Advertisement

Early History of the Recognition of Molecular Biochirality

  • Joseph GalEmail author
  • Pedro Cintas
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 333)

Abstract

This opening chapter recalls the history of the discoveries that led to the appreciation of the nature and importance of molecular chirality in biology, as well as the development of stereochemistry as an interdisciplinary field connecting chemistry and biology. The discoveries described cover roughly the period of ca. 1840–1940, although certain relevant events of earlier or later times are also addressed. A large number of chiral substances occur in nature in unichiral (i.e., single-enantiomer) form, and for centuries many such substances were used in crude extracts for relief from diseases. For the science of biochirality, the first milestone was the discovery of molecular chirality by Louis Pasteur in 1848. Thereafter, fundamental advances were made, beginning in 1857 with Pasteur’s discovery of biological enantioselectivity, in the metabolism of (±)-tartaric acid. With the advances in organic chemistry during the second half of the nineteenth century, the structures of many organic molecules were elucidated and new chiral compounds synthesized, and by the turn of the twentieth century studies of stereoselectivity in the biological activity or enzymatic transformations of natural or synthetic substances were proliferating, and chiroselectivity was often found. Among the names associated with important discoveries in biochirality appear Pasteur, Piutti, Fischer, Cushny, Easson and Stedman, and others. The findings soon prompted attempts to explain the phenomenon of enantioselectivity in biological action, beginning with Pasteur’s proposal to account for enantioselectivity in the metabolism of tartaric acid. In 1894 Fischer announced his “lock-and-key” metaphor to explain enantioselectivity in enzyme-substrate interactions and in 1933 Easson and Stedman advanced the first chemical-structure-based model, the three-point-attachment paradigm, to rationalize enantioselectivity at adrenergic receptors. This model has been generalized as the simplest basis for enantioselectivity in biological activity. Today molecular chirality is widely recognized as an important modulator of the effects of chiral substances in a variety of branches of biology and medicine.

Keywords

Biological enantioselectivity Chirality Chiroselectivity Drugs History of chemistry pharmacology Molecular recognition Natural products 

Notes

Acknowledgments

Helpful information from Professors Andrew J. Hutt (University of Hertfordshire, UK), Michael Lämmerhofer (University of Tübingen, Germany), and Wolfgang Lindner (University of Vienna, Austria) is gratefully acknowledged. The authors are deeply indebted to Dr. Claudia and Pietro Piutti, great-granddaughter and grandson of Arnaldo Piutti, respectively, and to Pietro Piutti’s spouse Caterina (née Rovetto), for permission to reproduce Arnaldo Piutti’s photograph. In addition, permissions from Wiley and Taylor & Francis to reproduce text extracts from previous publications [8, 9, 14, 19, 76, 85] are gratefully acknowledged.

References

  1. 1.
    Simonyi M (1984) On chiral drug action. Med Res Rev 4:359–413Google Scholar
  2. 2.
    Patel BK, Hutt AJ (2004) Stereoselectivity in drug action and disposition: an overview. In: Reddy IK, Mehvar R (eds) Chirality in drug design and development. Marcel Dekker, New YorkGoogle Scholar
  3. 3.
    Crossley R (1992) The relevance of chirality to the study of biological activity. Tetrahedron 48:8155–8178Google Scholar
  4. 4.
    Guijarro A, Yus M (2009) The origins of chirality in the molecules of life. Royal Society of Chemistry, CambridgeGoogle Scholar
  5. 5.
    Brocks DR (2006) Drug disposition in three dimensions: an update on stereoselectivity in pharmacokinetics. Biopharm Drug Dispos 27:387–406Google Scholar
  6. 6.
    Cintas P (2007) Tracing the origins and evolution of chirality and handedness in chemical language. Angew Chem Int Ed 46:4016–4024Google Scholar
  7. 7.
    Cintas P (2004) The road to chemical names and eponyms: discovery, priority, and credit. Angew Chem Int Ed 43:5888–5894Google Scholar
  8. 8.
