Cancer Chemoprevention and Nutri-Epigenetics: State of the Art and Future Challenges

  • Clarissa GerhauserEmail author
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 329)


The term “epigenetics” refers to modifications in gene expression caused by heritable, but potentially reversible, changes in DNA methylation and chromatin structure. Epigenetic alterations have been identified as promising new targets for cancer prevention strategies as they occur early during carcinogenesis and represent potentially initiating events for cancer development. Over the past few years, nutri-epigenetics – the influence of dietary components on mechanisms influencing the epigenome – has emerged as an exciting new field in current epigenetic research. During carcinogenesis, major cellular functions and pathways, including drug metabolism, cell cycle regulation, potential to repair DNA damage or to induce apoptosis, response to inflammatory stimuli, cell signalling, and cell growth control and differentiation become deregulated. Recent evidence now indicates that epigenetic alterations contribute to these cellular defects, for example epigenetic silencing of detoxifying enzymes, tumor suppressor genes, cell cycle regulators, apoptosis-inducing and DNA repair genes, nuclear receptors, signal transducers and transcription factors by promoter methylation, and modifications of histones and non-histone proteins such as p53, NF-κB, and the chaperone HSP90 by acetylation or methylation.

The present review will summarize the potential of natural chemopreventive agents to counteract these cancer-related epigenetic alterations by influencing the activity or expression of DNA methyltransferases and histone modifying enzymes. Chemopreventive agents that target the epigenome include micronutrients (folate, retinoic acid, and selenium compounds), butyrate, polyphenols from green tea, apples, coffee, black raspberries, and other dietary sources, genistein and soy isoflavones, curcumin, resveratrol, dihydrocoumarin, nordihydroguaiaretic acid (NDGA), lycopene, anacardic acid, garcinol, constituents of Allium species and cruciferous vegetables, including indol-3-carbinol (I3C), diindolylmethane (DIM), sulforaphane, phenylethyl isothiocyanate (PEITC), phenylhexyl isothiocyanate (PHI), diallyldisulfide (DADS) and its metabolite allyl mercaptan (AM), cambinol, and relatively unexplored modulators of histone lysine methylation (chaetocin, polyamine analogs). So far, data are still mainly derived from in vitro investigations, and results of animal models or human intervention studies are limited that demonstrate the functional relevance of epigenetic mechanisms for health promoting or cancer preventive efficacy of natural products. Also, most studies have focused on single candidate genes or mechanisms. With the emergence of novel technologies such as next-generation sequencing, future research has the potential to explore nutri-epigenomics at a genome-wide level to understand better the importance of epigenetic mechanisms for gene regulation in cancer chemoprevention.


Cancer chemoprevention Dietary compounds DNA methylation Histone modifications Nutri-epigenetics 


  1. 1.
    Henikoff S, Matzke MA (1997) Exploring and explaining epigenetic effects. Trends Genet 13(8):293–295, doi: 10.1016/S0168-9525(97)01219-5, pii: S0168952597012195CrossRefGoogle Scholar
  2. 2.
    Qiu J (2006) Epigenetics: unfinished symphony. Nature 441(7090):143–145. doi: 10.1038/441143a CrossRefGoogle Scholar
  3. 3.
    Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(suppl):245–254. doi: 10.1038/ng1089 CrossRefGoogle Scholar
  4. 4.
    Choudhuri S (2011) From Waddington’s epigenetic landscape to small noncoding RNA: some important milestones in the history of epigenetics research. Toxicol Mech Methods 21(4):252–274. doi: 10.3109/15376516.2011.559695 CrossRefGoogle Scholar
  5. 5.
    Berdasco M, Esteller M (2010) Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell 19(5):698–711. doi: 10.1016/j.devcel.2010.10.005, pii: S1534-5807(10)00458-2CrossRefGoogle Scholar
  6. 6.
    Payer B, Lee JT (2008) X chromosome dosage compensation: how mammals keep the balance. Annu Rev Genet 42:733–772. doi: 10.1146/annurev.genet.42.110807.091711 CrossRefGoogle Scholar
  7. 7.
    Illingworth R, Kerr A, Desousa D, Jorgensen H, Ellis P, Stalker J, Jackson D, Clee C, Plumb R, Rogers J, Humphray S, Cox T, Langford C, Bird A (2008) A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol 6(1):e22. doi: 10.1371/journal.pbio.0060022, pii: 07-PLBI-RA-3186CrossRefGoogle Scholar
  8. 8.
    Stilling RM, Fischer A (2011) The role of histone acetylation in age-associated memory impairment and Alzheimer’s disease. Neurobiol Learn Mem 96(1):19–26. doi: 10.1016/j.nlm.2011.04.002, pii: S1074-7427(11)00064-5CrossRefGoogle Scholar
  9. 9.
    Suter MA, Aagaard-Tillery KM (2009) Environmental influences on epigenetic profiles. Semin Reprod Med 27(5):380–390. doi: 10.1055/s-0029-1237426 CrossRefGoogle Scholar
  10. 10.
    Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suner D, Cigudosa JC, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector TD, Wu YZ, Plass C, Esteller M (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102(30):10604–10609. doi: 10.1073/pnas.0500398102 CrossRefGoogle Scholar
  11. 11.
    Wong AH, Gottesman II, Petronis A (2005) Phenotypic differences in genetically identical organisms: the epigenetic perspective. Hum Mol Genet 14(Spec no. 1):R11–R18. doi: 10.1093/hmg/ddi116, pii: 14/suppl_1/R11CrossRefGoogle Scholar
  12. 12.
    Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128(4):683–692. doi: 10.1016/j.cell.2007.01.029, pii: S0092-8674(07)00127-4CrossRefGoogle Scholar
  13. 13.
    Bruce KD, Cagampang FR (2011) Epigenetic priming of the metabolic syndrome. Toxicol Mech Methods 21(4):353–361. doi: 10.3109/15376516.2011.559370 CrossRefGoogle Scholar
  14. 14.
    Beaulieu N, Morin S, Chute IC, Robert MF, Nguyen H, MacLeod AR (2002) An essential role for DNA methyltransferase DNMT3B in cancer cell survival. J Biol Chem 277(31): 28176–28181. doi: 10.1074/jbc.M204734200 CrossRefGoogle Scholar
  15. 15.
    Linhart HG, Lin H, Yamada Y, Moran E, Steine EJ, Gokhale S, Lo G, Cantu E, Ehrich M, He T, Meissner A, Jaenisch R (2007) Dnmt3b promotes tumorigenesis in vivo by gene-specific de novo methylation and transcriptional silencing. Genes Dev 21(23):3110–3122. doi: 10.1101/gad.1594007, pii: 21/23/3110CrossRefGoogle Scholar
  16. 16.
    Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8(4):286–298. doi: 10.1038/nrg2005 CrossRefGoogle Scholar
  17. 17.
    Kopelovich L, Crowell JA, Fay JR (2003) The epigenome as a target for cancer chemoprevention. J Natl Cancer Inst 95(23):1747–1757. doi: 10.1093/jnci/dig109 CrossRefGoogle Scholar
  18. 18.
    Gama-Sosa MA, Slagel VA, Trewyn RW, Oxenhandler R, Kuo KC, Gehrke CW, Ehrlich M (1983) The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res 11(19):6883–6894. doi: 10.1093/nar/11.19.6883 CrossRefGoogle Scholar
  19. 19.
    Goelz SE, Vogelstein B, Hamilton SR, Feinberg AP (1985) Hypomethylation of DNA from benign and malignant human colon neoplasms. Science 228(4696):187–190. doi: 10.1126/science.2579435 CrossRefGoogle Scholar
  20. 20.
    Huang J, Plass C, Gerhauser C (2011) Cancer chemoprevention by targeting the epigenome. Curr Drug Targets 12(13):1925–1956, doi: 10.2174/138945011798184155 CrossRefGoogle Scholar
  21. 21.
    Verma M, Maruvada P, Srivastava S (2004) Epigenetics and cancer. Crit Rev Clin Lab Sci 41(5–6):585–607. doi: 10.1080/10408360490516922 CrossRefGoogle Scholar
  22. 22.
    Hauser AT, Jung M (2008) Targeting epigenetic mechanisms: potential of natural products in cancer chemoprevention. Planta Med 74(13):1593–1601. doi: 10.1055/s-2008-1081347 CrossRefGoogle Scholar
  23. 23.
    Johnson IT, Belshaw NJ (2008) Environment, diet and CpG island methylation: epigenetic signals in gastrointestinal neoplasia. Food Chem Toxicol 46(4):1346–1359. doi: 10.1016/j.fct.2007.09.101, pii: S0278-6915(07)00451-6CrossRefGoogle Scholar
  24. 24.
    Arasaradnam RP, Commane DM, Bradburn D, Mathers JC (2008) A review of dietary factors and its influence on DNA methylation in colorectal carcinogenesis. Epigenetics 3(4):193–198, doi: 10.4161/epi.3.4.6508 CrossRefGoogle Scholar
  25. 25.
    Molinie B, Georgel P (2009) Genetic and epigenetic regulations of prostate cancer by genistein. Drug News Perspect 22(5):247–254. doi: 10.1358/dnp.2009.22.5.1378633 CrossRefGoogle Scholar
  26. 26.
