Advertisement

Buckyballs

  • Juan L. Delgado
  • Salvatore Filippone
  • Francesco Giacalone
  • Ma Ángeles Herranz
  • Beatriz Illescas
  • Emilio M. Pérez
  • Nazario Martín
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 350)

Abstract

Buckyballs represent a new and fascinating molecular allotropic form of carbon that has received a lot of attention by the chemical community during the last two decades. The unabating interest on this singular family of highly strained carbon spheres has allowed the establishing of the fundamental chemical reactivity of these carbon cages and, therefore, a huge variety of fullerene derivatives involving [60] and [70]fullerenes, higher fullerenes, and endohedral fullerenes have been prepared. Much less is known, however, of the chemistry of the uncommon non-IPR fullerenes which currently represent a scientific curiosity and which could pave the way to a range of new fullerenes. In this review on buckyballs we have mainly focused on the most recent and novel covalent chemistry of fullerenes involving metal catalysis and asymmetric synthesis, as well as on some of the most significant advances in supramolecular chemistry, namely H-bonded fullerene assemblies and the search for efficient concave receptors for the convex surface of fullerenes. Furthermore, we have also described the recent advances in the macromolecular chemistry of fullerenes, that is, those polymer molecules endowed with fullerenes which have been classified according to their chemical structures. This review is completed with the study of endohedral fullerenes, a new family of fullerenes in which the carbon cage of the fullerene contains a metal, molecule, or metal complex in the inner cavity. The presence of these species affords new fullerenes with completely different properties and chemical reactivity, thus opening a new avenue in which a more precise control of the photophysical and redox properties of fullerenes is possible. The use of fullerenes for organic electronics, namely in photovoltaic applications and molecular wires, complements the study and highlights the interest in these carbon allotropes for realistic practical applications. We have pointed out the so-called non-IPR fullerenes – those that do not follow the isolated pentagon rule – as the most intriguing class of fullerenes which, up to now, have only shown the tip of the huge iceberg behind the examples reported in the literature. The number of possible non-IPR carbon cages is almost infinite and the near future will show us whether they will become a reality.

Keywords

Asymmetric synthesis Endohedral fullerenes Fullerenes  Macromolecular chemistry  Molecular wires  Non-IPR fullerenes  Organic photovoltaics Supramolecular chemistry 

References

  1. 1.
    Kroto HW, Heath JR, O’Brien SC et al (1985) C60: buckminsterfullerene. Nature 318:162–163Google Scholar
  2. 2.
    Cami J, Bernard-Salas J, Peeters E et al (2010) Detection of C60 and C70 in a young planetary nebula. Science 329:1180–1182Google Scholar
  3. 3.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58Google Scholar
  4. 4.
    Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605Google Scholar
  5. 5.
    Bethune DS, Kiang CH, de Vries MS et al (1993) Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607Google Scholar
  6. 6.
    Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669Google Scholar
  7. 7.
    Delgado JL, Herranz MA, Martín N (2008) The nanoforms of carbon. J Mater Chem 18:1417–1426Google Scholar
  8. 8.
    Akasaka T, Nagase S (2002) Endofullerenes: a new family of carbon cluster. Kluwer, DordrechtGoogle Scholar
  9. 9.
    Kroto HW (1997) Symmetry, space, stars, and C60. Angew Chem Int Ed 36:1578–1593Google Scholar
  10. 10.
    Smalley RE (1997) Discovering the fullerrenes. Angew Chem Int Ed 36:1594–1601Google Scholar
  11. 11.
    Curl RF (1997) Dawn of the fullerenes: conjecture and experiment. Angew Chem Int Ed 36:1566–1576Google Scholar
  12. 12.
    Martín N (2006) New challenges in fullerene chemistry. Chem Commun 2093–2104Google Scholar
  13. 13.
    Krätschmer W, Lamb LD, Fostiropoulos K et al (1990) Solid C60: a new form of carbon. Nature 347:354–358Google Scholar
  14. 14.
    Jones DEH (1966) Hollow molecules. New Sci 32:245Google Scholar
  15. 15.
    Chuvilin A, Kaiser U, Bichoutskaia E et al (2010) Direct transformation of graphene to fullerene. Nat Chem 2:450–453Google Scholar
  16. 16.
    Kroto HW (1987) The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70. Nature 329:529–531Google Scholar
  17. 17.
    Haddon RC (1992) Electronic structure, conductivity, and superconductivity of alkali metal doped C60. Acc Chem Res 25:127–133Google Scholar
  18. 18.
    Hirsch A, Chen Z, Jiao H (2000) Spherical aromaticity in Ih symmetrical fullerenes: the 2(N + 1)2 rule. Angew Chem Int Ed 39:3915–3917Google Scholar
  19. 19.
    Guldi DM, Martín N (eds) (2002) Fullerenes: from synthesis to optoelectronic properties. Kluwer Academic, DordrechtGoogle Scholar
  20. 20.
    Hirsch A, Brettreich M (2005) Fullerenes, chemistry and reactions. Wiley-VCH, WeinheimGoogle Scholar
  21. 21.
    Langa F, Nierengarten JF (eds) (2012) Fullerenes: principles and applications. Royal Society of Chemistry, CambridgeGoogle Scholar
  22. 22.
    Haddon RC, Brus LE, Raghavachari K (1986) Electronic structure and bonding in icosahedral carbon cluster (C60). Chem Phys Lett 125:459–464Google Scholar
  23. 23.
    Xie Q, Perez-Cordero E, Echegoyen L (1992) Electrochemical detection of C60 and C70: enhanced stability of fullerides in solution. J Am Chem Soc 114:3978–3980Google Scholar
  24. 24.
    Martin N, Altable M, Filippone S et al (2006) Thermal [2+2] intramolecular cycloadditions of fuller-1,6-enynes. Angew Chem Int Ed 45:1439–1442Google Scholar
  25. 25.
    Altable M, Filippone S, Martin-Domenech A et al (2006) Intramolecular ene reaction of 1,6-fullerenynes: a new synthesis of allenes. Org Lett 8:5959–5962Google Scholar
  26. 26.
    Li H, Risko C, Seo JH et al (2011) Fullerene–carbene Lewis acid–base adducts. J Am Chem Soc 133:12410–12413Google Scholar
  27. 27.
    Cozzi F, Powell WH, Thilgen C (2005) Numbering of fullerenes. Pure Appl Chem 77:843–923Google Scholar
  28. 28.
    Komatsu K, Murata Y, Takimoto N et al (1994) Synthesis and properties of the first acetylene derivatives of C60. J Org Chem 59:6101–6102Google Scholar
  29. 29.
    Nagashima H, Terasaki H, Kimura E et al (1994) Silylmethylations of C60 with Grignard reagents: selective synthesis of HC60CH2SiMe2Y and C60(CH2SiMe2Y)2 with selection of solvents. J Org Chem 59:1246–1248Google Scholar
  30. 30.
    Hirsch A, Soi A, Karfunhel HR (1992) Titration of C60: a method for the synthesis of organofullerenes. Angew Chem Int Ed 31:766–768Google Scholar
  31. 31.
    Sawamura M, Iikura H, Nakamura E (1996) The first pentahaptofullerene metal complexes. J Am Chem Soc 118:12850–12851Google Scholar
  32. 32.
    Matsuo Y, Nakamura E (2008) Selective multiaddition of organocopper reagents to fullerenes. Chem Rev 108:3016–3028Google Scholar
  33. 33.
    Martin N, Altable M, Filippone S et al. (2004) Highly efficient Pauson–Khand reaction with C60: regioselective synthesis of unprecedented cis-1 biscycloadducts. Chem Commun 1338–1339Google Scholar
  34. 34.
    Martín N, Altable M, Filippone S et al (2005) Regioselective intramolecular Pauson–Khand reactions of C60: an electrochemical study and theoretical underpinning. Chemistry 11:2716–2729Google Scholar
  35. 35.
