeten R, Meetsma A, Fraanje J, Goubitz K, Kramer PCJ, van Leeuwen PWNM, Vogt D (2005) Organometallics 24:5377–5382Google Scholar
  59. 59.
    Van Duren R, Van der Vlugt JI, Kooijman H, Spek AL, Vogt D (2007) Dalton Trans 1053–1059Google Scholar
  60. 60.
    Petöcz G, Berente Z, Kégl T, Kollàr L (2004) J Organomet Chem 689:1188–1193Google Scholar
  61. 61.
    Hsu CY, Orchin M (1975) J Am Chem Soc 97:3553–3554Google Scholar
  62. 62.
    Schwager I, Knifton JF (1976) J Catal 45:256–263Google Scholar
  63. 63.
    Anderson GK, Clark HC, Davies JA (1982) Organometallics 1:64–70Google Scholar
  64. 64.
    Farkas E, Kollàr L, Moret M, Sironi A (1996) Organometallics 15:1345–1350Google Scholar
  65. 65.
    Clark HC, Manzer LE (1973) J Organomet Chem 59:411–428Google Scholar
  66. 66.
    Rocha WR (2004) Theochem 677:133–143Google Scholar
  67. 67.
    Gómez M, Muller G, Sainz D, Sales J, Solans X (1991) Organometallics 10:4036Google Scholar
  68. 68.
    Gusevskaja EV, Dos Santos EN, Augusti R, Dias AO, Foca CM (2000) J Mol Catal A 152:15–24Google Scholar
  69. 69.
    Foca CM, Dos Santos EN, Gusevskaja EV (2002) J Mol Catal A Gen 185:17–23Google Scholar
  70. 70.
    Gladiali S, Fabbri D, Kollàr L (1995) J Organomet Chem 491:91–96Google Scholar
  71. 71.
    Chalk AJ (1988) In: Rylander PN, Greenfield H, Augustine RL (eds) Catalysis of organic reactions, vol 22. Marcel Dekker, New York, p 43Google Scholar
  72. 72.
    Foca CM, Barros HJV, Dos Santos EN, Gusevskaya EV, Bayon JC (2003) N J Chem 27:533–539Google Scholar
  73. 73.
    Van der Veen LA, Keeven PK, Kamer PCJ, van Leeuwen PWNM (2000) Chem Commun 333–334Google Scholar
  74. 74.
    Van der Veen LA, Keeven PK, Kamer PCJ, van Leeuwen PWNM (2000) Dalton Trans 2105–2112Google Scholar
  75. 75.
    Wesemann L, Hagen S, Marx T, Patenburg I, Nobis M, Drießen-Hölscher B (2002) Eur J Inorg Chem 2261–2265Google Scholar
  76. 76.
    Gottardo M, Scarso A, Paganelli S, Strukul G (2010) Adv Synth Catal 352:2251–2262Google Scholar
  77. 77.
    Fernández D, García-Seijo MI, Kégl T, Petôcz G, Kollár L, García Fernández ME (2002) Inorg Chem 41:4435–4443Google Scholar
  78. 78.
    Van Duren R, Cornelissen LLJM, Van der Vlugt JI, Huijbers JP, Mills AM, Spek AL, Müller C, Vogt D (2006) Helv Chim Acta 89:1547–1558Google Scholar
  79. 79.
    Zhang Y, Shinoda M, Shiki Y, Tsubaki N (2006) Fuels 85:1194–1200Google Scholar
  80. 80.
    Ishii Y, Hidai M (2001) Catal Today 66:53–61Google Scholar
  81. 81.
    Drent E, Mul WP, Budzelaar PHM (2002) Comments Inorg Chem 23:127–147Google Scholar
  82. 82.
    Konya D, Leñero KQA, Drent E (2006) Organometallics 25:3166–3174Google Scholar
  83. 83.
    Jennerjahn R, Piras I, Jackstell R, Franke R, Wiese K-D, Beller M (2009) Chem Eur J 15:6383–6388Google Scholar
  84. 84.
    Qiu X, Tsubaki N, Sun S, Fujimoto K (2001) Catal Commun 2:75–80Google Scholar
  85. 85.
    Sakauchi J, Sakagami H, Takahashi N, Matsuda T, Imizu Y (2005) Catal Lett 99:257–261Google Scholar
  86. 86.
    Moreno MA, Haukka M, Pakkanen TA (2003) J Catal 215:326–331Google Scholar
  87. 87.
    Fox DJ, Duckett SB, Flaschenriem C, Brennessel WW, Schneider J, Gunay A, Eisenberg R (2006) Inorg Chem 45:7197–7209Google Scholar
  88. 88.
    Mieczyńska E, Trzeciak AM, Ziólkowski JJ, Kownacki I, Marciniec B (2005) J Mol Catal A Chem 237:246–253Google Scholar
  89. 89.