    Choi S-W, Friso S (eds) (2009) Nutrients and epigenetics. CRC, Boca Raton. doi: 10.1201/9781420063561.ch5 Google Scholar
  27. 27.
    Gilbert ER, Liu D (2010) Flavonoids influence epigenetic-modifying enzyme activity: structure–function relationships and the therapeutic potential for cancer. Curr Med Chem 17(17):1756–1768, pii: BSP/CMC/E-Pub/105CrossRefGoogle Scholar
  28. 28.
    Li Y, Tollefsbol TO (2010) Impact on DNA methylation in cancer prevention and therapy by bioactive dietary components. Curr Med Chem 17(20):2141–2151, doi: 10.2174/092986710791299966 CrossRefGoogle Scholar
  29. 29.
    vel Szic KS, Ndlovu MN, Haegeman G, Vanden Berghe W (2010) Nature or nurture: let food be your epigenetic medicine in chronic inflammatory disorders. Biochem Pharmacol 80(12):1816–1832. doi: 10.1016/j.bcp.2010.07.029, pii:S0006-2952(10)00567-8CrossRefGoogle Scholar
  30. 30.
    Link A, Balaguer F, Goel A (2010) Cancer chemoprevention by dietary polyphenols: promising role for epigenetics. Biochem Pharmacol 80(12):1771–1792. doi: 10.1016/j.bcp.2010.06.036, pii: S0006-2952(10)00470-3CrossRefGoogle Scholar
  31. 31.
    Meeran SM, Ahmed A, Tollefsbol TO (2010) Epigenetic targets of bioactive dietary components for cancer prevention and therapy. Clin Epigenetics 1(3–4):101–116. doi: 10.1007/s13148-010-0011-5 CrossRefGoogle Scholar
  32. 32.
    Reuter S, Gupta SC, Park B, Goel A, Aggarwal BB (2011) Epigenetic changes induced by curcumin and other natural compounds. Genes Nutr 6(2):93–108. doi: 10.1007/s12263-011-0222-1 CrossRefGoogle Scholar
  33. 33.
    Vanden Berghe W (2012) Epigenetic impact of dietary polyphenols in cancer chemoprevention: lifelong remodeling of our epigenomes. Pharmacol Res 65(6):565–576. doi: 10.1016/j.phrs.2012.03.007, pii: S1043-6618(12)00050-3CrossRefGoogle Scholar
  34. 34.
    Khan SI, Aumsuwan P, Khan IA, Walker LA, Dasmahapatra AK (2012) Epigenetic events associated with breast cancer and their prevention by dietary components targeting the epigenome. Chem Res Toxicol 25(1):61–73. doi: 10.1021/tx200378c CrossRefGoogle Scholar
  35. 35.
    Malireddy S, Kotha SR, Secor JD, Gurney TO, Abbott JL, Maulik G, Maddipati KR, Parinandi NL (2012) Phytochemical antioxidants modulate Mammalian cellular epigenome: implications in health and disease. Antioxid Redox Signal 17(2):327–339. doi: 10.1089/ars.2012.4600 CrossRefGoogle Scholar
  36. 36.
    Stefanska B, Karlic H, Varga F, Fabianowska-Majewska K, Haslberger AG (2012) Epigenetic mechanisms in anti-cancer actions of bioactive food components – the implications in cancer prevention. Br J Pharmacol. doi: 10.1111/j.1476-5381.2012.02002.x
  37. 37.
    Fang M, Chen D, Yang CS (2007) Dietary polyphenols may affect DNA methylation. J Nutr 137(1 Suppl):223S–228S, pii: 137/1/223SGoogle Scholar
  38. 38.
    Fini L, Piazzi G, Daoud Y, Selgrad M, Maegawa S, Garcia M, Fogliano V, Romano M, Graziani G, Vitaglione P, Carmack SW, Gasbarrini A, Genta RM, Issa JP, Boland CR, Ricciardiello L (2011) Chemoprevention of intestinal polyps in ApcMin/+ mice fed with western or balanced diets by drinking annurca apple polyphenol extract. Cancer Prev Res (Phila) 4(6):907-15. doi:10.1158/1940-6207.CAPR-10-0359Google Scholar
  39. 39.
    Chen J, Xu X (2010) Diet, epigenetic, and cancer prevention. Adv Genet 71:237–255. doi: 10.1016/B978-0-12-380864-6.00008-0 CrossRefGoogle Scholar
  40. 40.
    Paluszczak J, Krajka-Kuzniak V, Baer-Dubowska W (2010) The effect of dietary polyphenols on the epigenetic regulation of gene expression in MCF7 breast cancer cells. Toxicol Lett 192(2):119–125. doi: 10.1016/j.toxlet.2009.10.010, pii: S0378-4274(09)01451-9CrossRefGoogle Scholar
  41. 41.
    Wang LS, Arnold M, Huang YW, Sardo C, Seguin C, Martin E, Huang TH, Riedl K, Schwartz S, Frankel W, Pearl D, Xu Y, Winston J 3rd, Yang GY, Stoner G (2011) Modulation of genetic and epigenetic biomarkers of colorectal cancer in humans by black raspberries: a phase I pilot study. Clin Cancer Res 17(3):598–610. doi: 10.1158/1078-0432.CCR-10-1260 CrossRefGoogle Scholar
  42. 42.
    Spurling CC, Suhl JA, Boucher N, Nelson CE, Rosenberg DW, Giardina C (2008) The short chain fatty acid butyrate induces promoter demethylation and reactivation of RARbeta2 in colon cancer cells. Nutr Cancer 60(5):692–702. doi: 10.1080/01635580802008278, pii: 902435515CrossRefGoogle Scholar
  43. 43.
    Lee WJ, Zhu BT (2006) Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols. Carcinogenesis 27(2):269–277. doi: 10.1093/carcin/bgi206 CrossRefGoogle Scholar
  44. 44.
    Lee WJ, Shim JY, Zhu BT (2005) Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol 68(4):1018–1030. doi: 10.1124/mol.104.008367 CrossRefGoogle Scholar
  45. 45.
    Pandey M, Shukla S, Gupta S (2009) Promoter demethylation and chromatin remodeling by green tea polyphenols leads to re-expression of GSTP1 in human prostate cancer cells. Int J Cancer. doi: 10.1002/ijc.24988
  46. 46.
    Rajavelu A, Tulyasheva Z, Jaiswal R, Jeltsch A, Kuhnert N (2011) The inhibition of the mammalian DNA methyltransferase 3a (Dnmt3a) by dietary black tea and coffee polyphenols. BMC Biochem 12:16. doi: 10.1186/1471-2091-12-16 CrossRefGoogle Scholar
  47. 47.
    Scoccianti C, Ricceri F, Ferrari P, Cuenin C, Sacerdote C, Polidoro S, Jenab M, Hainaut P, Vineis P, Herceg Z (2011) Methylation patterns in sentinel genes in peripheral blood cells of heavy smokers: influence of cruciferous vegetables in an intervention study. Epigenetics 6(9):1114–1119, doi: 10.4161/epi.6.9.16515 CrossRefGoogle Scholar
  48. 48.
    Liu Z, Xie Z, Jones W, Pavlovicz RE, Liu S, Yu J, Li PK, Lin J, Fuchs JR, Marcucci G, Li C, Chan KK (2009) Curcumin is a potent DNA hypomethylation agent. Bioorg Med Chem Lett 19(3):706–709. doi: 10.1016/j.bmcl.2008.12.041, pii: S0960-894X(08)01551-5CrossRefGoogle Scholar
  49. 49.
    Khor TO, Huang Y, Wu TY, Shu L, Lee J, Kong AN (2011) Pharmacodynamics of curcumin as DNA hypomethylation agent in restoring the expression of Nrf2 via promoter CpGs demethylation. Biochem Pharmacol 82(9):1073–1078. doi: 10.1016/j.bcp.2011.07.065, pii: S0006-2952(11)00523-5CrossRefGoogle Scholar
  50. 50.
    Shu L, Khor TO, Lee JH, Boyanapalli SS, Huang Y, Wu TY, Saw CL, Cheung KL, Kong AN (2011) Epigenetic CpG demethylation of the promoter and reactivation of the expression of neurog1 by curcumin in prostate LNCaP cells. AAPS J. doi: 10.1208/s12248-011-9300-y
  51. 51.
    Jha AK, Nikbakht M, Parashar G, Shrivastava A, Capalash N, Kaur J (2010) Reversal of hypermethylation and reactivation of the RARbeta2 gene by natural compounds in cervical cancer cell lines. Folia Biol (Praha) 56(5):195–200, pii: FB2010A0026Google Scholar
  52. 52.
    Vilas-Zornoza A, Agirre X, Martin-Palanco V, Martin-Subero JI, San Jose-Eneriz E, Garate L, Alvarez S, Miranda E, Rodriguez-Otero P, Rifon J, Torres A, Calasanz MJ, Cruz Cigudosa J, Roman-Gomez J, Prosper F (2011) Frequent and simultaneous epigenetic inactivation of TP53 pathway genes in acute lymphoblastic leukemia. PLoS One 6(2):e17012. doi: 10.1371/journal.pone.0017012 CrossRefGoogle Scholar
  53. 53.