    Nambo M, Noyori R, Itami K (2007) Rh-catalyzed arylation and alkenylation of C60 using organoboron compounds. J Am Chem Soc 129:8080–8081Google Scholar
  36. 36.
    Nambo M, Segawa Y, Wakamiya A et al (2011) Selective introduction of organic groups to C60 and C70 using organoboron compounds and rhodium catalyst: a new synthetic approach to organo(hydro)fullerenes. Chem Asian J 6:590–598Google Scholar
  37. 37.
    Lu S, Jin T, Bao M et al (2011) Cobalt-catalyzed hydroalkylation of [60]fullerene with active alkyl bromides: selective synthesis of monoalkylated fullerenes. J Am Chem Soc 133:12842–12848Google Scholar
  38. 38.
    Xiao Z, Matsuo Y, Nakamura E (2010) Copper-catalyzed formal [4+2] annulation between alkyne and fullerene bromide. J Am Chem Soc 132:12234–12236Google Scholar
  39. 39.
    Zhu B, Wang G-W (2009) Palladium-catalyzed heteroannulation of [60]fullerene with anilides via C–H bond activation. Org Lett 11:4334–4337Google Scholar
  40. 40.
    Thilgen C, Gosse I, Diederich F (2003) Chirality in fullerene chemistry. Top Stereochem 23:1–124Google Scholar
  41. 41.
    Thilgen C, Diederich F (2006) Structural aspects of fullerene chemistry: a journey through fullerene chirality. Chem Rev 106:5049–5135Google Scholar
  42. 42.
    Nishimura T (2004) Macromolecular helicity induction on a poly(phenylacetylene) with C2-symmetric chiral [60]fullerene-bisadducts. J Am Chem Soc 126:11711–11717Google Scholar
  43. 43.
    Friedman SH, Ganapathi PS, Rubin Y et al (1998) Optimizing the binding of fullerene inhibitors of the HIV-1 protease through predicted increases in hydrophobic desolvation. J Med Chem 41:2424–2429Google Scholar
  44. 44.
    Hizume Y, Tashiro K, Charvet R et al (2010) Chiroselective assembly of a chiral porphyrin–fullerene dyad: photoconductive nanofiber with a top-class ambipolar charge-carrier mobility. J Am Chem Soc 132:6628–6629Google Scholar
  45. 45.
    Filippone S, Maroto EE, Martín-Domenech A et al (2009) An efficient approach to chiral fullerene derivatives by catalytic enantioselective 1,3-dipolar cycloadditions. Nat Chem 1:578–582Google Scholar
  46. 46.
    Maroto EE, Filippone S, Martin-Domenech A et al (2012) Switching the stereoselectivity: (fullero)pyrrolidines “a la carte”. J Am Chem Soc 134:12936–12938Google Scholar
  47. 47.
    Maroto EE, de Cózar A, Filippone S et al (2011) Hierarchical selectivity in fullerenes: site-, regio-, diastereo-, and enantiocontrol of the 1,3-dipolar cycloaddition to C70. Angew Chem Int Ed 50:6060–6064Google Scholar
  48. 48.
    Sawai K, Takano Y, Izquierdo M et al (2011) Enantioselective synthesis of endohedral metallofullerenes. J Am Chem Soc 133:17746–17752Google Scholar
  49. 49.
    Bosi S, Da Ros T, Spalluto G et al (2003) Fullerene derivatives: an attractive tool for biological applications. Eur J Med Chem 38:913–923Google Scholar
  50. 50.
    Prato M, Martín N (eds) (2002) Special issue: Functionalised fullerenes. J Mater Chem 12:1931–2159Google Scholar
  51. 51.
    Manoharan M, de Proft F, Geerlings P (2000) Aromaticity interplay between quinodimethanes and C60 in Diels–Alder reactions: insights from a theoretical study. J Org Chem 65:6132–6137Google Scholar
  52. 52.
    Kräutler B, Maynollo J (1995) A highly symmetric sixfold cycloaddition product of fullerene C60. Angew Chem Int Ed Engl 34:87–88Google Scholar
  53. 53.
    Herranz MA, Martín N, Ramey J et al (2002) Thermally reversible C60-based donor–acceptor ensembles. Chem Commun 2002:2968–2969Google Scholar
  54. 54.
    Bingel C (1993) Cyclopropanierung von fullerenen. Chem Ber 126:1957–1959Google Scholar
  55. 55.
    Kessinger R, Crassous J, Herrmann A et al (1998) Preparation of enantiomerically pure C76 with a general electrochemical method for the removal of di(alkoxycarbonyl)methano bridges from methanofullerenes: the retro-Bingel reaction. Angew Chem Int Ed 37:1919–1922Google Scholar
  56. 56.
    Kessinger R, Fender NS, Echegoyen LE et al (2000) Selective electrolytic removal of bis(alkoxycarbonyl)methano addends from C60 bis-adducts and electrochemical stability of C70 derivatives. Chemistry 6:2184–2192Google Scholar
  57. 57.
    Moonen NNP, Thilgen C, Echegoyen L et al (2000) The chemical retro-Bingel reaction: selective removal of bis(alkoxycarbonyl)methano addends from C60 and C70 with amalgamated magnesium. Chem Commun 5:335–336Google Scholar
  58. 58.
    Prato M, Maggini M (1998) Fulleropyrrolidines: a family of full-fledged fullerene derivatives. Acc Chem Res 31:519–526Google Scholar
  59. 59.
    Martín N, Altable M, Filippone S et al (2006) Retro-cycloaddition reaction of pyrrolidinofullerenes. Angew Chem Int Ed 45:110–114Google Scholar
  60. 60.
    Brunetti FG, Herrero MA, Muñoz JM et al (2007) Reversible microwave-assisted cycloaddition of aziridines to carbon nanotubes. J Am Chem Soc 129:14580–14581Google Scholar
  61. 61.
    Guryanov I, Montellano Lopez A, Carraro M et al (2009) Metal-free, retro-cycloaddition of fulleropyrrolidines in ionic liquids under microwave irradiation. Chem Commun 3940–3942Google Scholar
  62. 62.
    Filippone S, Izquierdo Barroso M, Martín-Domenech A et al (2008) On the mechanism of the thermal retrocycloaddition of pyrrolidinofullerenes (retro-Prato reaction). Chemistry 14:5198–5206Google Scholar
  63. 63.
    Lukoyanova O, Cardona CM, Altable M et al (2006) Selective electrochemical retro-cycloaddition reaction of pyrrolidinofullerenes. Angew Chem Int Ed 45:7430–7433Google Scholar
  64. 64.
    Martín N, Altable M, Filippone S et al (2007) Highly efficient retro-cycloaddition reaction of isoxazolino[4,5:1,2][60]- and -[70]fullerenes. J Org Chem 72:3840–3846Google Scholar
  65. 65.
    Delgado JL, Oswald F, Cardinali F et al (2008) On the thermal stability of [60]fullerene cycloadducts: retro-cycloaddition reaction of 2-pyrazolino[4,5:1,2][60]-fullerenes. J Org Chem 73:3184–3188Google Scholar
  66. 66.
    Olah GA, Bucsi I, Lambert C et al (1991) Polyarenefullerenes, C60(H-Ar)n, obtained by acid-catalyzed fullerenation of aromatics. J Am Chem Soc 113:9387–9388Google Scholar
  67. 67.
    Giacalone F, Martín N (2006) Fullerene polymers: synthesis and properties. Chem Rev 106:5136–5190Google Scholar
  68. 68.
    Giacalone F, Martín N (eds) (2009) Fullerene polymers: synthesis, properties and applications. Wiley VCH, WeinheimGoogle Scholar
  69. 69.
    Giacalone F, Martín N (2010) New concepts and applications in the macromolecular chemistry of fullerenes. Adv Mater 22:4220–4248Google Scholar
  70. 70.