    Piras I, Jennerjahn R, Jackstell R, Spannenberg A, Franke R, Beller M (2011) Angew Chem Int Ed 50:280–284Google Scholar
  90. 90.
    Chuang SCC, Pien S-I (1990) Catal Lett 6:389–394Google Scholar
  91. 91.
    Jessop PG, Ikariya T, Noyori R (1995) Organometallics 14:1510–1513Google Scholar
  92. 92.
    Suárez T, Fontal B, Parra MF, Reyes M, Bellandi F, Díaz JC, Cancines P, Fonseca Y (2010) Transition Met Chem 35:293–295Google Scholar
  93. 93.
    Braunstein P, Rose J (1999) In: Braunstein P, Oro LA, Raithby PR (eds) Metal clusters in chemistry, 2nd edn. Wiley-VHC, Weinheim, p 616Google Scholar
  94. 94.
    Roberts DA, Geoffroy GL (1982) In: Wilkinson G, Stone FGA, Abel EW (eds) Comprehensive organometallic chemistry, 6th edn. Pergamon, Oxford, p 763Google Scholar
  95. 95.
    Jenner G (1988) J Organomet Chem 346:237–251Google Scholar
  96. 96.
    Adams DA, Cotton FA (1998) Catalysis by di- and polynuclear metal cluster complexes. Wiley, New YorkGoogle Scholar
  97. 97.
    Li C, Widjaja E, Garland M (2003) J Am Chem Soc 125:5540–5548Google Scholar
  98. 98.
    Li C, Widjaja E, Garland M (2004) Organometallics 23:4131–4138Google Scholar
  99. 99.
    Li C, Chen L, Garland M (2007) J Am Chem Soc 129:13327–13334Google Scholar
  100. 100.
    Li C, Chen L, Garland M (2008) Adv Synth Catal 350:679–690Google Scholar
  101. 101.
    Haupt HJ, Wittbecker R, Florke U (2001) Z Anorg Allg Chem 627:472–484Google Scholar
  102. 102.
    Forniés-Cámer J, Masdeu-Bultó AM, Claver C (2002) Organometallics 21:2609–2618Google Scholar
  103. 103.
    Hernandez-Gruel MAF, Pérez-Torrente JJ, Ciriano MA, Rivas AB, Lahoz FJ, Dobrinovitch IT, Oro LA (2003) Organometallics 22:1237–1249Google Scholar
  104. 104.
    Izumi Y, Konishi K, Tsukahara M, Obaid DM, Aika K-I (2007) J Phys Chem C 111:10073–10081Google Scholar
  105. 105.
    Trzeciak AM, Mieczyńska E, Ziólkowski JJ (2000) Top Catal 11(12):461–468Google Scholar
  106. 106.
    Zhang H, Qiu J, Liang C, Li Z, Wang X, Wang Y, Feng Z, Li C (2005) Catal Lett 101:211–214Google Scholar
  107. 107.
    Kim JY, Park JH, Jung O-S, Chung YK, Park KH (2009) Catal Lett 128:483–486Google Scholar
  108. 108.
    Huang L, Xu Y (2001) Appl Catal A Gen 205:183–193Google Scholar
  109. 109.
    Li X, Zhang Y, Meng F, San X, Yang G, Meng M, Takahashi M, Tsubaki N (2010) Top Catal 53:608–614Google Scholar
  110. 110.
    Liu X, Hu B, Fujimoto K, Haruta M, Tokunaga M (2009) Appl Catal B Environ 92:411–421Google Scholar
  111. 111.
    Franke R, Selent D, Börner A (2012) Chem Rev 112:5675–5732Google Scholar
  112. 112.
    Klosin J, Landis CR (2007) Acc Chem Res 40:1251–1259Google Scholar
  113. 113.
    Casey CP, Whiteker GT (1990) Isr J Chem 30:299–304Google Scholar
  114. 114.
    Carbó JJ, Maseras F, Bo C, van Leeuwen PWNM (2001) J Am Chem Soc 123:7630–7637Google Scholar
  115. 115.
    van Leeuwen PWNM, Kamer PCJ, Reek JNK (1999) Pure Appl Chem 71:1443–1452Google Scholar
  116. 116.
    Casey CP, Whiteker GT, Melville MG, Petrovich LM, Gavney JA, Powell DR (1992) J Am Chem Soc 114:5535–5543Google Scholar
  117. 117.
    Kranenburg M, van der Burgt YEM, Kamer PCJ, van Leeuwen PWNM, Goubitz K, Fraanje J (1995) Organometallics 14:3081–3089Google Scholar
  118. 118.
    Casey CP, Paulsen EL, Beuttenmueller EW, Proft BR, Petrovich LM, Matter BA, Powell DR (1997) J Am Chem Soc 119:11817–11825Google Scholar
  119. 119.