    Lin J, Haffner MC, Zhang Y, Lee BH, Brennen WN, Britton J, Kachhap SK, Shim JS, Liu JO, Nelson WG, Yegnasubramanian S, Carducci MA (2011) Disulfiram is a DNA demethylating agent and inhibits prostate cancer cell growth. Prostate 71(4):333–343. doi: 10.1002/pros.21247 CrossRefGoogle Scholar
  54. 54.
    Berletch JB, Liu C, Love WK, Andrews LG, Katiyar SK, Tollefsbol TO (2008) Epigenetic and genetic mechanisms contribute to telomerase inhibition by EGCG. J Cell Biochem 103(2):509–519. doi: 10.1002/jcb.21417 CrossRefGoogle Scholar
  55. 55.
    Fang MZ, Wang Y, Ai N, Hou Z, Sun Y, Lu H, Welsh W, Yang CS (2003) Tea polyphenol (−)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res 63(22):7563–7570Google Scholar
  56. 56.
    Chuang JC, Yoo CB, Kwan JM, Li TW, Liang G, Yang AS, Jones PA (2005) Comparison of biological effects of non-nucleoside DNA methylation inhibitors versus 5-aza-2′-deoxycytidine. Mol Cancer Ther 4(10):1515–1520. doi: 10.1158/1535-7163.MCT-05-0172, pii: 4/10/1515CrossRefGoogle Scholar
  57. 57.
    Stresemann C, Brueckner B, Musch T, Stopper H, Lyko F (2006) Functional diversity of DNA methyltransferase inhibitors in human cancer cell lines. Cancer Res 66(5):2794–2800. doi: 10.1158/0008-5472.CAN-05-2821, pii: 66/5/2794CrossRefGoogle Scholar
  58. 58.
    Navarro-Peran E, Cabezas-Herrera J, Campo LS, Rodriguez-Lopez JN (2007) Effects of folate cycle disruption by the green tea polyphenol epigallocatechin-3-gallate. Int J Biochem Cell Biol 39(12):2215–2225. doi: 10.1016/j.biocel.2007.06.005, pii: S1357-2725(07)00183-5CrossRefGoogle Scholar
  59. 59.
    Kato K, Long NK, Makita H, Toida M, Yamashita T, Hatakeyama D, Hara A, Mori H, Shibata T (2008) Effects of green tea polyphenol on methylation status of RECK gene and cancer cell invasion in oral squamous cell carcinoma cells. Br J Cancer 99(4):647–654. doi: 10.1038/sj.bjc.6604521 CrossRefGoogle Scholar
  60. 60.
    Gao Z, Xu Z, Hung MS, Lin YC, Wang T, Gong M, Zhi X, Jablon DM, You L (2009) Promoter demethylation of WIF-1 by epigallocatechin-3-gallate in lung cancer cells. Anticancer Res 29(6):2025–2030, pii: 29/6/2025Google Scholar
  61. 61.
    Nandakumar V, Vaid M, Katiyar SK (2011) (−)-Epigallocatechin-3-gallate reactivates silenced tumor suppressor genes, Cip1/p21 and p16INK4a, by reducing DNA methylation and increasing histones acetylation in human skin cancer cells. Carcinogenesis 32(4): 537–544. doi: 10.1093/carcin/bgq285 CrossRefGoogle Scholar
  62. 62.
    Meeran SM, Patel SN, Chan TH, Tollefsbol TO (2011) A novel prodrug of epigallocatechin-3-gallate: differential epigenetic hTERT repression in human breast cancer cells. Cancer Prev Res (Phila) 4(8):1243–1254. doi: 10.1158/1940-6207.CAPR-11-0009 CrossRefGoogle Scholar
  63. 63.
    Morey Kinney SR, Zhang W, Pascual M, Greally JM, Gillard BM, Karasik E, Foster BA, Karpf AR (2009) Lack of evidence for green tea polyphenols as DNA methylation inhibitors in murine prostate. Cancer Prev Res (Phila) 2(12):1065–1075. doi: 10.1158/1940-6207.CAPR-09-0010 CrossRefGoogle Scholar
  64. 64.
    Volate SR, Muga SJ, Issa AY, Nitcheva D, Smith T, Wargovich MJ (2009) Epigenetic modulation of the retinoid X receptor alpha by green tea in the azoxymethane-Apc Min/+ mouse model of intestinal cancer. Mol Carcinog 48(10):920–933. doi: 10.1002/mc.20542 CrossRefGoogle Scholar
  65. 65.
    Yuasa Y, Nagasaki H, Akiyama Y, Hashimoto Y, Takizawa T, Kojima K, Kawano T, Sugihara K, Imai K, Nakachi K (2009) DNA methylation status is inversely correlated with green tea intake and physical activity in gastric cancer patients. Int J Cancer 124(11): 2677–2682. doi: 10.1002/ijc.24231 CrossRefGoogle Scholar
  66. 66.
    Duthie SJ (2010) Folate and cancer: how DNA damage, repair and methylation impact on colon carcinogenesis. J Inherit Metab Dis. doi: 10.1007/s10545-010-9128-0
  67. 67.
    Kim YI (2004) Folate, colorectal carcinogenesis, and DNA methylation: lessons from animal studies. Environ Mol Mutagen 44(1):10–25. doi: 10.1002/em.20025 CrossRefGoogle Scholar
  68. 68.
    Kim YI (2005) Nutritional epigenetics: impact of folate deficiency on DNA methylation and colon cancer susceptibility. J Nutr 135(11):2703–2709, pii: 135/11/2703Google Scholar
  69. 69.
    McKay JA, Mathers JC (2011) Diet induced epigenetic changes and their implications for health. Acta Physiol (Oxf) 202(2):103–118. doi: 10.1111/j.1748-1716.2011.02278.x CrossRefGoogle Scholar
  70. 70.
    Park LK, Friso S, Choi SW (2012) Nutritional influences on epigenetics and age-related disease. Proc Nutr Soc 71:75–83. doi: 10.1017/S0029665111003302 CrossRefGoogle Scholar
  71. 71.
    Jang H, Mason JB, Choi SW (2005) Genetic and epigenetic interactions between folate and aging in carcinogenesis. J Nutr 135(12 Suppl):2967S–2971S, pii: 135/12/2967SGoogle Scholar
  72. 72.
    Kim KC, Friso S, Choi SW (2009) DNA methylation, an epigenetic mechanism connecting folate to healthy embryonic development and aging. J Nutr Biochem 20(12):917–926. doi: 10.1016/j.jnutbio.2009.06.008, pii: S0955-2863(09)00134-XCrossRefGoogle Scholar
  73. 73.
    Burdge GC, Lillycrop KA (2010) Nutrition, epigenetics, and developmental plasticity: implications for understanding human disease. Annu Rev Nutr 30:315–339. doi: 10.1146/annurev.nutr.012809.104751 CrossRefGoogle Scholar
  74. 74.
    Duthie SJ (2011) Epigenetic modifications and human pathologies: cancer and CVD. Proc Nutr Soc 70(1):47–56. doi: 10.1017/S0029665110003952 CrossRefGoogle Scholar
  75. 75.
    Wallace K, Grau MV, Levine AJ, Shen L, Hamdan R, Chen X, Gui J, Haile RW, Barry EL, Ahnen D, McKeown-Eyssen G, Baron JA, Issa JP (2010) Association between folate levels and CpG Island hypermethylation in normal colorectal mucosa. Cancer Prev Res (Phila) 3(12):1552–1564. doi: 10.1158/1940-6207.CAPR-10-0047, pii: 3/12/1552CrossRefGoogle Scholar
  76. 76.
    Lamprecht SA, Lipkin M (2003) Chemoprevention of colon cancer by calcium, vitamin D and folate: molecular mechanisms. Nat Rev Cancer 3(8):601–614. doi: 10.1038/nrc1144 CrossRefGoogle Scholar
  77. 77.
    Stidley CA, Picchi MA, Leng S, Willink R, Crowell RE, Flores KG, Kang H, Byers T, Gilliland FD, Belinsky SA (2010) Multivitamins, folate, and green vegetables protect against gene promoter methylation in the aerodigestive tract of smokers. Cancer Res 70(2):568–574. doi: 10.1158/0008-5472.CAN-09-3410 CrossRefGoogle Scholar
  78. 78.
    Fang MZ, Chen D, Sun Y, Jin Z, Christman JK, Yang CS (2005) Reversal of hypermethylation and reactivation of p16INK4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy. Clin Cancer Res 11(19 Pt 1):7033–7041. doi: 10.1158/1078-0432.CCR-05-0406, pii: 11/19/7033CrossRefGoogle Scholar
  79. 79.
    King-Batoon A, Leszczynska JM, Klein CB (2008) Modulation of gene methylation by genistein or lycopene in breast cancer cells. Environ Mol Mutagen 49(1):36–45. doi: 10.1002/em.20363 CrossRefGoogle Scholar
  80. 80.
    Wang Z, Chen H (2010) Genistein increases gene expression by demethylation of WNT5a promoter in colon cancer cell line SW1116. Anticancer Res 30(11):4537–4545, pii: 30/11/4537Google Scholar
  81. 81.
