Advertisement

Allosteric Activation Transitions in Enzymes and Biomolecular Motors: Insights from Atomistic and Coarse-Grained Simulations

  • Michael D. Daily
  • Haibo Yu
  • George N. PhillipsJr
  • Qiang Cui
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 337)

Abstract

The chemical step in enzymes is usually preceded by a kinetically distinct activation step that involves large-scale conformational transitions. In “simple” enzymes this step corresponds to the closure of the active site; in more complex enzymes, such as biomolecular motors, the activation step is more complex and may involve interactions with other biomolecules. These activation transitions are essential to the function of enzymes and perturbations in the scale and/or rate of these transitions are implicated in various serious human diseases; incorporating key flexibilities into engineered enzymes is also considered a major remaining challenge in rational enzyme design. Therefore it is important to understand the underlying mechanism of these transitions. This is a significant challenge to both experimental and computational studies because of the allosteric and multi-scale nature of such transitions. Using our recent studies of two enzyme systems, myosin and adenylate kinase (AK), we discuss how atomistic and coarse-grained simulations can be used to provide insights into the mechanism of activation transitions in realistic systems. Collectively, the results suggest that although many allosteric transitions can be viewed as domain displacements mediated by flexible hinges, there are additional complexities and various deviations. For example, although our studies do not find any evidence for “cracking” in AK, our results do underline the contribution of intra-domain properties (e.g., dihedral flexibility) to the rate of the transition. The study of mechanochemical coupling in myosin highlights that local changes important to chemistry require stabilization from more extensive structural changes; in this sense, more global structural transitions are needed to activate the chemistry in the active site. These discussions further emphasize the importance of better understanding factors that control the degree of co-operativity for allosteric transitions, again hinting at the intimate connection between protein stability and functional flexibility. Finally, a number of topics of considerable future interest are briefly discussed.

Keywords

Allostery Molecular motors Enzyme catalysis Molecular dynamics Coarse-grained models Small angle X-ray scattering Co-operativity Protein evolution 

Notes

Acknowledgments

We thank all other collaborators who have also made significant contributions to the studies discussed here. The research has been generously supported by NIH (R01GM071428, R01GM084028 and NLM training grant 5T15LM007359).