    Gal J (2011) Louis Pasteur, language, and molecular chirality–I. Background and dissymmetry. Chirality 23:1–16Google Scholar
  9. 9.
    Gal J (2011) Stereochemical vocabulary for structures that are chiral but not asymmetric: history, analysis, and proposal for a rational terminology. Chirality 23:647–659Google Scholar
  10. 10.
    Eliel EL (1997) Infelicitous stereochemical nomenclature. Chirality 9:428–430Google Scholar
  11. 11.
    Helmchen G (1997) Glossary of problematic terms in organic stereochemistry. Enantiomer 2:315–318Google Scholar
  12. 12.
    Eliel EL, Wilen SH (1994) Stereochemistry of organic compounds. Wiley, New York, p 1194Google Scholar
  13. 13.
    Mislow K (1999) Molecular chirality. Top Stereochem 22:1–82Google Scholar
  14. 14.
    Gal J (1998) Problems of stereochemical nomenclature and terminology. 1. The homochiral controversy. Its nature, origins, and a proposed solution. Enantiomer 3:263–273Google Scholar
  15. 15.
    Lee ED, Henion JD, Brunner CA, Wainer IW, Doyle TD, Gal J (1986) High-performance liquid-chromatographic chiral stationary phase-separation with filament on thermospray mass spectrometric identification of the enantiomer contaminant (S)-(+)-methamphetamine. Anal Chem 58:1349–1352Google Scholar
  16. 16.
    Kelvin L (1894) The molecular tactics of a crystal. The 2nd Robert Boyle lecture. J Oxford Univ Junior Sci Club 18:25Google Scholar
  17. 17.
    Kuhnert N, Le-Gresley A, Nicolau DC, Lopez-Periago A (2007) Synthesis, self-association and chiroselectivity of isotopically labeled trianglamine macrocycles in the ion trap mass spectrometer. J Label Compd Radiopharm 50:1215–1223Google Scholar
  18. 18.
    Wagner N, Rubinov B, Ashkenasy G (2011) β-Sheet-induced chirogenesis in polymerization of oligopeptides. Chemphyschem 12:2771–2780Google Scholar
  19. 19.
    Gal J (2006) Chiral drugs from a historical point of view. In: Francotte E, Lindner W (eds) Chirality in drug research. Wiley-VCH, Weinheim, pp 3–26Google Scholar
  20. 20.
    Finefield JM, Sherman DH, Kreitman M, Williams RM (2012) Enantiomeric natural products: occurrence and biogenesis. Angew Chem Int Ed 51:4802–4836Google Scholar
  21. 21.
    Burger A (1980) Introduction: history and economics of medicinal chemistry. In: Wolff ME (ed) Burger’s medicinal chemistry, part I, 4th edn. Wiley, New York, pp 7–22Google Scholar
  22. 22.
    Burger A (1986) Drugs and people: Medications, their history and origins, and the way they act. University Press of Virginia, Charlottesville, p 4Google Scholar
  23. 23.
    Burger A (1986) Drugs and people: medications, their history and origins, and the way they act. University Press of Virginia, Charlottesville, pp 4–5Google Scholar
  24. 24.
    Burger A (1980) Introduction: history and economics of medicinal chemistry. In: Wolff ME (ed) Burger’s medicinal chemistry, part I, 4th edn. Wiley, New York, p 8Google Scholar
  25. 25.
    Chen KK, Schmidt CF (1930) Ephedrine and related substances. Medicine (Baltimore, MD) 9:1–117Google Scholar
  26. 26.
    Hoffman BB (2001) Catecholamines, sympathomimetic drugs, and adrenergic receptor antagonists. In: Hardman JG, Limbird LE, Gilman AG (eds) Goodman and Gilman’s the pharmacological basis of therapeutics, 10th edn. McGraw-Hill, New York, p 237Google Scholar
  27. 27.
    Newton GD, Pray WS, Popovich NG (2004) New OTC drugs and devices 2003: a selective review. J Am Pharm Assoc 44:211–225Google Scholar
  28. 28.