    Li Y, Liu L, Andrews LG, Tollefsbol TO (2009) Genistein depletes telomerase activity through cross-talk between genetic and epigenetic mechanisms. Int J Cancer 125(2): 286–296. doi: 10.1002/ijc.24398 CrossRefGoogle Scholar
  82. 82.
    Majid S, Dar AA, Ahmad AE, Hirata H, Kawakami K, Shahryari V, Saini S, Tanaka Y, Dahiya AV, Khatri G, Dahiya R (2009) BTG3 tumor suppressor gene promoter demethylation, histone modification and cell cycle arrest by genistein in renal cancer. Carcinogenesis 30(4):662–670. doi: 10.1093/carcin/bgp042 CrossRefGoogle Scholar
  83. 83.
    Vardi A, Bosviel R, Rabiau N, Adjakly M, Satih S, Dechelotte P, Boiteux JP, Fontana L, Bignon YJ, Guy L, Bernard-Gallon DJ (2010) Soy phytoestrogens modify DNA methylation of GSTP1, RASSF1A, EPH2 and BRCA1 promoter in prostate cancer cells. In Vivo 24(4):393–400, pii: 24/4/393Google Scholar
  84. 84.
    Adjakly M, Bosviel R, Rabiau N, Boiteux JP, Bignon YJ, Guy L, Bernard-Gallon D (2011) DNA methylation and soy phytoestrogens: quantitative study in DU-145 and PC-3 human prostate cancer cell lines. Epigenomics 3(6):795–803. doi: 10.2217/epi.11.103 CrossRefGoogle Scholar
  85. 85.
    Sato N, Yamakawa N, Masuda M, Sudo K, Hatada I, Muramatsu M (2011) Genome-wide DNA methylation analysis reveals phytoestrogen modification of promoter methylation patterns during embryonic stem cell differentiation. PLoS One 6(4):e19278. doi: 10.1371/journal.pone.0019278, pii: PONE-D-10-06293CrossRefGoogle Scholar
  86. 86.
    Matsukura H, Aisaki K, Igarashi K, Matsushima Y, Kanno J, Muramatsu M, Sudo K, Sato N (2011) Genistein promotes DNA demethylation of the steroidogenic factor 1 (SF-1) promoter in endometrial stromal cells. Biochem Biophys Res Commun 412(2):366–372. doi: 10.1016/j.bbrc.2011.07.104, pii: S0006-291X(11)01339-8CrossRefGoogle Scholar
  87. 87.
    Day JK, Bauer AM, DesBordes C, Zhuang Y, Kim BE, Newton LG, Nehra V, Forsee KM, MacDonald RS, Besch-Williford C, Huang TH, Lubahn DB (2002) Genistein alters methylation patterns in mice. J Nutr 132(8 Suppl):2419S–2423SGoogle Scholar
  88. 88.
    Dolinoy DC, Weidman JR, Waterland RA, Jirtle RL (2006) Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect 114(4):567–572. doi: 10.1289/ehp.8700 CrossRefGoogle Scholar
  89. 89.
    Howard TD, Ho SM, Zhang L, Chen J, Cui W, Slager R, Gray S, Hawkins GA, Medvedovic M, Wagner JD (2011) Epigenetic changes with dietary soy in cynomolgus monkeys. PLoS One 6(10):e26791. doi: 10.1371/journal.pone.0026791, pii: PONE-D-11-12849CrossRefGoogle Scholar
  90. 90.
    Tang WY, Newbold R, Mardilovich K, Jefferson W, Cheng RY, Medvedovic M, Ho SM (2008) Persistent hypomethylation in the promoter of nucleosomal binding protein 1 (Nsbp1) correlates with overexpression of Nsbp1 in mouse uteri neonatally exposed to diethylstilbestrol or genistein. Endocrinology 149(12):5922–5931. doi: 10.1210/en.2008-0682 CrossRefGoogle Scholar
  91. 91.
    Guerrero-Bosagna CM, Sabat P, Valdovinos FS, Valladares LE, Clark SJ (2008) Epigenetic and phenotypic changes result from a continuous pre and post natal dietary exposure to phytoestrogens in an experimental population of mice. BMC Physiol 8:17. doi: 10.1186/1472-6793-8-17 CrossRefGoogle Scholar
  92. 92.
    Qin W, Zhu W, Shi H, Hewett JE, Ruhlen RL, MacDonald RS, Rottinghaus GE, Chen YC, Sauter ER (2009) Soy isoflavones have an antiestrogenic effect and alter mammary promoter hypermethylation in healthy premenopausal women. Nutr Cancer 61(2):238–244. doi: 10.1080/01635580802404196, pii: 908919410CrossRefGoogle Scholar
  93. 93.
    Jagadeesh S, Sinha S, Pal BC, Bhattacharya S, Banerjee PP (2007) Mahanine reverses an epigenetically silenced tumor suppressor gene RASSF1A in human prostate cancer cells. Biochem Biophys Res Commun 362(1):212–217. doi: 10.1016/j.bbrc.2007.08.005, pii: S0006-291X(07)01709-3CrossRefGoogle Scholar
  94. 94.
    Sheikh KD, Banerjee PP, Jagadeesh S, Grindrod SC, Zhang L, Paige M, Brown ML (2010) Fluorescent epigenetic small molecule induces expression of the tumor suppressor ras-association domain family 1A and inhibits human prostate xenograft. J Med Chem 53(6):2376–2382. doi: 10.1021/jm9011615 CrossRefGoogle Scholar
  95. 95.
    Lin RK, Hsu CH, Wang YC (2007) Mithramycin A inhibits DNA methyltransferase and metastasis potential of lung cancer cells. Anticancer Drugs 18(10):1157–1164. doi: 10.1097/CAD.0b013e3282a215e9, pii: 00001813-200711000-00006CrossRefGoogle Scholar
  96. 96.
    Cui Y, Lu C, Liu L, Sun D, Yao N, Tan S, Bai S, Ma X (2008) Reactivation of methylation-silenced tumor suppressor gene p16INK4a by nordihydroguaiaretic acid and its implication in G1 cell cycle arrest. Life Sci 82(5–6):247–255. doi: 10.1016/j.lfs.2007.11.013, pii: S0024-3205(07)00843-0CrossRefGoogle Scholar
  97. 97.
    Cui Y, Lu C, Kang A, Liu L, Tan S, Sun D, Hu J, Ma X (2008) Nordihydroguaiaretic acid restores expression of silenced E-cadherin gene in human breast cancer cell lines and xenografts. Anticancer Drugs 19(5):487–494. doi: 10.1097/CAD.0b013e3282fd5310 CrossRefGoogle Scholar
  98. 98.
    Byun HM, Choi SH, Laird PW, Trinh B, Siddiqui MA, Marquez VE, Yang AS (2008) 2′-Deoxy-N4-[2-(4-nitrophenyl)ethoxycarbonyl]-5-azacytidine: a novel inhibitor of DNA methyltransferase that requires activation by human carboxylesterase 1. Cancer Lett 266(2):238–248. doi: 10.1016/j.canlet.2008.02.069, pii: S0304-3835(08)00171-7CrossRefGoogle Scholar
  99. 99.
    Liu Z, Liu S, Xie Z, Pavlovicz RE, Wu J, Chen P, Aimiuwu J, Pang J, Bhasin D, Neviani P, Fuchs JR, Plass C, Li PK, Li C, Huang TH, Wu LC, Rush L, Wang H, Perrotti D, Marcucci G, Chan KK (2009) Modulation of DNA methylation by a sesquiterpene lactone parthenolide. J Pharmacol Exp Ther 329(2):505–514. doi: 10.1124/jpet.108.147934 CrossRefGoogle Scholar
  100. 100.
    Wang LG, Beklemisheva A, Liu XM, Ferrari AC, Feng J, Chiao JW (2007) Dual action on promoter demethylation and chromatin by an isothiocyanate restored GSTP1 silenced in prostate cancer. Mol Carcinog 46(1):24–31. doi: 10.1002/mc.20258 CrossRefGoogle Scholar
  101. 101.
    Wang LG, Chiao JW (2010) Prostate cancer chemopreventive activity of phenethyl isothiocyanate through epigenetic regulation (Review). Int J Oncol 37(3):533–539. doi: 10.3892/ijo_00000702 CrossRefGoogle Scholar
  102. 102.
    Lu Q, Lin X, Feng J, Zhao X, Gallagher R, Lee MY, Chiao JW, Liu D (2008) Phenylhexyl isothiocyanate has dual function as histone deacetylase inhibitor and hypomethylating agent and can inhibit myeloma cell growth by targeting critical pathways. J Hematol Oncol 1:6. doi: 10.1186/1756-8722-1-6 CrossRefGoogle Scholar
  103. 103.
    Papoutsis AJ, Lamore SD, Wondrak GT, Selmin OI, Romagnolo DF (2010) Resveratrol prevents epigenetic silencing of BRCA-1 by the aromatic hydrocarbon receptor in human breast cancer cells. J Nutr 140(9):1607–1614. doi: 10.3945/jn.110.123422 CrossRefGoogle Scholar
  104. 104.