References

  1. 1.
    Toscano MD, Woycechowsky KJ, Hilvert D (2007) Angew Chem Int Ed 46:3212–3236Google Scholar
  2. 2.
    Gerlt JA, Babbitt PC (2009) Curr Opin Chem Biol 13:10–18Google Scholar
  3. 3.
    Siegel JB, Zanghellini A, Lovick HM, Kiss G, Lambert AR, Clair JLS, Gallaher JL, Hilvert D, Gelb MH, Stoddard BL, Houk KN, Michael FE, Baker D (2010) Science 329:309–313Google Scholar
  4. 4.
    Hilvert D (2000) Annu Rev Biochem 69:751–793Google Scholar
  5. 5.
    Ma BY, Nussinov R (2010) Curr Opin Chem Biol 14:652–659Google Scholar
  6. 6.
    Boehr DD, McElheny D, Dyson HJ, Wright PE (2006) Science 313:1638–1642Google Scholar
  7. 7.
    Nagel ZD, Klinman JP (2006) Chem Rev 106:3095–3118Google Scholar
  8. 8.
    Boehr DD, Dyson HJ, Wright PE (2006) Chem Rev 106:3055–3079Google Scholar
  9. 9.
    Benkovic SJ, Hammes-Schiffer S (2003) Science 301:1196–1202Google Scholar
  10. 10.
    Pu J, Gao J, Truhlar DG (2006) Chem Rev 106:3140–3169Google Scholar
  11. 11.
    Garcia-Viloca M, Gao J, Karplus M, Truhlar DG (2004) Science 303:186–195Google Scholar
  12. 12.
    Antoniou D, Basner J, Nunez S, Schwartz SD (2006) Chem Rev 106:3170–3187Google Scholar
  13. 13.
    Cui Q, Karplus M (2003) Adv Protein Chem 66:315–372Google Scholar
  14. 14.
    Hammes-Schiffer S, Benkovic SJ (2006) Annu Rev Biochem 75:519–541Google Scholar
  15. 15.
    Hammes GG, Benkovic SJ, Hammes-Schiffer S (2011) Biochemistry 50:10422–10430Google Scholar
  16. 16.
    Hill TL (1977) Free energy transduction in biology. Academic, New YorkGoogle Scholar
  17. 17.
    Eisenberg E, Hill TL (1985) Science 227:999–1006Google Scholar
  18. 18.
    Walsh R, Rutland C, Thomas R, Loughna S (2010) Cardiology 115:49–60Google Scholar
  19. 19.
    Kiaris H, Spandidos DA (1995) Int J Oncol 7:413–421Google Scholar
  20. 20.
    Roberts PJ, Der CJ (2007) Oncogene 26:3291–3310Google Scholar
  21. 21.
    Hanson JA, Duderstadt K, Watkins LP, Bhattacharyya S, Brokaw J, Chu JW, Yang H (2007) Proc Natl Acad Sci USA 104:18055–18060Google Scholar
  22. 22.
    Henzler-Wildman KA, Thai V, Ott M, Wolf-Watz M, Fenn T, Pozharski E, Wilson MA, Petsko GA, Karplus M, Hübner CG, Kern D (2007) Nature 450:838–843Google Scholar
  23. 23.
    Henzler-Wildman KA, Lei M, Thai V, Kerns SJ, Karplus M, Kern D (2007) Nature 450:913–916Google Scholar
  24. 24.
    Bae E, Phillips GN Jr (2006) Proc Natl Acad Sci USA 103:2132–2137Google Scholar
  25. 25.
    Arora A, Brooks CL III (2007) Proc Natl Acad Sci USA 104:18496–18501Google Scholar
  26. 26.
    Brokaw JB, Chu JW (2010) Biophys J 99:3420–3429Google Scholar
  27. 27.
    Cukier RI (2009) J Phys Chem B 113:1662–1672Google Scholar
  28. 28.
    Lou HF, Cukier RI (2006) J Phys Chem B 110:24121–24137Google Scholar
  29. 29.
    Kubitzki MB, de Groot BL (2008) Structure 16:1175–1182Google Scholar
  30. 30.
    Pontiggia F, Zen A, Micheletti C (2008) Biophys J 95:5901–5912Google Scholar
  31. 31.
    Beckstein O, Denning EJ, Perilla JR, Woolf TB (2009) J Mol Biol 394:160–176Google Scholar
  32. 32.
    Temiz NA, Meirovitch E, Bahar I (2004) Proteins Struct Funct Bioinf 57:468–480Google Scholar
  33. 33.
    Miyashita O, Onuchic JN, Wolynes PG (2003) Proc Natl Acad Sci USA 100:12570–12575Google Scholar
  34. 34.
    Whitford PC, Miyashita O, Levy Y, Onuchic JN (2007) J Mol Biol 366:1661–1671Google Scholar
  35. 35.
    Bhatt D, Zuckerman DM (2010) J Chem Theory Comput 6:3527–3539Google Scholar
  36. 36.
    Maragakis P, Karplus M (2005) J Mol Biol 352:807–822Google Scholar