    Perrine DM (1996) The chemistry of mind-altering drugs – history, pharmacology, and cultural context. American Chemical Society, Washington, pp 44–45Google Scholar
  29. 29.
    Foye WO (1995) Medicinals of plant origins: historical aspects. In: Foye WO, Lemke TL, Williams DA (eds) Principles of medicinal chemistry, 4th edn. Lippincott Williams and Wilkins, Baltimore, p 8Google Scholar
  30. 30.
    Burger A (1986) Drugs and people: medications, their history and origins, and the way they act. University Press of Virginia, Charlottesville, p 15Google Scholar
  31. 31.
    Burger A (1980) Introduction: history and economics of medicinal chemistry. In: Wolff ME (ed) Burger’s medicinal chemistry, part I, 4th edn. Wiley, New York, p 3Google Scholar
  32. 32.
    Sertürner FWA (1817) Ueber das Morphium, eine neue salzfähige Grundlage, und die Mekonsäure, als Hauptbestandtheile des Opiums. Ann Physik 55:56–89Google Scholar
  33. 33.
    Gulland JM, Robinson R (1923) Morphine group. I. Discussion of the constitutional formula. J Chem Soc 123:980–998Google Scholar
  34. 34.
    Johnson MR (1980) Analgetics. In: Wolff ME (ed) Burger’s medicinal chemistry, part I, 4th edn. Wiley, New York, p 707Google Scholar
  35. 35.
    Phillips J (1912) Prevalence of the heroin habit: especially the use of the drug by snuffing. JAMA LIX:2146–2147Google Scholar
  36. 36.
    Johnson MR (1980) Analgetics. In: Wolff ME (ed) Burger’s medicinal chemistry, part I, 4th edn. Wiley, New York, pp 708–709, 735Google Scholar
  37. 37.
    Eap CP, Finkbeiner T, Gastpar M, Scherbaum N, Powell K, Baumann P (1996) Replacement of (R)-methadone by a double dose of (R, S)-methadone in addicts: interindividual variability of the (R, S)-ratios and evidence of adaptive changes in methadone pharmacokinetics. Eur J Clin Pharmacol 50:385–389Google Scholar
  38. 38.
    Honigsbaum M (2001) The fever trail. In search of the cure for malaria. Farrar, Straus, and Giroux, New York, pp 24–25Google Scholar
  39. 39.
    Pelletier PJ, Caventou JB (1820) Suite: Des recherches chimiques sur les quinquinas. Ann Chim Phys 15:337–365Google Scholar
  40. 40.
    Honigsbaum M (2001) The fever trail. In search of the cure for malaria. Farrar, Straus, and Giroux, New York, pp ix–xGoogle Scholar
  41. 41.
    Honigsbaum M (2001) The fever trail. In search of the cure for malaria. Farrar, Straus, and Giroux, New York, pp x, xiiiGoogle Scholar
  42. 42.
    Garfield S (2000) Mauve: how one man invented a color that changed the world. W. W. Norton & Co, New YorkGoogle Scholar
  43. 43.
    Tracy JW, Jr Webster LT (2001) Chemotherapy of parasitic infections. In: Hardman JG, Limbird LE, Gilman AG (eds) Goodman and Gilman’s the pharmacological basis of therapeutics, 10th edn. McGraw-Hill, New York, p 1069Google Scholar
  44. 44.
    Seeman JI (2007) The Woodward-Doering/Rabe-Kindler total synthesis of quinine: setting the record straight. Angew Chem Int Ed 46:1378–1413Google Scholar
  45. 45.
    Woodward RB, Doering WE (1945) The total synthesis of quinine. J Am Chem Soc 67:860–865Google Scholar
  46. 46.
    Stork G, Niu D, Fujimoto A, Koft ER, Balkovec JR, Tata JR, Duke GR (2001) The first stereoselective total synthesis of quinine. J Am Chem Soc 123:3239–3242Google Scholar
  47. 47.