    Special issue on polymeric fullerenes (1997) Appl Phys A: Mater Sci Process 64:223–330Google Scholar
  71. 71.
    Sundqvist B (1999) Fullerenes under high pressures. Adv Phys 48:1Google Scholar
  72. 72.
    Rao AM, Zhou P, Wang K-A et al (1993) Photo-induced polymerization of solid C60 films. Science 259:955–957Google Scholar
  73. 73.
    Iwasa Y, Arima T, Fleming RM et al (1994) New phases of C60 synthesized at high-pressure. Science 264:1570–1572Google Scholar
  74. 74.
    Takahashi N, Dock H, Matsuzawa N et al (1993) Plasma‐polymerized C60/C70 mixture films: electric conductivity and structure. J Appl Phys 74:5790–5798Google Scholar
  75. 75.
    Nuñez-Regueiro M, Marques L, Hodeau JL et al (1995) Polymerized fullerite structures. Phys Rev Lett 74:278–281Google Scholar
  76. 76.
    Rao AM, Eklund PC, Venkateswaran UD et al (1997) Properties of C60 polymerized under high pressure and temperature. Appl Phys A: Mater Sci Process 64:231–2239Google Scholar
  77. 77.
    Fedurco M, Costa DA, Balch AL et al (1995) Electrochemical synthesis of a redox-active polymer based on buckminsterfullerene epoxide. Angew Chem Int Ed Engl 34:194–196Google Scholar
  78. 78.
    Winkler K, Costa DA, Balch AL et al (1995) A study of fullerene epoxide electroreduction and electropolymerization processes. J Phys Chem 99:17431–17436Google Scholar
  79. 79.
    Liu B, Bunker CE, Sun T-P (1996) Preparation and characterization of soluble pendant [60]fullerene-polystyrene polymers. Chem Commun 1241–1242Google Scholar
  80. 80.
    Stalmach U, de Boer B, Videlot C et al (2000) Semiconducting diblock copolymers synthesized by means of controlled radical polymerization techniques. J Am Chem Soc 122:5464–5472Google Scholar
  81. 81.
    Zheng JW, Goh SH, Lee SY (2000) Miscibility of C60-containing poly(methyl methacrylate)/poly(vinylidene fluoride) blends. J Appl Polym Sci 75:1393–1396Google Scholar
  82. 82.
    Wang C, Tao Z, Yang W et al (2001) Synthesis and photoconductivity study of C60-containing styrene/acrylamide copolymers. Macromol Rapid Commun 22:98–103Google Scholar
  83. 83.
    Gutiérrez-Nava M, Masson P, Nierengarten J-F (2003) Synthesis of copolymers alternating oligophenylenevinylene subunits and fullerene moieties. Tetrahedron Lett 44:4487–4490Google Scholar
  84. 84.
    Vitalini D, Mineo P, Iudicelli V et al (2000) Preparation of functionalized copolymers by thermal processes: porphyrination and fullerenation of a commercial polycarbonate. Macromolecules 33:7300–7309Google Scholar
  85. 85.
    Kraus A, Müllen K (1999) [60]Fullerene-containing poly(dimethylsiloxane)s: easy access to soluble polymers with high fullerene content. Macromolecules 32:4214–4219Google Scholar
  86. 86.
    Ungurenasu C, Pienteala M (2007) Syntheses and characterization of water-soluble C60–curdlan sulfates for biological applications. J Polym Sci Part A: Polym Chem 45:3124–3128Google Scholar
  87. 87.
    Cravino A, Sariciftci NS (2002) Double-cable polymers for fullerene based organic optoelectronic applications. J Mater Chem 12:1931–1943Google Scholar
  88. 88.
    Cravino A, Sariciftci NS (2003) Organic electronics: molecules as bipolar conductors. Nat Mater 2:360–361Google Scholar
  89. 89.
    Kawase T (2012) Receptors for pristine fullerenes based on concave-convex π-π interactions. In: Martín N, Nierengarten J-F (eds) Supramolecular chemistry of fullerenes and carbon nanotubes. Wiley-VCH, Weinheim, pp 55–78 (Chap. 3)Google Scholar
  90. 90.
    Martín N, Nierengarten J-F (2012) Supramolecular chemistry of fullerenes and carbon nanotubes. Wiley-VCH, WeinheimGoogle Scholar
  91. 91.
    Sterescu DM, Stamatialis DF, Mendes E, Wibbenhorst M, Wessling M (2006) Fullerene-modified poly(2,6-dimethyl-1,4-phenylene oxide) gas separation membranes: why binding is better than dispersing. Macromolecules 39:9234–9242Google Scholar
  92. 92.
    Vinogradova LV, Polotskaya GA, Shevtsova AA et al (2009) Gas-separating properties of membranes based on star-shaped fullerene (C60)-containing polystyrenes. Polym Sci Ser A 51:209–215Google Scholar
  93. 93.
    Wang H, DeSousa R, Gasa J et al (2007) Fabrication of new fullerene composite materials and their application in proton exchange membrane fuel cells. J Membr Sci 289:277–283Google Scholar
  94. 94.
    Chen X, Gholamkhass B, Han X et al (2007) Polythiophene-graft-styrene and polythiophene-graft-(styrene-graft-C60) copolymers. Macromol Rapid Commun 28:1792–1797Google Scholar
  95. 95.
    Nanjo M, Cyr PW, Liu K et al (2008) Donor–acceptor C60-containing polyferrocenylsilanes: synthesis, characterization, and applications in photodiode devices. Adv Funct Mater 18:470–477Google Scholar
  96. 96.
    Ling Q-D, Lim S-L, Song Y et al (2007) Nonvolatile polymer memory device based on bistable electrical switching in a thin film of poly(N-vinylcarbazole) with covalently bonded C60. Langmuir 23:312–319Google Scholar
  97. 97.
    Tutt LW, Kost A (1992) Optical limiting performance of C60 and C70 solutions. Nature 356:225–226Google Scholar
  98. 98.
    Cha M, Sariciftci NS, Heeger AJ et al (1995) Enhanced nonlinear absorption and optical limiting in semiconducting polymer/methanofullerene charge transfer films. Appl Phys Lett 67:3850–3852Google Scholar
  99. 99.
    Maggini M, Scorrano G, Prato M et al (1995) C60 derivatives embedded in sol–gel silica films. Adv Mater 7:404–406Google Scholar
  100. 100.
    Bunker CE, Lawson GE, Sun YP (1995) Fullerene-styrene random copolymers. Novel optical properties. Macromolecules 28:3744–3746Google Scholar
  101. 101.
    Kojima Y, Matsuoka T, Takahashi H et al (1995) Optical limiting property of polystyrene-bound C60. Macromolecules 28:8868–8869Google Scholar
  102. 102.
    Lu Z, Goh SH, Lee SY et al (1999) Synthesis, characterization and nonlinear optical properties of copolymers of benzylaminofullerene with methyl methacrylate or ethyl methacrylate. Polymer 40:2863–2867Google Scholar
  103. 103.
    Sun YP, Riggs JE (1997) Non-linear absorptions in pendant [60]fullerene–polystyrene polymers. J Chem Soc Faraday Trans 93:1965–1969Google Scholar
  104. 104.
    Tang BZ, Xu HY, Lam JWY et al (2000) C60-containing poly(1-phenyl-1-alkynes): synthesis, light emission, and optical limiting. Chem Mater 12:1446–1449Google Scholar
  105. 105.
    Li FY, Li YL, Guo ZX et al (2000) Synthesis and optical limiting properties of polycarbonates containing fullerene derivative. J Phys Chem Solids 61:1101–1103Google Scholar
  106. 106.
    Celli A, Marchese P, Vannini M et al (2011) Synthesis of novel fullerene-functionalized polysulfones for optical limiting applications. React Funct Polym 71:641–647Google Scholar
  107. 107.