  37. 37.
    Lu Q, Wang J (2008) J Am Chem Soc 130:4772–4783Google Scholar
  38. 38.
    Chu JW, Voth GA (2007) Biophys J 93:3860–3871Google Scholar
  39. 39.
    van Wynsberghe AW, Ma L, Chen X, Cui Q (2008) Functional motions in biomolecules: insights from computational studies at multiple scales. In: Schwede T, Peitsch M (eds) Computational structural biology. World Scientific Publishing, Singapore, pp 253–298Google Scholar
  40. 40.
    Yu H, Ma L, Yang Y, Cui Q (2007) PLoS Comput Biol 3:0199Google Scholar
  41. 41.
    Yu H, Ma L, Yang Y, Cui Q (2007) PLoS Comput Biol 3:0214Google Scholar
  42. 42.
    Yang Y, Yu H, Cui Q (2008) J Mol Biol 381:1407–1420Google Scholar
  43. 43.
    Yu H, Yang Y, Ma L, Cui Q (2009) Mechanochemical coupling in molecular motors: insights from molecular simulations of the myosin motor domain. In: Leitner D, Straub JE (eds) Energy flows in proteins. Proteins: Energy, Heat and Signal Flow, CRC Press (2009) pp 23–47Google Scholar
  44. 44.
    Daily MD, Phillips GN Jr, Cui Q (2010) J Mol Biol 400:618–631Google Scholar
  45. 45.
    Daily MD, Phillips GN Jr, Cui Q (2011) PLoS Comput Biol 7:e1002103Google Scholar
  46. 46.
    Daily MD, Makowski L, Phillips GN Jr, Cui Q (2012) Chem Phys 396:84–91, Special issue on “Functional dynamics of proteins”Google Scholar
  47. 47.
    Cui Q, Bahar I (eds) (2005) Normal mode analysis: theory and applications to biological and chemical systems, Mathematical and computational biology series. Chapman and Hall/CRC, New YorkGoogle Scholar
  48. 48.
    Li GH, Cui Q (2004) Biophys J 86:743–763Google Scholar
  49. 49.
    Klepeis JL, Lindorff-Larsen K, Dror RO, Shaw DE (2009) Curr Opin Struct Biol 19:120–127Google Scholar
  50. 50.
    Stone JE, Hardy DJ, Ufimtsev IS, Schulten K (2010) J Mol Graph Model 29:116–125Google Scholar
  51. 51.
    Ma J, Flynn TC, Cui Q, Leslie AGW, Walker JE, Karplus M (2002) Structure 10:921–931Google Scholar
  52. 52.
    Schlitter J, Engels M, Krüger P, Jacoby E, Wollmer A (1993) Mol Simul 10:291–308Google Scholar
  53. 53.
    van der Vaart A, Karplus M (2005) J Chem Phys 122:114903Google Scholar
  54. 54.
    Sotomayor M, Schlten K (2007) Science 316:1144–1148Google Scholar
  55. 55.
    Wales DJ (2003) Energy landscapes. Cambridge University Press, CambridgeGoogle Scholar
  56. 56.
    Huo SH, Straub JE (1997) J Chem Phys 107:5000–5006Google Scholar
  57. 57.
    Ovchinnikov V, Karplus M (2012) J Phys Chem B 116:8584–8603Google Scholar
  58. 58.
    McQuarrie DA (1973) Statistical mechanics. Harper and Row, New YorkGoogle Scholar
  59. 59.
    Torrie GM, Valleau JP (1977) J Comput Phys 23:187–199Google Scholar
  60. 60.
    Frenkel D, Smit B (2002) Understanding molecular simulation: from algorithms to applications. Academic, San DiegoGoogle Scholar
  61. 61.
    Barducci A, Bussi G, Parrinello M (2008) Phys Rev Lett 100:020603Google Scholar
  62. 62.
    Ma L, Cui Q (2007) J Am Chem Soc 129:10261–10268Google Scholar
  63. 63.
    Yang S, Banavali NK, Roux B (2009) Proc Natl Acad Sci USA 106:3776–3781Google Scholar
  64. 64.
    Elber R (2011) Curr Opin Struct Biol 21:1–6Google Scholar
  65. 65.
    E W, Vanden-Eijnden E (2010) Annu Rev Phys Chem 61:391–420Google Scholar
  66. 66.
    Bowman GR, Beauchamp KA, Boxer G, Pande VS (2009) J Chem Phys 131:124101Google Scholar
  67. 67.
    Noe F, Schutte C, Vanden-Eijnden E, Reich L, Weikl TR (2009) Proc Natl Acad Sci USA 106:19011–19016Google Scholar
  68. 68.