    Stefanska B, Salame P, Bednarek A, Fabianowska-Majewska K (2012) Comparative effects of retinoic acid, vitamin D and resveratrol alone and in combination with adenosine analogues on methylation and expression of phosphatase and tensin homologue tumour suppressor gene in breast cancer cells. Br J Nutr 107(6):781–790. doi: 10.1017/S0007114511003631 CrossRefGoogle Scholar
  105. 105.
    Stefanska B, Rudnicka K, Bednarek A, Fabianowska-Majewska K (2010) Hypomethylation and induction of retinoic acid receptor beta 2 by concurrent action of adenosine analogues and natural compounds in breast cancer cells. Eur J Pharmacol 638(1–3):47–53. doi: 10.1016/j.ejphar.2010.04.032, pii: S0014-2999(10)00363-8CrossRefGoogle Scholar
  106. 106.
    Di Croce L, Raker VA, Corsaro M, Fazi F, Fanelli M, Faretta M, Fuks F, Lo Coco F, Kouzarides T, Nervi C, Minucci S, Pelicci PG (2002) Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295(5557):1079–1082. doi: 10.1126/science.1065173, pii: 295/5557/1079CrossRefGoogle Scholar
  107. 107.
    Liu L, Saldanha SN, Pate MS, Andrews LG, Tollefsbol TO (2004) Epigenetic regulation of human telomerase reverse transcriptase promoter activity during cellular differentiation. Genes Chromosomes Cancer 41(1):26–37. doi: 10.1002/gcc.20058 CrossRefGoogle Scholar
  108. 108.
    Nouzova M, Holtan N, Oshiro MM, Isett RB, Munoz-Rodriguez JL, List AF, Narro ML, Miller SJ, Merchant NC, Futscher BW (2004) Epigenomic changes during leukemia cell differentiation: analysis of histone acetylation and cytosine methylation using CpG island microarrays. J Pharmacol Exp Ther 311(3):968–981. doi: 10.1124/jpet.104.072488 CrossRefGoogle Scholar
  109. 109.
    Das S, Foley N, Bryan K, Watters KM, Bray I, Murphy DM, Buckley PG, Stallings RL (2010) MicroRNA mediates DNA demethylation events triggered by retinoic acid during neuroblastoma cell differentiation. Cancer Res 70(20):7874–7881. doi: 10.1158/0008-5472.CAN-10-1534 CrossRefGoogle Scholar
  110. 110.
    Sirchia SM, Ren M, Pili R, Sironi E, Somenzi G, Ghidoni R, Toma S, Nicolo G, Sacchi N (2002) Endogenous reactivation of the RARbeta2 tumor suppressor gene epigenetically silenced in breast cancer. Cancer Res 62(9):2455–2461Google Scholar
  111. 111.
    Ramachandran K, Navarro L, Gordian E, Das PM, Singal R (2007) Methylation-mediated silencing of genes is not altered by selenium treatment of prostate cancer cells. Anticancer Res 27(2):921–925Google Scholar
  112. 112.
    Fiala ES, Staretz ME, Pandya GA, El-Bayoumy K, Hamilton SR (1998) Inhibition of DNA cytosine methyltransferase by chemopreventive selenium compounds, determined by an improved assay for DNA cytosine methyltransferase and DNA cytosine methylation. Carcinogenesis 19(4):597–604. doi: 10.1093/carcin/19.4.597 CrossRefGoogle Scholar
  113. 113.
    Davis CD, Uthus EO, Finley JW (2000) Dietary selenium and arsenic affect DNA methylation in vitro in Caco-2 cells and in vivo in rat liver and colon. J Nutr 130(12):2903–2909Google Scholar
  114. 114.
    Davis CD, Uthus EO (2002) Dietary selenite and azadeoxycytidine treatments affect dimethylhydrazine-induced aberrant crypt formation in rat colon and DNA methylation in HT-29 cells. J Nutr 132(2):292–297Google Scholar
  115. 115.
    Xiang N, Zhao R, Song G, Zhong W (2008) Selenite reactivates silenced genes by modifying DNA methylation and histones in prostate cancer cells. Carcinogenesis 29(11):2175–2181. doi: 10.1093/carcin/bgn179 CrossRefGoogle Scholar
  116. 116.
    Davis CD, Uthus EO (2003) Dietary folate and selenium affect dimethylhydrazine-induced aberrant crypt formation, global DNA methylation and one-carbon metabolism in rats. J Nutr 133(9):2907–2914Google Scholar
  117. 117.
    Fischer A, Gaedicke S, Frank J, Doring F, Rimbach G (2010) Dietary vitamin E deficiency does not affect global and specific DNA methylation patterns in rat liver. Br J Nutr 104:935–940. doi: 10.1017/S0007114510001649 CrossRefGoogle Scholar
  118. 118.
    Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705. doi: 10.1016/j.cell.2007.02.005, pii: S0092-8674(07)00184-5CrossRefGoogle Scholar
  119. 119.
    Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395. doi: 10.1038/cr.2011.22 CrossRefGoogle Scholar
  120. 120.
    Fullgrabe J, Kavanagh E, Joseph B (2011) Histone onco-modifications. Oncogene 30(31): 3391–3403. doi: 10.1038/onc.2011.121 CrossRefGoogle Scholar
  121. 121.
    Nian H, Delage B, Ho E, Dashwood RH (2009) Modulation of histone deacetylase activity by dietary isothiocyanates and allyl sulfides: studies with sulforaphane and garlic organosulfur compounds. Environ Mol Mutagen 50(3):213–221. doi: 10.1002/em.20454 CrossRefGoogle Scholar
  122. 122.
    Druesne-Pecollo N, Latino-Martel P (2011) Modulation of histone acetylation by garlic sulfur compounds. Anticancer Agents Med Chem 11(3):254–259, doi: 10.2174/187152011795347540 CrossRefGoogle Scholar
  123. 123.
    Nian H, Delage B, Pinto JT, Dashwood RH (2008) Allyl mercaptan, a garlic-derived organosulfur compound, inhibits histone deacetylase and enhances Sp3 binding on the P21WAF1 promoter. Carcinogenesis 29(9):1816–1824. doi: 10.1093/carcin/bgn165 CrossRefGoogle Scholar
  124. 124.
    Balasubramanyam K, Swaminathan V, Ranganathan A, Kundu TK (2003) Small molecule modulators of histone acetyltransferase p300. J Biol Chem 278(21):19134–19140. doi: 10.1074/jbc.M301580200 CrossRefGoogle Scholar
  125. 125.
    Sun Y, Jiang X, Chen S, Price BD (2006) Inhibition of histone acetyltransferase activity by anacardic acid sensitizes tumor cells to ionizing radiation. FEBS Lett 580(18):4353–4356. doi: 10.1016/j.febslet.2006.06.092, pii: S0014-5793(06)00816-7CrossRefGoogle Scholar
  126. 126.
    Sung B, Pandey MK, Ahn KS, Yi T, Chaturvedi MM, Liu M, Aggarwal BB (2008) Anacardic acid (6-nonadecyl salicylic acid), an inhibitor of histone acetyltransferase, suppresses expression of nuclear factor-kappaB-regulated gene products involved in cell survival, proliferation, invasion, and inflammation through inhibition of the inhibitory subunit of nuclear factor-kappaBalpha kinase, leading to potentiation of apoptosis. Blood 111(10):4880–4891. doi: 10.1182/blood-2007-10-117994 CrossRefGoogle Scholar
  127. 127.
    Han JW, Ahn SH, Park SH, Wang SY, Bae GU, Seo DW, Kwon HK, Hong S, Lee HY, Lee YW, Lee HW (2000) Apicidin, a histone deacetylase inhibitor, inhibits proliferation of tumor cells via induction of p21WAF1/Cip1 and gelsolin. Cancer Res 60(21):6068–6074Google Scholar
  128. 128.
    You JS, Kang JK, Lee EK, Lee JC, Lee SH, Jeon YJ, Koh DH, Ahn SH, Seo DW, Lee HY, Cho EJ, Han JW (2008) Histone deacetylase inhibitor apicidin downregulates DNA methyltransferase 1 expression and induces repressive histone modifications via recruitment of corepressor complex to promoter region in human cervix cancer cells. Oncogene 27(10): 1376–1386. doi: 10.1038/sj.onc.1210776 CrossRefGoogle Scholar
  129. 129.
    Wu JT, Archer SY, Hinnebusch B, Meng S, Hodin RA (2001) Transient vs. prolonged histone hyperacetylation: effects on colon cancer cell growth, differentiation, and apoptosis. Am J Physiol Gastrointest Liver Physiol 280(3):G482–G490Google Scholar
  130. 130.
    Archer SY, Meng S, Shei A, Hodin RA (1998) p21(WAF1) is required for butyrate-mediated growth inhibition of human colon cancer cells. Proc Natl Acad Sci USA 95(12):6791–6796CrossRefGoogle Scholar
  131. 131.
    Nakata S, Yoshida T, Horinaka M, Shiraishi T, Wakada M, Sakai T (2004) Histone deacetylase inhibitors upregulate death receptor 5/TRAIL-R2 and sensitize apoptosis induced by TRAIL/APO2-L in human malignant tumor cells. Oncogene 23(37):6261–6271. doi: 10.1038/sj.onc.1207830 CrossRefGoogle Scholar
  132. 132.