    Mroz P, Tegos GP, Gali H et al (2007) Photodynamic therapy with fullerenes. Photochem Photobiol Sci 6:1139–1149Google Scholar
  108. 108.
    Liu Y, Wang H, Liang P et al (2004) Water-soluble supramolecular fullerene assembly mediated by metallobridged β-cyclodextrins. Angew Chem Int Ed 43:2690–2694Google Scholar
  109. 109.
    Samal S, Choi B-J, Geckeler KE (2001) DNA-cleavage by fullerene-based synzymes. Macromol Biosci 1:329–331Google Scholar
  110. 110.
    Liu J, Ohta S, Sonoda A et al (2007) Preparation of PEG-conjugated fullerene containing Gd3+ ions for photodynamic therapy. J Control Release 117:104–110Google Scholar
  111. 111.
    Stoilova O, Jérôme C, Detrembleur C et al (2007) C60-containing nanostructured polymeric materials with potential biomedical applications. Polymer 48:1835–1843Google Scholar
  112. 112.
    Drees M, Hoppe H, Winder C et al (2005) Stabilization of the nanomorphology of polymer–fullerene “bulk heterojunction” blends using a novel polymerizable fullerene derivative. J Mater Chem 15:5158–5163Google Scholar
  113. 113.
    Sivula K, Ball ZT, Watanabe N et al (2006) Amphiphilic diblock copolymer compatibilizers and their effect on the morphology and performance of polythiophene:fullerene solar cells. Adv Mater 18:206–210Google Scholar
  114. 114.
    Yang C, Lee JK, Heeger AJ et al (2009) Well-defined donor–acceptor rod–coil diblock copolymers based on P3HT containing C60: the morphology and role as a surfactant in bulk-heterojunction solar cells. J Mater Chem 19:5416–5423Google Scholar
  115. 115.
    Hsieh C-H, Cheng Y-J, Li P-J et al (2010) Highly efficient and stable inverted polymer solar cells integrated with a cross-linked fullerene material as an interlayer. J Am Chem Soc 132:4887–4893Google Scholar
  116. 116.
    Cheng Y-J, Hsieh C-H, He Y et al (2010) Combination of indene-C60 bis-adduct and cross-linked fullerene interlayer leading to highly efficient inverted polymer solar cells. J Am Chem Soc 132:17381–17383Google Scholar
  117. 117.
    Jeffery GA (1997) An introduction to hydrogen bonding. Oxford University Press, OxfordGoogle Scholar
  118. 118.
    Collins AF, Critchley C (2005) Artificial photosynthesis: from basic biology to industrial applications. Wiley, WeinheimGoogle Scholar
  119. 119.
    Delgado JL, Bouit PA, Filippone S et al (2010) Organic photovoltaics: a chemical approach. Chem Commun 46:4853–4865Google Scholar
  120. 120.
    Pinzón JR, Villalta-Cerdas A, Echegoyen L (2012) Fullerenes, carbon nanotubes, and graphene for molecular electronics. Top Curr Chem 312:127–174Google Scholar
  121. 121.
    Diederich F, Echegoyen L, Gómez-López M et al (1999) The self-assembly of fullerene-containing [2]pseudorotaxanes: formation of a supramolecular C60 dimer. J Chem Soc Perkin Trans 2:1577–1586Google Scholar
  122. 122.
    Rispens MT, Sánchez L, Knol J et al (2001) Supramolecular organization of fullerenes by quadruple hydrogen bonding. Chem Commun 161–162Google Scholar
  123. 123.
    González JJ, González S, Priego E et al (2001) A new approach to supramolecular C60-dimers based in quadruple hydrogen bonding. Chem Commun 163–164Google Scholar
  124. 124.
    Da Ros T, Guldi DM, Morales AF et al (2003) Hydrogen bond-assembled fullerene molecular shuttle. Org Lett 5:689–691Google Scholar
  125. 125.
    Mateo-Alonso A, Fioravanti G, Marcaccio M et al (2006) Reverse shuttling in a fullerene-stoppered rotaxane. Org Lett 8:5173–5176Google Scholar
  126. 126.
    Mateo-Alonso A, Brough P, Prato M (2007) Stabilization of fulleropyrrolidine N-oxides through intrarotaxane hydrogen bonding. Chem Commun 1412–1414Google Scholar
  127. 127.
    Mateo-Alonso A, Fioravanti G, Marcaccio M et al (2007) An electrochemically driven molecular shuttle controlled and monitored by C60. Chem Commun 1945–1947Google Scholar
  128. 128.
    Scarel F, Valenti G, Gaikwad S et al (2012) A molecular shuttle driven by fullerene radical-anion recognition. Chemistry 44:14063–14068Google Scholar
  129. 129.
    Guldi DM, Ramey J, Martínez-Díaz MV et al (2002) Reversible zinc phthalocyanine fullerene ensembles. Chem Commun 2774–2775Google Scholar
  130. 130.
    Sánchez L, Sierra M, Martín N et al (2006) Exceptionally strong electronic communication through hydrogen bonds in porphyrin–C60 pairs. Angew Chem Int Ed 45:4637–4641Google Scholar
  131. 131.
    Sessler JL, Jayawickramarajah J, Gouloumis A et al (2005) Synthesis and photophysics of a porphyrin-fullerene dyad assembled through Watson–Crick hydrogen bonding. Chem Commun 1892–1894Google Scholar
  132. 132.
    Torres T, Gouloumis A, Sánchez-García D et al (2007) Photophysical characterization of a cytidine-guanosine tethered phthalocyanine-fullerene dyad. Chem Commun 292–294Google Scholar
  133. 133.
    Wessendorf F, Gnichwitz J-F, Sarova GH et al (2007) Implementation of a Hamilton-receptor-based hydrogen-bonding motif toward a new electron donor-acceptor prototype: electron versus energy transfer. J Am Chem Soc 129:16057–16071Google Scholar
  134. 134.
    Maurer K, Grimm B, Wessendorf F et al (2010) Self-assembling depsipeptide dendrimers and dendritic fullerenes with new cis- and trans-symmetric Hamilton receptor functionalized Zn–porphyrins: synthesis, photophysical properties and cooperativity phenomena. Eur J Org Chem 5010–5029Google Scholar
  135. 135.
    Grimm B, Schornbaum J, Jasch H et al (2012) Step-by-step self-assembled hybrids that feature control over energy and charge transfer. Proc Natl Acad Sci U S A 109:15565–15571Google Scholar
  136. 136.
    Santos J, Grimm B, Illescas BM et al (2008) Cooperativity between π-π and H-bonding interactions – a supramolecular complex formed by C60 and exTTF. Chem Commun 5993–5995Google Scholar
  137. 137.
    Huang C-H, McClenaghan ND, Kuhn A et al (2005) Enhanced photovoltaic response in hydrogen-bonded all-organic devices. Org Lett 7:3409–3412Google Scholar
  138. 138.
    Chu C-C, Raffy G, Ray D et al (2010) Self-assembly of supramolecular fullerene ribbons via hydrogen-bonding interactions and their impact on fullerene electronic interactions and charge carrier mobility. J Am Chem Soc 132:12717–12723Google Scholar
  139. 139.
    Pérez EM, Martín N (2008) Curves ahead: molecular receptors for fullerenes based on concave-convex complementarity. Chem Soc Rev 37:1512–1519Google Scholar
  140. 140.
    Tashiro K, Aida T (2007) Metalloporphyrin hosts for supramolecular chemistry of fullerenes. Chem Soc Rev 36:189–197Google Scholar
  141. 141.
    Kawase T, Kurata H (2006) Ball-, bowl-, and belt-shaped conjugated systems and their complexing abilities: exploration of the concave-convex π−π interaction. Chem Rev 106:5250–5273Google Scholar
  142. 142.
    Mizyed S, Georghiou PE, Bancu M et al (2001) Embracing C60 with multiarmed geodesic partners. J Am Chem Soc 123:12770–12774Google Scholar
  143. 143.