    Takada S (2012) Curr Opin Struct Biol 22:130–137Google Scholar
  69. 69.
    Tozzini V (2011) Q Rev Biophys 62:333–371Google Scholar
  70. 70.
    Okazaki K, Koga N, Takada S, Onuchic JN, Wolynes PG (2006) Proc Natl Acad Sci USA 103:11844–11849Google Scholar
  71. 71.
    Best RB, Chen Y-G, Hummer G (2005) Structure 13:1755–1763Google Scholar
  72. 72.
    Hills RD Jr, Brooks CL III (2009) Int J Mol Sci 10:889–905Google Scholar
  73. 73.
    Hyeon C, Thirumalai D (2011) Nat Commun 2:487Google Scholar
  74. 74.
    Schliwa M (ed) (2002) Molecular motors. Wiley-VCH, WeinheimGoogle Scholar
  75. 75.
    Geeves MA, Holmes KC (1999) Annu Rev Biochem 68:687–728Google Scholar
  76. 76.
    Vale RD, Milligan RA (2000) Science 288:88–95Google Scholar
  77. 77.
    Geeves MA, Holmes KC (2005) Adv Protein Chem 71:161–193Google Scholar
  78. 78.
    Fischer S, Windshugel B, Horak D, Holmes KC, Smith JC (2005) Proc Natl Acad Sci USA 102:6873–6878Google Scholar
  79. 79.
    Elber R, West A (2010) Proc Natl Acad Sci USA 107:5001–5005Google Scholar
  80. 80.
    Woo HJ (2007) Biophys Chem 125:127–137Google Scholar
  81. 81.
    Bauer CB, Holden HM, Thoden JB, Smith R, Rayment I (2000) J Biol Chem 275:38494–38499Google Scholar
  82. 82.
    Smith CA, Rayment I (1996) Biochemistry 35:5404–5417Google Scholar
  83. 83.
    Rayment I (1996) J Biol Chem 271:15850–15853Google Scholar
  84. 84.
    Cleland WW, Hengge AC (2006) Chem Rev 106:3252–3278Google Scholar
  85. 85.
    Koppole S, Smith JC, Fischer S (2007) Structure 15:825–837Google Scholar
  86. 86.
    Eisenmesser EZ, Millet O, Labeikovsky W, Korzhnev DM, Wolf-Watz M, Bosco DA, Skalicky JJ, Kay LE, Kern D (2005) Nature 438:117–121Google Scholar
  87. 87.
    Olsson U, Wolf-Watz M (2010) Nat Commun 1. doi: 10.1038/ncomms1106
  88. 88.
    Best RB, Hummer G (2005) Proc Natl Acad Sci USA 102:6732–6737Google Scholar
  89. 89.
    Karanicolas J, Brooks CL (2002) Protein Sci 11:2351–2361Google Scholar
  90. 90.
    Zavodszky P, Kardos J, Svingor A, Petsko GA (1998) Proc Natl Acad Sci USA 95:7406–7411Google Scholar
  91. 91.
    Varley PG, Pain RH (1991) J Mol Biol 220:531–538Google Scholar
  92. 92.
    Rundqvist L, Aden J, Sparrman T, Wallgren M, Olsson U, Wolf-Watz M (2009) Biochemistry 48:1911–1927Google Scholar
  93. 93.
    Yang SC, Park S, Makowski L, Roux B (2009) Biophys J 96:4449–4463Google Scholar
  94. 94.
    Turjanski AG, Gutkind JS, Best RB, Hummer G (2008) PLoS Comput Biol 4:e1000060Google Scholar
  95. 95.
    Kamerlin SCL, Warshel A (2010) Proteins Struct Funct Bioinf 78:1339–1375Google Scholar
  96. 96.
    Cui Q, Karplus M (2008) Protein Sci 17:1295–1307Google Scholar
  97. 97.
    Zhuravlel PI, Papoian GA (2010) Q Rev Biophys 43:295–332Google Scholar
  98. 98.
    Lockless SW, Ranganathan R (1999) Science 286:295–299Google Scholar
  99. 99.
    Suel GM, Lockless SW, Wall MA, Ranganathan R (2003) Nat Struct Biol 10:59–69Google Scholar
  100. 100.
    Demerdash ONA, Daily MD, Mitchell JC (2009) PLoS Comput Biol 5:e1000531Google Scholar
  101. 101.
    Zheng WJ, Brooks B (2005) J Mol Biol 346:745–759Google Scholar
  102. 102.
    Balabin IA, Yang WT, Beratan DN (2009) Proc Natl Acad Sci USA 106:14253–14258Google Scholar
  103. 103.
    Bahar I, Rader AJ (2005) Curr Opin Struct Biol 15:586–592Google Scholar
  104. 104.
    Tama F, Brooks CL III (2006) Annu Rev Biophys Biomol Struct 35:115–134Google Scholar
  105. 105.
    Zheng WJ, Brooks BR, Thirumalai D (2006) Proc Natl Acad Sci USA 103:7664–7669Google Scholar
  106. 106.