    Billig E, Abatjoglou AG, Bryant DR (1987) US Patent 4,668,651; Eur Patent Appl 213639 (to Union Carbide)Google Scholar
  120. 120.
    Billig E, Abatjoglou AG, Bryant DR (1988) US Patents 4,748,261 and 4,769,498 (to Union Carbide)Google Scholar
  121. 121.
    Cuny GD, Buchwald SL (1993) J Am Chem Soc 115:2066–2068Google Scholar
  122. 122.
    Spangenberg T, Airiau E, Bui The Thuong M, Donnard M, Billet M, Mann A (2008) Synlett 18:2859–2863Google Scholar
  123. 123.
    Airiau E, Girard N, Pizzeti M, Salvadori J, Taddei M, Mann A (2010) J Org Chem 75:8670–8673Google Scholar
  124. 124.
    Arena G, Zill N, Salvadori J, Girard N, Mann A, Taddei M (2011) Org Lett 13:2294–2297Google Scholar
  125. 125.
    Spangenberg T, Breit B, Mann A (2009) Org Lett 11:261–264Google Scholar
  126. 126.
    Airiau E, Spangenberg T, Girard N, Breit B, Mann A (2010) Org Lett 12:528–531Google Scholar
  127. 127.
    Köhling P, Schmidt AM, Eilbracht P (2003) Org Lett 5:3213–3216Google Scholar
  128. 128.
    Schmidt AM, Eilbracht P (2005) J Org Chem 70:5528–5535Google Scholar
  129. 129.
    Bondzić BP, Eilbracht P (2008) Org Lett 10:3433–3436Google Scholar
  130. 130.
    Bates RW, Sivarajan K, Straub BF (2011) J Org Chem 76:6844–6848Google Scholar
  131. 131.
    Dübon P, Farwick A, Helmchen G (2009) Synlett 9:1413–1416Google Scholar
  132. 132.
    Farwick A, Helmchen G (2010) Adv Synth Catal 352:1023–1032Google Scholar
  133. 133.
    Lambers M, Beijer FH, Padron JM, Toth I, de Vries JG (2002) J Org Chem 67:5022–5024Google Scholar
  134. 134.
    Keiichi S, Kawaragi Y, Takai M, Ookoshi T (Mitsubishi Kasei Corp.) (1992) European Patent 0 518 241 (16 Dec 1992)Google Scholar
  135. 135.
    Cai C, Yu S, Cao B, Zhang X (2012) Chem Eur J 18:9992–9998Google Scholar
  136. 136.
    Cobley C, Meek G, Rand C (2011) Tetrahedron Lett 52:3271–3274Google Scholar
  137. 137.
    Wang X, Buchwald SL (2011) J Am Chem Soc 133:19080–19083Google Scholar
  138. 138.
    Šmejkal T, Breit B (2008) Angew Chem Int Ed 47:311–315Google Scholar
  139. 139.
    Diab L, Šmejkal T, Geier J, Breit B (2009) Angew Chem Int Ed 48:8022–8026Google Scholar
  140. 140.
    Babin JE, Whiteker GT (1992) WO 93/03830Google Scholar
  141. 141.
    Whiteker GT, Briggs JR, Babin JE, Barner BA (2003) In: Morrell DG (ed) Catalysis of organic reactions, vol 89. Marcel Dekker, Inc., New York, pp 359–367Google Scholar
  142. 142.
    Rajurkar KB, Tonde SS, Didgikar MR, Joshi SS, Chaudhari R (2007) Ind Eng Chem Res 46:8480–8489Google Scholar
  143. 143.
    Mazuela J, Coll M, Pàmies O, Diéguez M (2009) J Org Chem 74:5440–5445Google Scholar
  144. 144.
    Gual A, Godard C, Castillón S, Claver C (2010) Adv Synth Catal 352:463–477Google Scholar
  145. 145.
    Sémeril D, Matt D, Toupet L (2008) Chem Eur J 14:7144–7155Google Scholar
  146. 146.
    Saidi O, Ruan J, Vinci D, Wu X, Xiao J (2008) Tetrahedron Lett 49:3516–3519Google Scholar
  147. 147.
    Jongsma T, Challa G, van Leeuwen PWNM (1991) J Organomet Chem 421:121–128Google Scholar
  148. 148.
    van Rooy A, Orij EN, Kamer PCJ, van Leeuwen PWNM (1995) Organometallics 14:34–43Google Scholar
  149. 149.
    Sakai N, Mano S, Nozaki K, Takaya H (1993) J Am Chem Soc 115:7033–7034Google Scholar
  150. 150.
    Nakano K, Tanaka R, Nozaki K (2006) Helv Chim Acta 89:1681–1686Google Scholar
  151. 151.
    Tanaka R, Nakano K, Nozaki K (2007) J Org Chem 72:8671–8676Google Scholar
  152. 152.