    Smith P (1969) Arrows of mercy. Doubleday, New YorkGoogle Scholar
  48. 48.
    Sneader W (2005) Drug discovery – a history. Wiley, New York, pp 99–100Google Scholar
  49. 49.
    Bernard C (1850) Action du curare et de la nicotine sur le système nerveux et sur le système musculaire. Compt Rend Séances Soc Biol (Paris) 2:195Google Scholar
  50. 50.
    Dale HH, Feldberg W, Vogt M (1936) Release of acetylcholine at voluntary nerve endings. J Physiol 86:353–380Google Scholar
  51. 51.
    McIntyre AR (1947) Curare. Its history, nature and clinical use. The University of Chicago Press, ChicagoGoogle Scholar
  52. 52.
    Wintersteiner O, Dutcher JD (1943) Curare alkaloids from Chondodendron tomentosum. Science 97:467–470Google Scholar
  53. 53.
    King H (1935) Curare alkaloids. I. Tubocurarine. J Chem Soc 1381–1389Google Scholar
  54. 54.
    Weatherall M (1996) Drug treatment and the rise of pharmacology. In: Roy Porter R (ed) The Cambridge illustrated history of medicine. Cambridge University Press, Cambridge, p 256Google Scholar
  55. 55.
    Brown JH, Taylor P (2001) Muscarinic receptor antagonists. In: Hardman JG, Limbird LE, Gilman AG (eds) Goodman and Gilman’s the pharmacological basis of therapeutics, 10th edn. McGraw-Hill, New York, p 164Google Scholar
  56. 56.
    Venturella VS (1985) Natural products. In: Gennaro AR (ed) Remingtons pharmaceutical sciences, 17th edn. Mack Publishing Company, Plainview, p 418Google Scholar
  57. 57.
    Eliel EL, Wilen SH (1994) Stereochemistry of organic compounds. Wiley-Interscience, New York, pp 2–4Google Scholar
  58. 58.
    Haüy R-J (1801) Traité de Minéralogie. Conseil des Mines, ParisGoogle Scholar
  59. 59.
    Findlay A (1948) A hundred years of chemistry, 3rd edn. Gerald Duckworth & Co Ltd, London, p 57Google Scholar
  60. 60.
    Mauskopf SH (1976) Crystals and compounds: molecular structure and composition in nineteenth-century French science. Trans Am Phil Soc 66:65Google Scholar
  61. 61.
    Pasteur L (1848) Mémoire sur la relation qui peut exister entre la forme crystalline et la composition chimique, et sur la cause de la polarisation rotatoire. C R Séances Acad Sci 26:535–538Google Scholar
  62. 62.
    Pasteur L (1850) Recherches sur les propriétés spécifiques des deux acides qui composent l’acide racémique. Ann Chim Phys, 3e sér, 28:56–99Google Scholar
  63. 63.
    Delépine M (1941) Sur l’histoire de l’acide racémique et du mot racémique. Bull Soc Chim France 8:463–475Google Scholar
  64. 64.
    Biot J-B (1838) Sur l’emploie de la lumière polarisée pour manifester les differences des combinaisons isomérique. Ann Chim Phys 69:27Google Scholar
  65. 65.
    Pasteur L (1853) Notice sur l’origine de l’acide racémique. C R Séances Acad Sci 36:19–26Google Scholar
  66. 66.
    Gal J (2008) When did Louis Pasteur present his memoir on the discovery of molecular chirality to the Académie des Science? Analysis of a discrepancy. Chirality 20:1072–1084Google Scholar
  67. 67.
    Pasteur L (1922) Recherches sur la dissymétrie moléculaire des produits organiques naturels. In: Pasteur Vallery-Radot L (ed) Œuvres de Pasteur, vol 1. Masson et Cie; Paris, pp 314–344Google Scholar
  68. 68.
    Pasteur L (1853) Nouvelles recherches sur les relations qui peuvent exister entre la forme crystalline, la composition chimique et le phénomène rotatoire moléculaire. Ann Chim Phys 38:437–483Google Scholar
  69. 69.