    Sygula A, Fronczek FR, Sygula R et al (2007) A double concave hydrocarbon buckycatcher. J Am Chem Soc 129:3842–3843Google Scholar
  144. 144.
    Pérez EM, Martín N (2010) Molecular tweezers for fullerenes. Pure Appl Chem 82:523–533Google Scholar
  145. 145.
    Kawase T, Darabi HR, Oda M (1996) Cyclic [6]- and [8]paraphenylacetylenes. Angew Chem Int Ed 35:2664–2666Google Scholar
  146. 146.
    Kawase T, Tanaka K, Fujiwara N et al (2003) Complexation of a carbon nanoring with fullerenes. Angew Chem Int Ed 42:1624–1628Google Scholar
  147. 147.
    Kawase T, Tanaka K, Seirai Y et al (2003) Complexation of carbon nanorings with fullerenes: supramolecular dynamics and structural tuning for a fullerene sensor. Angew Chem Int Ed 42:5597–5600Google Scholar
  148. 148.
    Omachi H, Segawa Y, Itami K (2012) Synthesis of cycloparaphenylenes and related carbon nanorings: a step toward the controlled synthesis of carbon nanotubes. Acc Chem Res 45:1378–1389Google Scholar
  149. 149.
    Iwamoto T, Watanabe Y, Sadahiro T et al (2011) Size-selective encapsulation of C60 by [10]cycloparaphenylene: formation of the shortest fullerene-peapod. Angew Chem Int Ed 50:8342–8344Google Scholar
  150. 150.
    Xia J, Bacon JW, Jasti R (2012) Gram-scale synthesis and crystal structures of [8]- and [10]CPP, and the solid-state structure of C60·[10]CPP. Chem Sci 3:3018–3021Google Scholar
  151. 151.
    Pérez EM, Sánchez L, Fernández G et al (2006) exTTF as a building block for fullerene receptors. Unexpected solvent-dependent positive homotropic cooperativity. J Am Chem Soc 128:7172–7173Google Scholar
  152. 152.
    Gayathri SS, Wielopolski M, Pérez EM et al (2009) Discrete supramolecular donor-acceptor complexes. Angew Chem Int Ed 48:815–819Google Scholar
  153. 153.
    Pérez EM, Capodilupo AL, Fernández G et al (2008) Weighting non-covalent forces in the molecular recognition of C60. Relevance of concave-convex complementarity. Chem Commun 4567–4569Google Scholar
  154. 154.
    Pérez EM, Martín N (2012) Chiral recognition of carbon nanoforms. Org Biomol Chem 10:3577–3583Google Scholar
  155. 155.
    Pérez EM, Sierra M, Sánchez L et al (2007) Concave tetrathiafulvalene-type donors as supramolecular partners for fullerenes. Angew Chem Int Ed 46:1847–1851Google Scholar
  156. 156.
    Haino T, Yanase M, Fukazawa Y (1998) Fullerenes enclosed in bridged calix[5]arenes. Angew Chem Int Ed 37:997–998Google Scholar
  157. 157.
    Uno H, Furukawa M, Fujimoto A et al (2011) Porphyrin molecular tweezers for fullerenes. J Porphyr Phthalocyanins 15:951–963Google Scholar
  158. 158.
    Sun D, Tham FS, Reed CA et al (2000) Porphyrin-fullerene host-guest chemistry. J Am Chem Soc 122:10704–10705Google Scholar
  159. 159.
    Sun D, Tham FS, Reed CA et al (2002) Supramolecular fullerene-porphyrin chemistry. Fullerene complexation by metalated “jaws porphyrin” hosts. J Am Chem Soc 124:6604–6612Google Scholar
  160. 160.
    Hosseini A, Taylor S, Accorsi G et al (2006) Calix[4]arene-linked bisporphyrin hosts for fullerenes: binding strength, solvation effects, and porphyrin-fullerene charge transfer bands. J Am Chem Soc 128:15903–15913Google Scholar
  161. 161.
    Ayabe M, Ikeda A, Shinkai S et al (2002) A novel [60]fullerene receptor with a Pd(II)-switched bisporphyrin cleft. Chem Commun 1032–1033Google Scholar
  162. 162.
    Fernández G, Pérez EM, Sánchez L et al (2008) Self-organization of electroactive materials: a head-to-tail donor-acceptor supramolecular polymer. Angew Chem Int Ed 47:1094–1097Google Scholar
  163. 163.
    Fernández G, Pérez EM, Sánchez L et al (2008) An electroactive dynamically polydisperse supramolecular dendrimer. J Am Chem Soc 130:2410–2411Google Scholar
  164. 164.
    Santos J, Pérez EM, Illescas BM et al (2011) Linear and hyperbranched electron-acceptor supramolecular oligomers. Chem Asian J 6:1848–1853Google Scholar
  165. 165.
    Fernández G, Sánchez L, Pérez EM et al (2008) Large exTTF-based dendrimers. Self-assembly and peripheral cooperative multiencapsulation of C60. J Am Chem Soc 130:10674–10683Google Scholar
  166. 166.
    Canevet D, Pérez EM, Martín N (2011) Wraparound hosts for fullerenes: tailored macrocycles and cages. Angew Chem Int Ed 50:9248–9259Google Scholar
  167. 167.
    Tashiro K, Aida T, Zheng J-Y et al (1999) A cyclic dimer of metalloporphyrin forms a highly stable inclusion complex with C60. J Am Chem Soc 121:9477–9478Google Scholar
  168. 168.
    Yanagisawa M, Tashiro K, Yamasaki M et al (2007) Hosting fullerenes by dynamic bond formation with an iridium porphyrin cyclic dimer: a “chemical friction” for rotary guest motions. J Am Chem Soc 129:11912–11913Google Scholar
  169. 169.
    Gil-Ramírez G, Karlen SD, Shundo A et al (2010) A cyclic porphyrin trimer as a receptor for fullerenes. Org Lett 12:3544–3547Google Scholar
  170. 170.
    Song J, Aratani N, Shinokubo H et al (2010) A porphyrin nanobarrel that encapsulates C60. J Am Chem Soc 132:16356–16357Google Scholar
  171. 171.
    Zheng J-Y, Tashiro K et al (2001) Cyclic dimers of metalloporphyrins as tunable hosts for fullerenes: a remarkable effect of rhodium(III). Angew Chem Int Ed 40:1857–1861Google Scholar
  172. 172.
    Isla H, Gallego M, Pérez EM et al (2010) A bis-exTTF macrocyclic receptor that associates C60 with micromolar affinity. J Am Chem Soc 132:1772–1773Google Scholar
  173. 173.
    Canevet D, Gallego M, Isla H et al (2011) Macrocyclic hosts for fullerenes: extreme changes in binding abilities with small structural variations. J Am Chem Soc 133:3184–3190Google Scholar
  174. 174.
    Akasaka T, Wudl F, Nagase S (2010) Chemistry of nanocarbons. Wiley-VCH, ChichesterGoogle Scholar
  175. 175.
    Yamada M, Akasaka T, Nagase S (2010) Endohedral metal atoms in pristine and functionalized fullerene cages. Acc Chem Res 43:92–102Google Scholar
  176. 176.
    Lu X, Akasaka T, Nagase S (2012) Chemistry of endohedral metallofullerenes: the role of metals. Chem Commun 47:5942–5957Google Scholar
  177. 177.
    Rodríguez-Fortea A, Balch AL, Poblet JM (2011) Endohedral metallofullerenes: a unique host-guest association. Chem Soc Rev 40:3551–3563Google Scholar
  178. 178.
    Dunsch L, Yang S (2007) Metal nitride cluster fullerenes: their current state and future prospects. Small 3:1298–1320Google Scholar
  179. 179.