    Ma JP (2005) Structure 13:373–380Google Scholar
  107. 107.
    Wynsberghe AWV, Cui Q (2006) Structure 14:1647–1653Google Scholar
  108. 108.
    Kern D, Zuiderweg ERP (2003) Curr Opin Struct Biol 13:748–757Google Scholar
  109. 109.
    Gunasekaran K, Ma B, Nussinov R (2004) Proteins Struct Funct Bioinf 57:433–443Google Scholar
  110. 110.
    Whitford PC, Onuchic JN, Wolynes PG (2008) HFSP J 2:61–64Google Scholar
  111. 111.
    Sasaki N, Ohkura R, Sutoh K (2003) Biochemistry 42:90–95Google Scholar
  112. 112.
    Ito K, Uyeda QP, Suzuki Y, Sutoh K, Yamamoto K (2003) J Biol Chem 278:31049–31057Google Scholar
  113. 113.
    Eaton WA, Henry ER, Hofrichter J, Mozzarelli A (1999) Nat Struct Biol 6:351–358Google Scholar
  114. 114.
    Lee AW, Karplus M (1983) Proc Natl Acad Sci USA 80:7055–7059Google Scholar
  115. 115.
    Schrank TP, Bolen DW, Hilser VJ (2009) Proc Natl Acad Sci USA 106:16984–16989Google Scholar
  116. 116.
    Vreede J, Juraszek J, Bolhuis PG (2010) Proc Natl Acad Sci USA 107:2397–2402Google Scholar
  117. 117.
    Zhu FQ, Hummer G (2010) Proc Natl Acad Sci USA 107:19814–19819Google Scholar
  118. 118.
    Gan W, Yang S, Roux B (2009) Biophys J 97:L08–L10Google Scholar
  119. 119.
    Heath AP, Kavraki LE, Clementi C (2007) Proteins Struct Funct Bioinf 68:646–661Google Scholar
  120. 120.
    Das P, Moll M, Stamati H, Kavraki LE, Clementi C (2006) Proc Natl Acad Sci USA 103:9885–9890Google Scholar
  121. 121.
    Gfeller D, De Los Rios P, Caflisch A, Rao F (2007) Proc Natl Acad Sci USA 104:1817–1822Google Scholar
  122. 122.
    Das R, Baker D (2008) Annu Rev Biochem 77:363–382Google Scholar
  123. 123.
    Zhang Y (2008) BMC Bioinf 9:40Google Scholar
  124. 124.
    Topf M, Lasker K, Webb B, Wolfson H, Chiu W, Sali A (2008) Structure 16:295–307Google Scholar
  125. 125.
    Jamros MA, Oliveira LC, Whitford PC, Onuchic JN, Adams JA, Blumenthal DK, Jennings PA (2010) J Biol Chem 285:36121–36128Google Scholar
  126. 126.
    Yang S, Blachowicz L, Makowski L, Roux B (2010) Proc Natl Acad Sci USA 107:15757–15762Google Scholar
  127. 127.
    Trabuco LG, Villa E, Mitra K, Frank J, Schulten K (2008) Structure 16:673–683Google Scholar
  128. 128.
    Lu HP, Xun LY, Xie XS (1998) Science 282:1877–1882Google Scholar
  129. 129.
    Bai F, Wu Z, Jin J, Hochendoner P, Xing J (2012) Slow protein conformational change, allostery and network dynamics. In: Cai W (ed) Protein-protein interactions - computational and experimental tools. InTech, New YorkGoogle Scholar
  130. 130.
    Zhou HX, Rivas GN, Minton AP (2008) Annu Rev Biophys 37:375–397Google Scholar
  131. 131.
    Nobuhiko T, Tawfik DS (2009) Science 324:203–207Google Scholar
  132. 132.
    Johnston CA, Whitney DS, Volkman BF, Doe CO, Prehoda KE (2011) Proc Natl Acad Sci USA 108:E973–E978Google Scholar
  133. 133.
    Thornton JW (2004) Nat Rev Genet 5:366–375Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michael D. Daily
    • 1
  • Haibo Yu
    • 2
  • George N. PhillipsJr
    • 3
    • 4
  • Qiang Cui
    • 5
  1. 1.Pacific Northwest National LaboratoryRichlandUSA
  2. 2.School of ChemistryUniversity of WollongongWollongongAustralia
  3. 3.Dept. of Biochemistry and Dept. of Computer SciencesUniversity of Wisconsin-MadisonMadisonUSA
  4. 4.Dept. of Biochemistry & Cell Biology and Department of ChemistryRice UniversityHoustonUSA
  5. 5.Department of Chemistry and Theoretical Chemistry InstituteUniversity of Wisconsin MadisonMadisonUSA

Personalised recommendations