    Herschel JFW (1822) On the rotation impressed by plates of rock crystal on the planes of polarization of the rays of light, as connected with certain peculiarities of its crystallization. Trans Camb Phil Soc 1:45–100Google Scholar
  70. 70.
    Evans DS (1972) Herschel, John Frederick William. In: Gillispie CC (ed) Dictionary of scientific biography, vol VI. Charles Scribner’s Sons, New York, pp 323–328Google Scholar
  71. 71.
    Schurig V (1997) On the origins of stereochemistry: the Herschel family – musicians, astronomers and natural scientists. Enantiomer 2:135–142Google Scholar
  72. 72.
    Herschel JFW (1827) Light. London, p 550 (taken from Encyclopedia Metropolitana, vol 4, 1849)Google Scholar
  73. 73.
    Chautard J (1853) Mémoire sur l’acide camphorique gauche et sur le camphre gaurche. Compt rend Acad Sci 37:166–167Google Scholar
  74. 74.
    Van’t Hoff JH (1874) Sur le formules de structure dans l'espace. Arch Neerl 9:1–10Google Scholar
  75. 75.
    Le Bel JA (1874) Sur les relations qui existent entre les formules atomiques des corps organiques et le pouvoir rotatoire de leurs dissolutions. Bul Soc Chim Paris 22:337–347Google Scholar
  76. 76.
    Gal J (2008) The discovery of biological enantioselectivity: Louis Pasteur and the fermentation of tartaric acid – a review and analysis 150 years later. Chirality 20:5–19Google Scholar
  77. 77.
    Pasteur L (1857) Mémoire sur la fermentation alcoolique. C R Séances Acad Sci 45:1032–1036Google Scholar
  78. 78.
    Pasteur L (1858) Mémoire sur la fermentation de l'acide tartrique. C R Séances Acad Sci 46:615–618Google Scholar
  79. 79.
    Gal J (2007) Carl Friedrich Naumann and the introduction of enantio terminology: a review and analysis on the 150th anniversary. Chirality 19:89–98Google Scholar
  80. 80.
    Duclaux E (1896) Pasteur ─ Histoire d'un esprit. Masson et Cie; Paris, p 63Google Scholar
  81. 81.
    Pasteur L (1922) Note relative au Penicillium glaucum et la dissymétrie moléculaire des produits organiques naturels. In: Pasteur Vallery-Radot L (ed) Œuvres de Pasteur, vol 2. Masson et Cie, Paris, pp 129–130Google Scholar
  82. 82.
    Morley HF, Muir PMM (1892) Watt’s dictionary of chemistry, vol 3. Longmans, Green, and Co, London, p 235Google Scholar
  83. 83.
    Pasteur L (1922) Transformation del l'acide tartrique en acide racémique. Découverte de l'acide tartrique inactif. Nouvelle méthode de séparation de l'acide racémique en acides tartriques droit et gauche. In: Pasteur Vallery-Radot L (ed) Œuvres de Pasteur, vol 1. Masson et Cie; Paris, pp 258–262Google Scholar
  84. 84.
    Piutti A (1886) Ein neues Asparagin. Ber deutsch chem Ges 19:1691–1695Google Scholar
  85. 85.
    Gal J (2012) The discovery of stereoselectivity at biological receptors: Arnaldo Piutti and the taste of the asparagine enantiomers – history and analysis on the 125th anniversary. Chirality. doi:10.1002/chirGoogle Scholar
  86. 86.
    Prüll C-R, Maehle A-H, Halliwell RF (2009) A short history of the drug receptor concept. Palgrave MacMillan, Basingstoke, p 1Google Scholar
  87. 87.
    Ehrlich P, Morgenroth J (1900) Ueber Haemolysine. Dritte Mittheilung. Berliner klin Wochenschrift 37:453–458Google Scholar
  88. 88.