    Stevenson S, Mackey MA, Stuart MA et al (2008) A distorted tetrahedral metal oxide cluster inside an icosahedral carbon cage. Synthesis, isolation, and structural characterization of Sc4(mu3-O)2@Ih-C80. J Am Chem Soc 130:11844–11845Google Scholar
  180. 180.
    Chaur MN, Melin F, Ortiz AL et al (2009) Chemical, electrochemical, and structural properties of endohedral metallofullerenes. Angew Chem Int Ed 48:7514–7538Google Scholar
  181. 181.
    Saunders M, Jiménez-Vázquez HA, Cross RJ et al (1993) Stable compounds of helium and neon. He@C60 and Ne@C60. Science 259:1428–1430Google Scholar
  182. 182.
    Kurotobi K, Murata Y (2011) A single molecule of water encapsulated in fullerene C60. Science 333:613–616Google Scholar
  183. 183.
    Campanera JM, Bo C, Olmstead MM et al (2002) Bonding within the endohedral fullerenes Sc3N@C78 and Sc3N@C80 as determined by density functional calculations and reexamination of the crystal structure of {Sc3N@C78}·Co(OEP)}·1.5(C6H6)·0.3(CHCl3). J Phys Chem A 106:12356–12364Google Scholar
  184. 184.
    Aoyagi S, Nishibori E, Sawa H et al (2010) A layered ionic crystal of polar Li@C60 superatoms. Nat Chem 2:678–683Google Scholar
  185. 185.
    Aoyagi S, Sado Y, Nishibori E et al (2012) Rock-salt-type crystal of thermally contracted C60 with encapsulated lithium cation. Angew Chem Int Ed 51:3377–3381Google Scholar
  186. 186.
    Chai Y, Guo T, Jin C et al (1991) Fullerenes with metals inside. J Phys Chem 95:7564–7568Google Scholar
  187. 187.
    Nagase S, Kobayashi K (1994) The ionization energies and electron affinities of endohedral metallofullerenes MC82(M = Sc, Y, La): density functional calculations. J Chem Soc Chem Commun 1837–1838Google Scholar
  188. 188.
    Tsuchiya T, Sato K, Kurihara H et al (2006) Spin-site exchange system constructed from endohedral metallofullerenes and organic donors. J Am Chem Soc 128:14418–14419Google Scholar
  189. 189.
    Sato S, Seki S, Honsho Y et al (2011) Semi-metallic single-component crystal of soluble La@C82 derivative with high electron mobility. J Am Chem Soc 133:2766–2771Google Scholar
  190. 190.
    Feng L, Tsuchiya T, Wakahara T et al (2006) Synthesis and characterization of a bisadduct of La@C82. J Am Chem Soc 128:5990–5991Google Scholar
  191. 191.
    Wakahara T, Yamada M, Takahashi S et al (2007) Two-dimensional hopping motion of encapsulated La atoms in silylated La2@C80. Chem Commun 2680–2682Google Scholar
  192. 192.
    Yamada M, Mizorogi N, Tsuchiya T et al (2009) Synthesis and characterization of the D 5h isomer of the endohedral dimetallofullerene Ce2@C80: two-dimensional circulation of encapsulated metal atoms inside a fullerene cage. Chemistry 15:9486–9493Google Scholar
  193. 193.
    Stevenson S, Rice G, Glass T et al (1999) Small-bandgap endohedral metallofullerenes in high yield and purity. Nature 401:55–57Google Scholar
  194. 194.
    Popov AA, Dunsch L (2007) Structure, stability, and cluster-cage interactions in nitride clusterfullerenes M3N@C2n (M = Sc, Y; 2n = 68–98): a density functional theory study. J Am Chem Soc 129:11835–11849Google Scholar
  195. 195.
    Rodríguez-Fortea A, Alegret N, Balch AL et al (2010) The maximum pentagon separation rule provides a guideline for the structures of endohedral metallofullerenes. Nat Chem 2:955–961Google Scholar
  196. 196.
    Stevenson S, Phillips JP, Reid JE et al (2004) Pyramidalization of Gd3N inside a C80 cage. The synthesis and structure of Gd3N@C80. Chem Commun 2814–2815Google Scholar
  197. 197.
    Chaur MN, Melin F, Elliott B et al (2007) Gd3N@C2n (n = 40, 42, and 44): remarkably low HOMO-LUMO gap and unusual electrochemical reversibility of Gd3N@C88. J Am Chem Soc 129:14826–14829Google Scholar
  198. 198.
    Chaur MN, Melin F, Ashby J et al (2008) Lanthanum nitride endohedral fullerenes La3N@C2n (43< or =n< or =55): preferential formation of La3N@C96. Chemistry 14:8213–8219Google Scholar
  199. 199.
    Cao B, Wakahara T, Maeda Y et al (2004) Lanthanum endohedral metallofulleropyrrolidines: synthesis, isolation, and EPR characterization. Chemistry 10:716–720Google Scholar
  200. 200.
    Cardona CM, Kitaygorodskiy A, Echegoyen L (2005) Trimetallic nitride endohedral metallofullerenes: reactivity dictated by the encapsulated metal cluster. J Am Chem Soc 127:10448–10453Google Scholar
  201. 201.
    Yamada M, Someya C, Wakahara T et al (2008) Metal atoms collinear with the spiro carbon of 6,6-open adducts, M2@C80(Ad) (M = La and Ce, Ad = adamantylidene). J Am Chem Soc 130:1171–1176Google Scholar
  202. 202.
    Shustova NB, Popov AA, Mackey MA et al (2007) Radical trifluoromethylation of Sc3N@C80. J Am Chem Soc 129:11676–11677Google Scholar
  203. 203.
    Shu C, Cai T, Xu L et al (2007) Manganese(III)-catalyzed free radical reactions on trimetallic nitride endohedral metallofullerenes. J Am Chem Soc 129:15710–15717Google Scholar
  204. 204.
    Iezzi EB, Duchamp JC, Harich K (2002) A symmetric derivative of the trimetallic nitride endohedral metallofullerene, Sc3N@C80. J Am Chem Soc 124:524–525Google Scholar
  205. 205.
    Lee HM, Olmstead MM, Iezzi E et al (2002) Crystallographic characterization and structural analysis of the first organic functionalization product of the endohedral fullerene Sc3N@C80. J Am Chem Soc 124:3494–3495Google Scholar
  206. 206.
    Ge Z, Duchamp JC, Cai T et al (2005) Purification of endohedral trimetallic nitride fullerenes in a single, facile step. J Am Chem Soc 127:16292–16298Google Scholar
  207. 207.
    Cai T, Ge Z, Iezzi EB et al (2005) Synthesis and characterization of the first trimetallic nitride templated pyrrolidino endohedral metallofullerenes. Chem Commun 3594–3596Google Scholar
  208. 208.
    Wakahara T, Iiduka Y, Ikenaga O et al (2006) Characterization of the bis-silylated endofullerene Sc3N@C80. J Am Chem Soc 128:9919–9925Google Scholar
  209. 209.
    Yamada M, Minowa M, Sato S et al (2011) Regioselective cycloaddition of La2@I h-C80 with tetracyanoethylene oxide: formation of an endohedral dimetallofullerene adduct featuring enhanced electron-accepting character. J Am Chem Soc 33:3796–3799Google Scholar
  210. 210.
    Liu T-X, Wei T, Zhu S-E et al (2012) Azide addition to an endohedral metallofullerene: formation of azafulleroids of Sc3N@I h-C80. J Am Chem Soc 134:11956–11959Google Scholar
  211. 211.
    Yamada M, Nakahodo T, Wakahara T et al (2005) Positional control of encapsulated atoms inside a fullerene cage by exohedral addition. J Am Chem Soc 127:14570–14571Google Scholar
  212. 212.
    Yamada M, Wakahara T, Nakahodo T et al (2006) Synthesis and structural characterization of endohedral pyrrolidinodimetallofullerene: La2@C80(CH2)2NTrt. J Am Chem Soc 128:1402–1403Google Scholar
  213. 213.