    Myzak MC, Dashwood RH (2006) Histone deacetylases as targets for dietary cancer preventive agents: lessons learned with butyrate, diallyl disulfide, and sulforaphane. Curr Drug Targets 7(4):443–452CrossRefGoogle Scholar
  133. 133.
    Lu R, Wang X, Sun DF, Tian XQ, Zhao SL, Chen YX, Fang JY (2008) Folic acid and sodium butyrate prevent tumorigenesis in a mouse model of colorectal cancer. Epigenetics 3(6): 330–335, doi: 10.4161/epi.3.6.7125 CrossRefGoogle Scholar
  134. 134.
    Heltweg B, Gatbonton T, Schuler AD, Posakony J, Li H, Goehle S, Kollipara R, Depinho RA, Gu Y, Simon JA, Bedalov A (2006) Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes. Cancer Res 66(8):4368–4377. doi: 10.1158/0008-5472.CAN-05-3617, pii: 66/8/4368CrossRefGoogle Scholar
  135. 135.
    Kahyo T, Ichikawa S, Hatanaka T, Yamada MK, Setou M (2008) A novel chalcone polyphenol inhibits the deacetylase activity of SIRT1 and cell growth in HEK293T cells. J Pharmacol Sci 108(3):364–371, doi: 10.1254/jphs.08203FP, pii: JST.JSTAGE/jphs/08203FPCrossRefGoogle Scholar
  136. 136.
    Chen Y, Shu W, Chen W, Wu Q, Liu H, Cui G (2007) Curcumin, both histone deacetylase and p300/CBP-specific inhibitor, represses the activity of nuclear factor kappa B and Notch 1 in Raji cells. Basic Clin Pharmacol Toxicol 101(6):427–433. doi: 10.1111/j.1742-7843.2007.00142.x, pii: PTO142CrossRefGoogle Scholar
  137. 137.
    Balasubramanyam K, Varier RA, Altaf M, Swaminathan V, Siddappa NB, Ranga U, Kundu TK (2004) Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J Biol Chem 279(49):51163–51171. doi: 10.1074/jbc.M409024200 CrossRefGoogle Scholar
  138. 138.
    Kang J, Chen J, Shi Y, Jia J, Zhang Y (2005) Curcumin-induced histone hypoacetylation: the role of reactive oxygen species. Biochem Pharmacol 69(8):1205–1213. doi: 10.1016/j.bcp.2005.01.014, pii: S0006-2952(05)00068-7CrossRefGoogle Scholar
  139. 139.
    Lee SJ, Krauthauser C, Maduskuie V, Fawcett PT, Olson JM, Rajasekaran SA (2011) Curcumin-induced HDAC inhibition and attenuation of medulloblastoma growth in vitro and in vivo. BMC Cancer 11:144. doi: 10.1186/1471-2407-11-144 CrossRefGoogle Scholar
  140. 140.
    Seong AR, Yoo JY, Choi K, Lee MH, Lee YH, Lee J, Jun W, Kim S, Yoon HG (2011) Delphinidin, a specific inhibitor of histone acetyltransferase, suppresses inflammatory signaling via prevention of NF-kappaB acetylation in fibroblast-like synoviocyte MH7A cells. Biochem Biophys Res Commun 410(3):581–586. doi: 10.1016/j.bbrc.2011.06.029, pii: S0006-291X(11)00987-9CrossRefGoogle Scholar
  141. 141.
    Druesne-Pecollo N, Chaumontet C, Latino-Martel P (2008) Diallyl disulfide increases histone acetylation in colon cells in vitro and in vivo. Nutr Rev 66(suppl 1):S39–S41. doi: 10.1111/j.1753-4887.2008.00066.x, pii: NURE066CrossRefGoogle Scholar
  142. 142.
    Druesne-Pecollo N, Chaumontet C, Pagniez A, Vaugelade P, Bruneau A, Thomas M, Cherbuy C, Duee PH, Martel P (2007) In vivo treatment by diallyl disulfide increases histone acetylation in rat colonocytes. Biochem Biophys Res Commun 354(1):140–147. doi: 10.1016/j.bbrc.2006.12.158, pii: S0006-291X(06)02841-5CrossRefGoogle Scholar
  143. 143.
    Olaharski AJ, Rine J, Marshall BL, Babiarz J, Zhang L, Verdin E, Smith MT (2005) The flavoring agent dihydrocoumarin reverses epigenetic silencing and inhibits sirtuin deacetylases. PLoS Genet 1(6):e77. doi: 10.1371/journal.pgen.0010077 CrossRefGoogle Scholar
  144. 144.
    Li Y, Li X, Guo B (2010) Chemopreventive agent 3,3′-diindolylmethane selectively induces proteasomal degradation of class I histone deacetylases. Cancer Res 70(2):646–654. doi: 10.1158/0008-5472.CAN-09-1924 CrossRefGoogle Scholar
  145. 145.
    Degner SC, Papoutsis AJ, Selmin O, Romagnolo DF (2009) Targeting of aryl hydrocarbon receptor-mediated activation of cyclooxygenase-2 expression by the indole-3-carbinol metabolite 3,3′-diindolylmethane in breast cancer cells. J Nutr 139(1):26–32. doi: 10.3945/jn.108.099259 Google Scholar
  146. 146.
    Li Y, Yuan YY, Meeran SM, Tollefsbol TO (2010) Synergistic epigenetic reactivation of estrogen receptor-alpha (ERalpha) by combined green tea polyphenol and histone deacetylase inhibitor in ERalpha-negative breast cancer cells. Mol Cancer 9:274. doi: 10.1186/1476-4598-9-274 CrossRefGoogle Scholar
  147. 147.
    Choi KC, Jung MG, Lee YH, Yoon JC, Kwon SH, Kang HB, Kim MJ, Cha JH, Kim YJ, Jun WJ, Lee JM, Yoon HG (2009) Epigallocatechin-3-gallate, a histone acetyltransferase inhibitor, inhibits EBV-induced B lymphocyte transformation via suppression of RelA acetylation. Cancer Res 69(2):583–592. doi: 10.1158/0008-5472.CAN-08-2442, pii: 69/2/583CrossRefGoogle Scholar
  148. 148.
    Lee YH, Kwak J, Choi HK, Choi KC, Kim S, Lee J, Jun W, Park HJ, Yoon HG (2012) EGCG suppresses prostate cancer cell growth modulating acetylation of androgen receptor by anti-histone acetyltransferase activity. Int J Mol Med 30(1):69–74. doi: 10.3892/ijmm.2012.966 Google Scholar
  149. 149.
    Choi KC, Lee YH, Jung MG, Kwon SH, Kim MJ, Jun WJ, Lee J, Lee JM, Yoon HG (2009) Gallic acid suppresses lipopolysaccharide-induced nuclear factor-kappaB signaling by preventing RelA acetylation in A549 lung cancer cells. Mol Cancer Res 7(12):2011–2021. doi: 10.1158/1541-7786.MCR-09-0239 CrossRefGoogle Scholar
  150. 150.
    Arif M, Pradhan SK, Thanuja GR, Vedamurthy BM, Agrawal S, Dasgupta D, Kundu TK (2009) Mechanism of p300 specific histone acetyltransferase inhibition by small molecules. J Med Chem 52(2):267–277. doi: 10.1021/jm800657z CrossRefGoogle Scholar
  151. 151.
    Balasubramanyam K, Altaf M, Varier RA, Swaminathan V, Ravindran A, Sadhale PP, Kundu TK (2004) Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. J Biol Chem 279(32):33716–33726. doi: 10.1074/jbc.M402839200 CrossRefGoogle Scholar
  152. 152.
    Basak S, Pookot D, Noonan EJ, Dahiya R (2008) Genistein down-regulates androgen receptor by modulating HDAC6-Hsp90 chaperone function. Mol Cancer Ther 7(10):3195–3202. doi: 10.1158/1535-7163.MCT-08-0617, pii: 7/10/3195CrossRefGoogle Scholar
  153. 153.
    Majid S, Kikuno N, Nelles J, Noonan E, Tanaka Y, Kawamoto K, Hirata H, Li LC, Zhao H, Okino ST, Place RF, Pookot D, Dahiya R (2008) Genistein induces the p21WAF1/CIP1 and p16INK4a tumor suppressor genes in prostate cancer cells by epigenetic mechanisms involving active chromatin modification. Cancer Res 68(8):2736–2744. doi: 10.1158/0008-5472.CAN-07-2290, pii: 68/8/2736CrossRefGoogle Scholar
  154. 154.
    Kikuno N, Shiina H, Urakami S, Kawamoto K, Hirata H, Tanaka Y, Majid S, Igawa M, Dahiya R (2008) Genistein mediated histone acetylation and demethylation activates tumor suppressor genes in prostate cancer cells. Int J Cancer 123(3):552–560. doi: 10.1002/ijc.23590 CrossRefGoogle Scholar
  155. 155.
    Hong T, Nakagawa T, Pan W, Kim MY, Kraus WL, Ikehara T, Yasui K, Aihara H, Takebe M, Muramatsu M, Ito T (2004) Isoflavones stimulate estrogen receptor-mediated core histone acetylation. Biochem Biophys Res Commun 317(1):259–264. doi: 10.1016/j.bbrc.2004.03.041, pii: S0006291X04005029CrossRefGoogle Scholar
  156. 156.