    Langley JN (1905) On the reaction of cells and nerve-endings to certain poisons, chiefly as regards the reaction of striated muscle to nicotine and to curare. J Physiol 33:374–413Google Scholar
  89. 89.
    Vickery H, Schmidt CLA (1931) The history of the discovery of the amino acids. Chem Rev 9:169–318Google Scholar
  90. 90.
    Vauquelin LN, Robiquet PJ (1806) La découverte d'un nouveau principe végétal dans le suc des asperges. Ann Chim 57:88–93Google Scholar
  91. 91.
    Piutti A (1888) Sintesi e costituzione delle asparagine. Gazz Chim Ital 18:457–472Google Scholar
  92. 92.
    Pringsheim H (1910) Notiz über das Vorkommen von Rechts-Asparagin in der Natur. Z Physiol Chem 65:89–95Google Scholar
  93. 93.
    Piutti A (1923) The simultaneous existence of optically active asparagines in germinated lupines. Atti congresso naz chim pura applicata 1923:384–386Google Scholar
  94. 94.
    Greenstein JP, Winitz M (1961) The chemistry of the amino acids, vol 3. Wiley, New York, p 1860Google Scholar
  95. 95.
    Fajans K (1910) Über die stereochemische Spezifizität der Katalysatoren (Optische Aktivierung durch asymmetrische Katalyse). Z physik Chem 73:25–96Google Scholar
  96. 96.
    Hirsch P (1918) Die Einwirkung von Mikroorganismen auf die Eiweiβkörper. Gebrüder Borntraeger, Berlin, pp 68–77Google Scholar
  97. 97.
    Cushny AR (1926) Biological relations of optically isomeric substances. The Williams and Wilkins Company, Baltimore, pp 18–37Google Scholar
  98. 98.
    Brockmann H (1933) Das biologische Verhalten stereoisomerer Verbindungen. In: Freudenberg K (ed) Stereochemie: eine Zusammenfassung der Ergebnisse, Grundlagen, und Probleme. Franz Deuticke, Leipzig, pp 921–961Google Scholar
  99. 99.
    Fischer E (1898) Bedeuting der Stereochemie für die Physiologie. Hoppe-Seyler’s Z Physiol Chem 26:60–87Google Scholar
  100. 100.
    Dakin H (1904) The hydrolysis of optically inactive esters by means of enzymes. I. The action of lipase on esters of mandelic acid. The resolution of inactive mandelic acid. J Physiol 30:253–263Google Scholar
  101. 101.
    Brockmann H (1933) Das biologische Verhalten stereoisomerer Verbindungen. In: Freudenberg K (ed) Stereochemie: eine Zusammenfassung der Ergebnisse, Grundlagen, und Probleme. Franz Deuticke, Leipzig, pp 928–930Google Scholar
  102. 102.
    Farber E (1972) Fischer, Emil Hermann. Dictionary of scientific biography, vol 5. Charles Scribner’s Sons, New York, pp 1–5Google Scholar
  103. 103.
    Lichtenthaler FW (1992) Emil Fischer’s proof of the configuration of sugars. A centennial tribute. Angew Chem Int Ed 31:1541–1546Google Scholar
  104. 104.
    Kagan H, Gopalaiah K (2011) Early history of asymmetric synthesis: who are the scientists who set up the basic principles and the first experiments? New J Chem 35:1933–1937Google Scholar
  105. 105.
    Fischer E (1894) Einfluss der Konfiguration auf der Wirkung der Enzyme. Ber dtsch chem Ges 27:2985–2993Google Scholar
  106. 106.
    Fischer E (1891) Ueber die Configuration des Traubezuckers und seiner Isomeren. Ber dtsch chem Ges 24:1836–1845Google Scholar
  107. 107.
    Ramberg PJ (2003) Chemical structure, spatial arrangement. The early history of stereochemistry, 1874–1914. Ashgate Publishing Company, Burlington, p 275Google Scholar
  108. 108.
  109. 109.
    Cushny AR (1926) Biological relations of optically isomeric substances. The Williams and Wilkins Company, Baltimore, pp 29–37Google Scholar
  110. 110.