    Cardona CM, Elliott B, Echegoyen L (2006) Unexpected chemical and electrochemical properties of M3N@C80 (M = Sc, Y, Er). J Am Chem Soc 128:6480–6485Google Scholar
  214. 214.
    Rodríguez-Fortea A, Campanera JM, Cardona CM et al (2006) Dancing on a fullerene surface: isomerization of Y3N@(N-ethylpyrrolidino-C80) from the 6,6 to the 5,6 regioisomers. Angew Chem Int Ed 45:8176–8180Google Scholar
  215. 215.
    Pinzón JR, Plonska-Brzezinska ME, Cardona CM et al (2008) Sc3N@C80-ferrocene electron-donor/acceptor conjugates as promising materials for photovoltaic applications. Angew Chem Int Ed 47:4173–4176Google Scholar
  216. 216.
    Takano Y, Herranz MA, Martín N et al (2010) Donor-acceptor conjugates of lanthanum endohedral metallofullerene and π-extended tetrathiafulvalene. J Am Chem Soc 132:8048–8055Google Scholar
  217. 217.
    Li FF, Pinzón JR, Mercado BQ et al (2011) [2+2]Cycloaddition reaction to Sc3N@I h-C80. The formation of very stable [5,6]- and [6,6]-adducts. J Am Chem Soc 133:1563–1571Google Scholar
  218. 218.
    Wang GW, Liu TX, Jiao M et al (2011) The cycloaddition reaction of I h-Sc3N@C80 with 2-amino-4,5-diisopropoxybenzoic acid and isoamyl nitrite to produce an open-cage metallofullerene. Angew Chem Int Ed 50:4658–4662Google Scholar
  219. 219.
    Lukoyanova O, Cardona CM, Rivera J et al (2007) Open rather than closed malonate methano-fullerene derivatives. The formation of methanofulleroid adducts of Y3N@C80. J Am Chem Soc 129:10423–10430Google Scholar
  220. 220.
    Cai T, Xu L, Shu C et al (2008) Selective formation of a symmetric Sc3N@C78 bisadduct: adduct docking controlled by an internal trimetallic nitride cluster. J Am Chem Soc 130:2136–2137Google Scholar
  221. 221.
    Rudolf M, Wolfrum S, Guldi DM et al (2012) Endohedral metallofullerenes–filled fullerene derivatives towards multifunctional reaction center mimics. Chemistry 8:5136–48Google Scholar
  222. 222.
    Feng L, Rudolf M, Wolfrum S et al (2012) A paradigmatic change: linking fullerenes to electron acceptors. J Am Chem Soc 34:12190–12197Google Scholar
  223. 223.
    Li FF, Rodríguez-Fortea A, Poblet JM et al (2011) Reactivity of metallic nitride endohedral metallofullerene anions: electrochemical synthesis of a Lu3N@I h-C80 derivative. J Am Chem Soc 133:2760–2765Google Scholar
  224. 224.
    Li FF, Rodríguez-Fortea A, Peng P et al (2012) Electrosynthesis of a Sc3N@I h-C80 methano derivative from trianionic Sc3N@Ih-C80. J Am Chem Soc 134:480–7487Google Scholar
  225. 225.
    Tsuchiya T, Wielopolski M, Sakuma N et al (2011) Stable radical anions inside fullerene cages: formation of reversible electron transfer systems. J Am Chem Soc 133:13280–13283Google Scholar
  226. 226.
    Armaroli N, Balzani V (2007) The future of energy supply: challenges and opportunities. Angew Chem Int Ed 46:52–66Google Scholar
  227. 227.
    Chapin DM, Fuller CS, Pearson GL (1954) A new silicon pn junction photocell for converting solar radiation into electrical power. J Appl Chem 25:676–678Google Scholar
  228. 228.
    Rispens MT, Hummelen JC (2002) Fullerenes: from synthesis to optoelectronic properties. In: Guldi DM, Martín N (eds) Photovoltaic applications. Kluwer Academic, Dordrech, pp 387–435 (Chap. 12)Google Scholar
  229. 229.
    Hummelen JC, Knight BW, LePeq F et al (1995) Preparation and characterization of fulleroid and methanofullerene derivatives. J Org Chem 60:532–538Google Scholar
  230. 230.
    Yu G, Gao J, Hummelen JC et al (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270:1789–1791Google Scholar
  231. 231.
    Zhang Y, Yip HL, Acton O et al (2009) A simple and effective way of achieving highly efficient and thermally stable bulk-heterojunction polymer solar cells using amorphous fullerene derivatives as electron acceptor. Chem Mater 21:2598–2600Google Scholar
  232. 232.
    Lenes L, Wetzelaer GJAH, Kooistra FB et al (2008) Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells. Adv Mater 20:2116–2119Google Scholar
  233. 233.
    Wienk MM, Kroon JM, Verhees WJH et al (2003) Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angew Chem Int Ed 42:3371–3375Google Scholar
  234. 234.
    Park SH, Roy A, Beaupré S et al (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photonics 3:297–302Google Scholar
  235. 235.
    Kooistra FB, Mihailetchi VD, Popescu LM et al (2006) New C84 derivative and its application in a bulk heterojunction solar cell. Chem Mater 18:3068–3073Google Scholar
  236. 236.
    Li CZ, Yip HL, Jen AKY (2012) Functional fullerenes for organic photovoltaics. J Mater Chem 22:4161–4177Google Scholar
  237. 237.
    Riedel I, von Hauff E, Parisi J et al (2005) Diphenylmethanofullerenes: new and efficient acceptors in bulk-heterojunction solar cells. Adv Funct Mater 15:1979–1987Google Scholar
  238. 238.
    Riedel I, Martín N, Giacalone F et al (2004) Polymer solar cells with novel fullerene-based acceptor. Thin Solid Films 451:43–47Google Scholar
  239. 239.
    Backer S, Sivula K, Kavulak DF et al (2007) High efficiency organic photovoltaics incorporating a new family of soluble fullerene derivatives. Chem Mater 19:2927–2929Google Scholar
  240. 240.
    He Y, Chen HY, Hou J et al (2010) Indene–C60 bisadduct: a new acceptor for high-performance polymer solar cells. J Am Chem Soc 132:1377–1382Google Scholar
  241. 241.
    Weiss EA, Wasielewski MR, Ratner MA (2005) Molecules as wires: molecule-assisted movement of charge and energy. Top Curr Chem 257:103–133Google Scholar
  242. 242.
    Guldi DM, Illescas BM, Atienza CM et al (2009) Fullerene for organic electronics. Chem Soc Rev 38:1587–1597Google Scholar
  243. 243.
    Ito O, Yamanaka K (2009) Roles of molecular wires between fullerenes and electron donors in photoinduced electron transfer. Bull Chem Soc Jpn 82:316–332Google Scholar
  244. 244.
    Vail SA, Schuster DI, Guldi DM et al (2006) Energy and electron transfer in beta-alkynyl-linked porphyrin-[60]fullerene dyads. J Phys Chem B 110:14155–14166Google Scholar
  245. 245.
    Vail SA, Krawczuk PJ, Guldi DM et al (2005) Energy and electron transfer in polyacetylene-linked zinc–porphyrin–[60]fullerene molecular wires. Chemistry 11:3375–3388Google Scholar
  246. 246.
    Tashiro K, Sato A, Yuzawa T et al (2006) Long-range photoinduced electron transfer mediated by oligo-p-phenylenebutadiynylene conjugated bridges. Chem Lett 35:518–519Google Scholar
  247. 247.
    Lembo A, Tagliatesta P, Guldi DM et al (2009) Porphyrin-β-oligo-ethynylenephenylene-[60]fullerene triads: synthesis and electrochemical and photophysical characterization of the new porphyrin-oligo-PPE-[60]fullerene systems. J Phys Chem A 113:1779–1793Google Scholar
  248. 248.