    Noonan GM, Fuentes JA, Cobley CJ, Clarke ML (2012) Angew Chem Int Ed 51:2477–2480Google Scholar
  153. 153.
    Cobley CJ, Froese RDJ, Klosin J, Qin C, Whiteker GT, Abboud KA (2007) Organometallics 26:2986–2999Google Scholar
  154. 154.
    Axtell AT, Klosin J, Whiteker GT, Cobley C, Fox ME, Jackson M, Abboud KA (2009) Organometallics 28:2993–2999Google Scholar
  155. 155.
    Huang J, Bunel E, Allgeier A, Tedrow J, Storz T, Preston J, Correll T, Manley D, Soukup T, Jensen R (2005) Tetrahedron Lett 46:7831–7834Google Scholar
  156. 156.
    Clark TP, Landis CR, Freed SL, Klosin J, Abboud KA (2005) J Am Chem Soc 127:5040–5042Google Scholar
  157. 157.
    Watkins AL, Hashiguchi BG, Landis CR (2008) Org Lett 10:4553–4556Google Scholar
  158. 158.
    McDonald RI, Wong GW, Neupane RP, Stahl SS, Landis CR (2010) J Am Chem Soc 132:14027–14029Google Scholar
  159. 159.
    Watkins AL, Landis CR (2011) Org Lett 13:164–167Google Scholar
  160. 160.
    Fürstner A, Nevado C, Waser M, Tremblay M, Chevrier C, Teply F, Aïssa C, Moulin E, Müller O (2007) J Am Chem Soc 129:9150–9161Google Scholar
  161. 161.
    Risi RM, Burke SD (2012) Org Lett 14:1180–1182Google Scholar
  162. 162.
    Clemens AJL, Burke SD (2012) J Org Chem 77:2983–2985Google Scholar
  163. 163.
    Clarke ML, Roff GJ (2006) Chem Eur J 12:7978–7986Google Scholar
  164. 164.
    Keulemans AIM, Kwantes A, van Bavel T (1948) Recl Trav Chim Pays-Bas 67:298–308Google Scholar
  165. 165.
    Yan Y, Zhang X (2006) J Am Chem Soc 128:7198–7202Google Scholar
  166. 166.
    Zhang X, Cao B, Yan Y, Yu S, Ji B, Zhang X (2010) Chem Eur J 16:871–877Google Scholar
  167. 167.
    Chikkali SH, Bellini R, Berthon-Gelloz G, van der Vlugt JI, de Bruin B, Reek JNH (2010) Chem Commun 46:1244–1246Google Scholar
  168. 168.
    Chikkali SH, Bellini R, de Bruin B, van der Vlugt JI, Reek JNH (2012) J Am Chem Soc 134:6607–6616Google Scholar
  169. 169.
    Burke SD, Cobb JE (1986) Tetrahedron Lett 27:4237–4240Google Scholar
  170. 170.
    Yeung CS, Dong VM (2011) Angew Chem Int Ed 50:809–812Google Scholar
  171. 171.
    Lightburn TE, Dombrowski MT, Tan KL (2008) J Am Chem Soc 130:9210–9211Google Scholar
  172. 172.
    Worthy AD, Gagnon MM, Dombrowski MT, Tan KL (2009) Org Lett 11:2764–2767Google Scholar
  173. 173.
    Worthy AD, Joe CL, Lightburn TE, Tan KL (2010) J Am Chem Soc 132:14757–14759Google Scholar
  174. 174.
    Joe CL, Tan KL (2011) J Org Chem 76:7590–7596Google Scholar
  175. 175.
    Sun X, Frimpong K, Tan KL (2010) J Am Chem Soc 132:11841–11843Google Scholar
  176. 176.
    Lightburn TE, De Paolis OA, Cheng KH, Tan KL (2011) Org Lett 13:2686–2689Google Scholar
  177. 177.
    Grünanger CU, Breit B (2008) Angew Chem Int Ed 47:7346–7349Google Scholar
  178. 178.
    Grünanger CU, Breit B (2010) Angew Chem Int Ed 49:967–970Google Scholar
  179. 179.
    Usui I, Nomura K, Breit B (2011) Org Lett 13:612–615Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Luca Gonsalvi
    • 1
  • Antonella Guerriero
    • 1
  • Eric Monflier
    • 2
  • Frédéric Hapiot
    • 2
  • Maurizio Peruzzini
    • 1
  1. 1.Consiglio Nazionale delle RicercheIstituto di Chimica dei Composti Organometallici (ICCOM-CNR)Sesto Fiorentino (Firenze)Italy
  2. 2.Faculté Jean PerrinUniversité Lille Nord de France, CNRS UMR 8181, Unité de Catalyse et de Chimie du Solide, UCCS UArtoisLensFrance

Personalised recommendations