    Hudson CS (1948) Historical aspects of Fischer’s fundamental conventions for writing stereoformulas in a plane. Adv Carbohydr Chem 3:1–22Google Scholar
  111. 111.
    Cushny AR (1926) Biological relations of optically isomeric substances. The Williams and Wilkins Company, Baltimore, p 29Google Scholar
  112. 112.
    Menozzi A, Appiani G (1894) Derivatives of glutamic acid. Pyroglutamic acids and pyroglutamides. Gazz Chim Ital 24:370–391Google Scholar
  113. 113.
    Cushny AR (1920) On optical isomers. V. The tropeines. J Pharmacol 15:105–127Google Scholar
  114. 114.
    Cushny AR (1909) Further note on adrenalin isomers. J Physiol 38:259–262Google Scholar
  115. 115.
    Cushny AR (1926) Biological relations of optically isomeric substances. The Williams and Wilkins Company, BaltimoreGoogle Scholar
  116. 116.
    Clement EM, Grahame-Smith D, Elliott JM (1998) Investigation of the presynaptic effects of quinine and quinidine on the release and uptake of monoamines in rat brain tissue. Neuropharmacology 37:945–951Google Scholar
  117. 117.
    Pasteur L (1853) Recherches sur les alcaloïdes des quinquinas. C R Séances Acad Sci 37:110–114Google Scholar
  118. 118.
    Karle JM, Karle IL, Gerena L, Milhous WK (1992) Stereochemical evaluation of the relative activities of the cinchona alkaloids against Plasmodium falciparum. Antimicrob Agents Chemother 36:1538–1544Google Scholar
  119. 119.
    Caner H, Biedermann PU, Agranat I (2003) Conformational spaces of Cinchona alkaloids. Chirality 15:637–645Google Scholar
  120. 120.
    Levy S, Azoulay S (1994) Stories about the origin of quinquina and quinidine. J Cardiovasc Electrophysiol 5:635–636Google Scholar
  121. 121.
    Deschamps PN (1922) La médication quinique et quinidique du coeur: Étude de l'action physiologique de la quinine et de la quinidine sur l'appareil circulatoire, et de leur emploi thérapeutique au cours des arythmies, et particulièrement au cours de l'arythmie complète. A Maloine, ParisGoogle Scholar
  122. 122.
    Zarbl E, Laemmerhofer M, Woschek A, Hammerschmidt F, Parenti C, Cannazza G, Lindner W (2005) Strong versus weak chiral cation exchangers: comparative evaluation for enantiomer separation of chiral bases by non-aqueous CEC. J Sep Sci 25:1269–1283Google Scholar
  123. 123.
    Hedman A, Meijer DKF (1998) The stereoisomers quinine and quinidine exhibit a marked stereoselectivity in the inhibition of hepatobiliary transport of cardiac glycosides. J Hepatol 28:240–249Google Scholar
  124. 124.
    Muralidharan G, Hawes E, Mckay G, Korchinski E, Midha K (1991) Quinidine but not quinine inhibits in man the oxidative metabolic routes of methoxyphenamine which involve debrisoquine 4-hydroxylase. Eur J Clin Pharmacol 41:471–474Google Scholar
  125. 125.
    Hsueh C, Marvel CS (1928) Optically active hypnotics. J Am Chem Soc 50:855–859Google Scholar
  126. 126.
    Maher TJ (2008) General anesthetics. In: Lemke TL, Williams DA, Roche VF, Zito SW (eds) Foye’s principles of medicinal chemistry, 6th edn. Lippincott Williams & Wilkins, Baltimore, pp 493–494Google Scholar
  127. 127.
    Christensen HD, Lee IS (1973) Anesthetic potency and acute toxicity of optically active disubstituted barbituric acids. Toxicol Appl Pharmacol 26:495–503Google Scholar
  128. 128.
    Haley TJ, Gidley JT (1976) Pharmacological comparison of R(+), S(−) and racemic thiopentone in mice. Eur J Pharmacol 36:211–214Google Scholar
  129. 129.