    Giacalone F, Segura JL, Martín N et al (2004) Exceptionally small attenuation factors in molecular wires. J Am Chem Soc 126:5340–5341Google Scholar
  249. 249.
    Giacalone F, Segura JL, Martín N et al (2005) Probing molecular wires: synthesis, structural, and electronic study of donor-acceptor assemblies exhibiting long-range electron transfer. Chemistry 11:4819–4834Google Scholar
  250. 250.
    de la Torre G, Giacalone F, Segura JL et al (2005) Electronic communication through π-conjugated wires in covalently linked porphyrin/C60 ensembles. Chemistry 11:12671280Google Scholar
  251. 251.
    Molina-Ontoria A, Wielopolski M, Gebhardt J (2011) [2,2′]Paracyclophane-based π-conjugaed molecular wires reveal molecular-junction behavior. J Am Chem Soc 133:2370–2373Google Scholar
  252. 252.
    Atienza-Castellanos C, Wielopolski M, Guldi DM et al (2007) Determination of the attenuation factor in fluorene-based molecular wires. Chem Commun 5164–5166Google Scholar
  253. 253.
    Wielopolski M, Santos J, Illescas BM et al (2011) Vinyl spacers – tuning electron transfer through fluorene-based molecular wires. Energy Environ Sci 4:765–771Google Scholar
  254. 254.
    Ikemoto J, Takimiya K, Aso Y et al (2002) Porphyrin–oligothiophene–fullerene triads as an efficient intramolecular electron-transfer system. Org Lett 4:309–311Google Scholar
  255. 255.
    Nakamura T, Fujitsuka M, Araki Y et al (2004) Photoinduced electron transfer in porphyrin-oligothiophene-fullerene linked triads by excitation of a porphyrin moiety. J Phys Chem B 108:10700–10710Google Scholar
  256. 256.
    Wessendorf F, Grimm B, Guldi DM et al (2010) Pairing fullerenes and porphyrins: supramolecular wires that exhibit charge transfer activity. J Am Chem Soc 132:10786–10795Google Scholar
  257. 257.
    Schmalz TG, Seitz WA, Klein DJ et al (1986) C60 carbon cages. Chem Phys Lett 130:203–207Google Scholar
  258. 258.
    Schein S, Friedrich TA (2008) A geometric constraint, the head-to-tail exclusion rule, may be the basis for the isolated-pentagon rule in fullerenes with more than 60 vertices. Proc Natl Acad Sci U S A 105:19142–19147Google Scholar
  259. 259.
    Tan T-Z, Li J, Zhu F et al (2010) Chlorofullerenes featuring triple sequentially fused pentagons. Nat Chem 2:269–273Google Scholar
  260. 260.
    Martín N (2011) Fullerene C72Cl4: the exception that proves the rule? Angew Chem Int Ed 50:5431–5433Google Scholar
  261. 261.
    Tan Y-Z, Xie S-Y, Huang R-B et al (2009) The stabilization of fused-pentagon fullerene molecules. Nat Chem 1:450–460Google Scholar
  262. 262.
    Wang CR, Kai T, Tomiyama T et al (2000) Materials science – C66 fullerene encaging a scandium dimer. Nature 408:426–427Google Scholar
  263. 263.
    Stevenson S, Fowler PW, Heine T et al (2000) Materials science: a stable non-classical metallofullerene family. Nature 408:427–428Google Scholar
  264. 264.
    Beavers CM, Zuo TM, Duchamp JC et al (2006) Tb3N@C84: an improbable, egg-shaped endohedral fullerene that violates the isolated pentagon rule. J Am Chem Soc 128:11352–11353Google Scholar
  265. 265.
    Yang SF, Popov AA, Dunsch L (2007) Violating the isolated pentagon rule (IPR): the endohedral non-IPR C70 cage of Sc3N@C70. Angew Chem Int Ed 46:1256–1259Google Scholar
  266. 266.
    Ma YH, Wang TS, Wu JY et al (2011) Size effect of endohedral cluster on fullerene cage: preparation and structural studies of Y3N@C78-C2. Nanoscale 3:4955–4957Google Scholar
  267. 267.
    Shi ZQ, Wu X, Wang CR et al (2006) Isolation and characterization of Sc2C2@C68: a metal-carbide endofullerene with a non-IPR carbon cage. Angew Chem Int Ed 45:2107–2111Google Scholar
  268. 268.
    Wu JY, Wang TS, Ma YH et al (2011) Synthesis, isolation, characterization, and theoretical studies of Sc3NC@C78-C2. J Phys Chem C 115:23755–23759Google Scholar
  269. 269.
    Campanera JM, Bo C, Poblet JM (2005) General rule for the stabilization of fullerene cages encapsulating trimetallic nitride templates. Angew Chem Int Ed 44:7230–7233Google Scholar
  270. 270.
    Summerscales OT, Cloke FGN (2006) The organometallic chemistry of pentalene. Coord Chem Rev 250:1122–1140Google Scholar
  271. 271.
    Xie SY, Gao F, Lu X et al (2004) Capturing the labile fullerene[50] as C50Cl10. Science 304:699–699Google Scholar
  272. 272.
    Wang CR, Shi ZQ, Wan LJ et al (2006) C64H4: production, isolation, and structural characterizations of a stable unconventional fulleride. J Am Chem Soc 128:6605–6610Google Scholar
  273. 273.
    Li B, Shu CY, Lu X et al (2010) Addition of carbene to the equator of C(70) to produce the most stable C(71)H(2) isomer: 2 aH-2(12)a-homo(C(70)-D(5 h(6)))[5,6]fullerene. Angew Chem Int Ed 49:962–966Google Scholar
  274. 274.
    Tan YZ, Li J, Zhou T, Feng YQ et al (2010) Pentagon-fused hollow fullerene in C78 family retrieved by chlorination. J Am Chem Soc 132:12648–12652Google Scholar
  275. 275.
    Kato H, Taninaka A, Sugai T et al (2003) Structure of a missing-caged metallofullerene: La2@C72. J Am Chem Soc 125:7782–7783Google Scholar
  276. 276.
    Yamada M, Wakahara T, Tsuchiya T et al (2008) Spectroscopic and theoretical study of endohedral dimetallofullerene having a non-IPR fullerene cage: Ce2@C72. J Phys Chem A 112:7627–7631Google Scholar
  277. 277.
    Wakahara T, Nikawa H, Kikuchi T et al (2006) La@C72 having a non-IPR carbon cage. J Am Chem Soc 128:14228–14229Google Scholar
  278. 278.
    Chen N, Beavers CM, Mulet-Gas M et al (2012) Sc2S@C(s)(10528)-C72: a dimetallic sulfide endohedral fullerene with a non isolated pentagon rule cage. J Am Chem Soc 134:7851–7860Google Scholar
  279. 279.
    Tan Y-Z, Zhou T, Bao J, Shan G-J, Xie S-Y, Huang R-B, Zheng L-S (2010) C72Cl4: a pristine fullerene with favorable pentagon-adjacent structure. J Am Chem Soc 132:17102–17104Google Scholar
  280. 280.
    Ziegler K, Mueller A, Amsharov KY, Jansen M (2010) Disclosure of the elusive C2v-C72 carbon cage. J Am Chem Soc 132:17099–17101Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Juan L. Delgado
    • 1
  • Salvatore Filippone
    • 2
  • Francesco Giacalone
    • 3
  • Ma Ángeles Herranz
    • 2
  • Beatriz Illescas
    • 2
  • Emilio M. Pérez
    • 1
  • Nazario Martín
    • 2
    • 1
  1. 1.IMDEA-NanoscienceMadridSpain
  2. 2.Facultad de Química, Departamento de Química OrgánicaUniversidad ComplutenseMadridSpain
  3. 3.Dipartimento di Scienzie e Tecnologie Biologiche, Chimiche e FarmaceuticheUniversitá degli Studi di PalermoPalermoItaly

Personalised recommendations