    Nian H, Bisson WH, Dashwood WM, Pinto JT, Dashwood RH (2009) Alpha-keto acid metabolites of organoselenium compounds inhibit histone deacetylase activity in human colon cancer cells. Carcinogenesis 30(8):1416–1423. doi: 10.1093/carcin/bgp147 CrossRefGoogle Scholar
  157. 157.
    Gopal YN, Arora TS, Van Dyke MW (2007) Parthenolide specifically depletes histone deacetylase 1 protein and induces cell death through ataxia telangiectasia mutated. Chem Biol 14(7):813–823. doi: 10.1016/j.chembiol.2007.06.007, pii: S1074-5521(07)00212-8CrossRefGoogle Scholar
  158. 158.
    Wang LG, Liu XM, Fang Y, Dai W, Chiao FB, Puccio GM, Feng J, Liu D, Chiao JW (2008) De-repression of the p21 promoter in prostate cancer cells by an isothiocyanate via inhibition of HDACs and c-Myc. Int J Oncol 33(2):375–380. doi: 10.3892/ijo_00000018 Google Scholar
  159. 159.
    Beklemisheva AA, Fang Y, Feng J, Ma X, Dai W, Chiao JW (2006) Epigenetic mechanism of growth inhibition induced by phenylhexyl isothiocyanate in prostate cancer cells. Anticancer Res 26(2A):1225–1230Google Scholar
  160. 160.
    Ma X, Fang Y, Beklemisheva A, Dai W, Feng J, Ahmed T, Liu D, Chiao JW (2006) Phenylhexyl isothiocyanate inhibits histone deacetylases and remodels chromatins to induce growth arrest in human leukemia cells. Int J Oncol 28(5):1287–1293Google Scholar
  161. 161.
    Huang YQ, Ma XD, Zhen RJ, Chiao JW, Liu DL (2007) Experiment study of PHI on histone methylation and acetylation in Molt-4 cells. Zhonghua Xue Ye Xue Za Zhi 28(9):612–615Google Scholar
  162. 162.
    Huang YQ, Ma XD, Lai YD, Wang XZ, Chiao JW, Liu DL (2010) Phenylhexyl isothiocyanate(PHI) regulates histone methylation and acetylation and induces apoptosis in SMMC-7721 cells. Zhonghua Gan Zang Bing Za Zhi 18(3):209–212Google Scholar
  163. 163.
    Xiao L, Huang Y, Zhen R, Chiao JW, Liu D, Ma X (2010) Deficient histone acetylation in acute leukemia and the correction by an isothiocyanate. Acta Haematol 123(2):71–76. doi: 10.1159/000264628 CrossRefGoogle Scholar
  164. 164.
    Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425(6954):191–196. doi: 10.1038/nature01960 CrossRefGoogle Scholar
  165. 165.
    Kai L, Samuel SK, Levenson AS (2010) Resveratrol enhances p53 acetylation and apoptosis in prostate cancer by inhibiting MTA1/NuRD complex. Int J Cancer 126(7):1538–1548. doi: 10.1002/ijc.24928 Google Scholar
  166. 166.
    Phipps SM, Love WK, White T, Andrews LG, Tollefsbol TO (2009) Retinoid-induced histone deacetylation inhibits telomerase activity in estrogen receptor-negative breast cancer cells. Anticancer Res 29(12):4959–4964, pii: 29/12/4959Google Scholar
  167. 167.
    Love WK, Berletch JB, Andrews LG, Tollefsbol TO (2008) Epigenetic regulation of telomerase in retinoid-induced differentiation of human leukemia cells. Int J Oncol 32(3):625–631Google Scholar
  168. 168.
    Li L-H, Wu L-J, Tashiro S-I, Onodera S, Uchiuni F (2007) Activation of SIRT1 pathway and modulation of the cell cycle were involved in silimarin’s protection against UV-induced A375-S2 cell apoptosis. J Asian Nat Prod Res 9:245–252. doi: 10.1080/10286020600604260 CrossRefGoogle Scholar
  169. 169.
    Myzak MC, Karplus PA, Chung FL, Dashwood RH (2004) A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Cancer Res 64(16):5767–5774. doi: 10.1158/0008-5472.CAN-04-1326, pii: 64/16/5767CrossRefGoogle Scholar
  170. 170.
    Myzak MC, Hardin K, Wang R, Dashwood RH, Ho E (2006) Sulforaphane inhibits histone deacetylase activity in BPH-1, LnCaP and PC-3 prostate epithelial cells. Carcinogenesis 27(4):811–819. doi: 10.1093/carcin/bgi265 CrossRefGoogle Scholar
  171. 171.
    Gibbs A, Schwartzman J, Deng V, Alumkal J (2009) Sulforaphane destabilizes the androgen receptor in prostate cancer cells by inactivating histone deacetylase 6. Proc Natl Acad Sci USA 106(39):16663–16668. doi: 10.1073/pnas.0908908106 CrossRefGoogle Scholar
  172. 172.
    Clarke JD, Hsu A, Yu Z, Dashwood RH, Ho E (2011) Differential effects of sulforaphane on histone deacetylases, cell cycle arrest and apoptosis in normal prostate cells versus hyperplastic and cancerous prostate cells. Mol Nutr Food Res 55(7):999–1009. doi: 10.1002/mnfr.201000547 CrossRefGoogle Scholar
  173. 173.
    Meeran SM, Patel SN, Tollefsbol TO (2010) Sulforaphane causes epigenetic repression of hTERT expression in human breast cancer cell lines. PLoS One 5(7):e11457. doi: 10.1371/journal.pone.0011457 CrossRefGoogle Scholar
  174. 174.
    Pledgie-Tracy A, Sobolewski MD, Davidson NE (2007) Sulforaphane induces cell type-specific apoptosis in human breast cancer cell lines. Mol Cancer Ther 6(3):1013–1021. doi: 10.1158/1535-7163.MCT-06-0494 CrossRefGoogle Scholar
  175. 175.
    Rajendran P, Delage B, Dashwood WM, Yu TW, Wuth B, Williams DE, Ho E, Dashwood RH (2011) Histone deacetylase turnover and recovery in sulforaphane-treated colon cancer cells: competing actions of 14-3-3 and Pin1 in HDAC3/SMRT corepressor complex dissociation/reassembly. Mol Cancer 10:68. doi: 10.1186/1476-4598-10-68 CrossRefGoogle Scholar
  176. 176.
    Myzak MC, Dashwood WM, Orner GA, Ho E, Dashwood RH (2006) Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesis in Apc-minus mice. FASEB J 20(3):506–508. doi: 10.1096/fj.05-4785fje Google Scholar
  177. 177.
    Myzak MC, Tong P, Dashwood WM, Dashwood RH, Ho E (2007) Sulforaphane retards the growth of human PC-3 xenografts and inhibits HDAC activity in human subjects. Exp Biol Med (Maywood) 232(2):227–234, pii: 232/2/227Google Scholar
  178. 178.
    Dashwood RH, Ho E (2007) Dietary histone deacetylase inhibitors: from cells to mice to man. Semin Cancer Biol 17(5):363–369. doi: 10.1016/j.semcancer.2007.04.001, pii: S1044-579X(07)00024-7CrossRefGoogle Scholar
  179. 179.
    Akare S, Jean-Louis S, Chen W, Wood DJ, Powell AA, Martinez JD (2006) Ursodeoxycholic acid modulates histone acetylation and induces differentiation and senescence. Int J Cancer 119(12):2958–2969. doi: 10.1002/ijc.22231 CrossRefGoogle Scholar
  180. 180.
    Cherrier T, Suzanne S, Redel L, Calao M, Marban C, Samah B, Mukerjee R, Schwartz C, Gras G, Sawaya BE, Zeichner SL, Aunis D, Van Lint C, Rohr O (2009) p21(WAF1) gene promoter is epigenetically silenced by CTIP2 and SUV39H1. Oncogene 28(38):3380–3389. doi: 10.1038/onc.2009.193 CrossRefGoogle Scholar
  181. 181.
    Greiner D, Bonaldi T, Eskeland R, Roemer E, Imhof A (2005) Identification of a specific inhibitor of the histone methyltransferase SU(VAR)3-9. Nat Chem Biol 1(3):143–145. doi: 10.1038/nchembio721 CrossRefGoogle Scholar
  182. 182.
    Lakshmikuttyamma A, Scott SA, DeCoteau JF, Geyer CR (2010) Reexpression of epigenetically silenced AML tumor suppressor genes by SUV39H1 inhibition. Oncogene 29(4): 576–588. doi: 10.1038/onc.2009.361 CrossRefGoogle Scholar
  183. 183.
    Hua WF, Fu YS, Liao YJ, Xia WJ, Chen YC, Zeng YX, Kung HF, Xie D (2010) Curcumin induces down-regulation of EZH2 expression through the MAPK pathway in MDA-MB-435 human breast cancer cells. Eur J Pharmacol 637(1–3):16–21. doi: 10.1016/j.ejphar.2010.03.051, pii: S0014-2999(10)00278-5CrossRefGoogle Scholar
  184. 184.