    Yamakura T, Bertaccini E, Trudell JR, Harris RA (2001) Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol 41:23–51Google Scholar
  130. 130.
    Andrews PR, Mark LC (1982) Structural specificity for barbiturates and related drugs. Anesthesiology 57:314–320Google Scholar
  131. 131.
    Pfeiffer CC (1956) Optical isomerism and pharmacological action, a generalization. Science 124:29–31Google Scholar
  132. 132.
    Ariëns EJ (1983) Stereoselectivity of bioactive agents: general aspects. In: Ariëns EJ, Soudijn W, Timmermans PBMWM (eds) Stereochemistry and biological activity of drugs. Blackwell Scientific Publications, Oxford, pp 27–31Google Scholar
  133. 133.
    Parascandola J (1981) The theoretical basis of Paul Ehrlich’s chemotherapy. J Hist Med 36:19–43Google Scholar
  134. 134.
    Lillie FR (1914) Studies of fertilization. VI. The mechanism of fertilizations in arbacia. J Exp Zool 16:523–590Google Scholar
  135. 135.
    Fruton JS (1999) Proteins, enzymes, genes – the interplay of chemistry and biology. Yale University Press, New Haven, p 152Google Scholar
  136. 136.
    Easson L, Stedman E (1933) Studies on the relationship between chemical constitution and physiological action. V. Molecular dissymmetry and physiological activity. Biochem J 27:1257–1266Google Scholar
  137. 137.
    Davankov V (1989) Introduction to chromatographic resolution of enantiomers. In: Krstulovic AM (ed) Chiral separations by HPLC. Ellis Horwood, Chichester, pp 183–186Google Scholar
  138. 138.
    Bergmann M, Zervas L, Fruton JS, Schneider F, Schleich H (1935) On proteolytic enzymes V. On the specificity of dipeptidase. J Biol Chem 109:325–346Google Scholar
  139. 139.
    Ogston AG (1948) Interpretation of experiments on metabolic processes, using isotopic tracer elements. Nature 162:963Google Scholar
  140. 140.
    Eliel EL, Wilen SH (1994) Stereochemistry of organic compounds. Wiley-Interscience, New York, p 1198Google Scholar
  141. 141.
    Ruffolo RR Jr (1983) Stereoselectivity in adrenergic agonists and adrenergic blocking agents. In: Ariëns EJ, Soudijn W, Timmermans PBMWM (eds) Stereochemistry and biological activity of drugs. Blackwell Scientific Publications, Oxford, pp 104–115Google Scholar
  142. 142.
    Mesecar AD, Koshland DE (2000) Structural biology – a new model for protein stereospecificity. Nature 403:614–615Google Scholar
  143. 143.
    Bentley R (1983) Three-point attachment: past, present, but no future. Trans N Y Acad Sci II 41:5–24Google Scholar
  144. 144.
    Topiol S (1989) A general criterion for molecular recognition: implication for chiral interactions. Chirality 1:69–79Google Scholar
  145. 145.
    Anonymous (1992) Fed Reg 5(102):22249Google Scholar
  146. 146.
    Caldwell J, Hutt AJ, Fournel-Gigleux S (1988) The metabolic chiral inversion and dispositional enantioselectivity of the 2-arylpropionic acids and their biological consequences. Biochem Pharmacol 37:105–114Google Scholar
  147. 147.
    Yun EM, Meadows W, Santos AC (1998) New amide local anaesthetics for obstetric use. Baillieres Clin Obstet Gynaecol 12:461–471Google Scholar
  148. 148.
    Shah RR, Midgley JM, Branch SK (1998) Stereochemical origin of some clinically significant drug safety concerns: lessons for future drug development. Adverse Drug React Toxicol Rev 17:145–190Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.University of Colorado HospitalAuroraUSA
  2. 2.Departamento de Química Orgánica e InorgánicaFacultad de Ciencias-UEXBadajozSpain

Personalised recommendations