    Balasubramanian S, Adhikary G, Eckert RL (2010) The Bmi-1 polycomb protein antagonizes the (−)-epigallocatechin-3-gallate-dependent suppression of skin cancer cell survival. Carcinogenesis 31(3):496–503. doi: 10.1093/carcin/bgp314 CrossRefGoogle Scholar
  185. 185.
    Choudhury SR, Balasubramanian S, Chew YC, Han B, Marquez VE, Eckert RL (2011) (−)-Epigallocatechin-3-gallate and DZNep reduce polycomb protein level via a proteasome-dependent mechanism in skin cancer cells. Carcinogenesis 32(10):1525–1532. doi: 10.1093/carcin/bgr171 CrossRefGoogle Scholar
  186. 186.
    Huang Y, Greene E, Murray Stewart T, Goodwin AC, Baylin SB, Woster PM, Casero RA Jr (2007) Inhibition of lysine-specific demethylase 1 by polyamine analogues results in reexpression of aberrantly silenced genes. Proc Natl Acad Sci USA 104(19):8023–8028. doi: 10.1073/pnas.0700720104 CrossRefGoogle Scholar
  187. 187.
    Huang Y, Stewart TM, Wu Y, Baylin SB, Marton LJ, Perkins B, Jones RJ, Woster PM, Casero RA Jr (2009) Novel oligoamine analogues inhibit lysine-specific demethylase 1 and induce reexpression of epigenetically silenced genes. Clin Cancer Res 15(23):7217–7228. doi: 10.1158/1078-0432.CCR-09-1293 CrossRefGoogle Scholar
  188. 188.
    Dimri M, Bommi P, Sahasrabuddhe AA, Khandekar JD, Dimri GP (2010) Dietary omega-3 polyunsaturated fatty acids suppress expression of EZH2 in breast cancer cells. Carcinogenesis 31(3):489–495. doi: 10.1093/carcin/bgp305 CrossRefGoogle Scholar
  189. 189.
    Fu S, Kurzrock R (2010) Development of curcumin as an epigenetic agent. Cancer 116(20):4670–4676. doi: 10.1002/cncr.25414 CrossRefGoogle Scholar
  190. 190.
    Suzuki T, Miyata N (2006) Epigenetic control using natural products and synthetic molecules. Curr Med Chem 13(8):935–958CrossRefGoogle Scholar
  191. 191.
    Sauve AA, Wolberger C, Schramm VL, Boeke JD (2006) The biochemistry of sirtuins. Annu Rev Biochem 75:435–465. doi: 10.1146/annurev.biochem.74.082803.133500 CrossRefGoogle Scholar
  192. 192.
    Mottet D, Castronovo V (2008) Histone deacetylases: target enzymes for cancer therapy. Clin Exp Metastasis 25(2):183–189. doi: 10.1007/s10585-007-9131-5 CrossRefGoogle Scholar
  193. 193.
    Brooks CL, Gu W (2009) How does SIRT1 affect metabolism, senescence and cancer? Nat Rev Cancer 9(2):123–128. doi: 10.1038/nrc2562 CrossRefGoogle Scholar
  194. 194.
    Smeenk L, Lohrum M (2010) Behind the scenes: unravelling the molecular mechanisms of p53 target gene selectivity (Review). Int J Oncol 37(5):1061–1070. doi: 10.3892/ijo_00000757 Google Scholar
  195. 195.
    Spange S, Wagner T, Heinzel T, Kramer OH (2009) Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol 41(1):185–198. doi: 10.1016/j.biocel.2008.08.027, pii: S1357-2725(08)00347-6CrossRefGoogle Scholar
  196. 196.
    Brait M, Sidransky D (2011) Cancer epigenetics: above and beyond. Toxicol Mech Methods 21(4):275–288. doi: 10.3109/15376516.2011.562671 CrossRefGoogle Scholar
  197. 197.
    Upadhyay AK, Cheng X (2011) Dynamics of histone lysine methylation: structures of methyl writers and erasers. Prog Drug Res 67:107–124Google Scholar
  198. 198.
    Yang XD, Lamb A, Chen LF (2009) Methylation, a new epigenetic mark for protein stability. Epigenetics 4(7):429–433, doi: 10.4161/epi.4.7.9787 CrossRefGoogle Scholar
  199. 199.
    Munro S, Khaire N, Inche A, Carr S, La Thangue NB (2010) Lysine methylation regulates the pRb tumour suppressor protein. Oncogene 29(16):2357–2367. doi: 10.1038/onc.2009.511 CrossRefGoogle Scholar
  200. 200.
    West LE, Gozani O (2011) Regulation of p53 function by lysine methylation. Epigenomics 3(3):361–369. doi: 10.2217/EPI.11.21 CrossRefGoogle Scholar
  201. 201.
    Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866. doi: 10.1038/nrc1997 CrossRefGoogle Scholar
  202. 202.
    Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11(3):228–234. doi: 10.1038/ncb0309-228 CrossRefGoogle Scholar
  203. 203.
    Davis CD, Ross SA (2008) Evidence for dietary regulation of microRNA expression in cancer cells. Nutr Rev 66(8):477–482. doi: 10.1111/j.1753-4887.2008.00080.x, pii: NURE080CrossRefGoogle Scholar
  204. 204.
    Li Y, Kong D, Wang Z, Sarkar FH (2010) Regulation of microRNAs by natural agents: an emerging field in chemoprevention and chemotherapy research. Pharm Res 27(6): 1027–1041. doi: 10.1007/s11095-010-0105-y CrossRefGoogle Scholar
  205. 205.
    Huang S (2002) Histone methyltransferases, diet nutrients and tumour suppressors. Nat Rev Cancer 2(6):469–476. doi: 10.1038/nrc819 CrossRefGoogle Scholar
  206. 206.
    Henderson CJ, Wolf CR (2011) Knockout and transgenic mice in glutathione transferase research. Drug Metab Rev 43(2):152–164. doi: 10.3109/03602532.2011.562900 CrossRefGoogle Scholar
  207. 207.
    Giudice A, Arra C, Turco MC (2010) Review of molecular mechanisms involved in the activation of the Nrf2-ARE signaling pathway by chemopreventive agents. Methods Mol Biol 647:37–74. doi: 10.1007/978-1-60761-738-9_3 CrossRefGoogle Scholar
  208. 208.
    Tew KD, Townsend DM (2011) Regulatory functions of glutathione S-transferase P1-1 unrelated to detoxification. Drug Metab Rev 43(2):179–193. doi: 10.3109/03602532.2011.552912 CrossRefGoogle Scholar
  209. 209.
    Nakayama M, Gonzalgo ML, Yegnasubramanian S, Lin X, De Marzo AM, Nelson WG (2004) GSTP1 CpG island hypermethylation as a molecular biomarker for prostate cancer. J Cell Biochem 91(3):540–552. doi: 10.1002/jcb.10740 CrossRefGoogle Scholar
  210. 210.
    Yu S, Khor TO, Cheung KL, Li W, Wu TY, Huang Y, Foster BA, Kan YW, Kong AN (2010) Nrf2 expression is regulated by epigenetic mechanisms in prostate cancer of TRAMP mice. PLoS One 5(1):e8579. doi: 10.1371/journal.pone.0008579 CrossRefGoogle Scholar
  211. 211.
    Kunnumakkara AB, Anand P, Aggarwal BB (2008) Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett 269(2):199–225. doi: 10.1016/j.canlet.2008.03.009, pii: S0304-3835(08)00193-6CrossRefGoogle Scholar
  212. 212.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi: 10.1016/j.cell.2011.02.013, pii: S0092-8674(11)00127-9CrossRefGoogle Scholar
  213. 213.
    Pan MH, Ho CT (2008) Chemopreventive effects of natural dietary compounds on cancer development. Chem Soc Rev 37(11):2558–2574. doi: 10.1039/b801558a CrossRefGoogle Scholar
  214. 214.
    Li J, Poi MJ, Tsai MD (2011) Regulatory mechanisms of tumor suppressor P16(INK4A) and their relevance to cancer. Biochemistry 50(25):5566–5582. doi: 10.1021/bi200642e CrossRefGoogle Scholar
  215. 215.
    Raish M, Dhillon VS, Ahmad A, Ansari MA, Mudassar S, Shahid M, Batra V, Gupta P, Das BC, Shukla N, Husain SA (2009) Promoter hypermethylation in tumor suppressing genes p16 and FHIT and their relationship with estrogen receptor and progesterone receptor status in breast cancer patients from Northern India. Transl Oncol 2(4):264–270. doi: 10.1593/tlo.09148 Google Scholar
  216. 216.
    Belinsky SA, Nikula KJ, Palmisano WA, Michels R, Saccomanno G, Gabrielson E, Baylin SB, Herman JG (1998) Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci USA 95(20):11891–11896. doi: 10.1073/pnas.95.20.11891 CrossRefGoogle Scholar
  217. 217.
    Shima K, Nosho K, Baba Y, Cantor M, Meyerhardt JA, Giovannucci EL, Fuchs CS, Ogino S (2011) Prognostic significance of CDKN2A (p16) promoter methylation and loss of expression in 902 colorectal cancers: cohort study and literature review. Int J Cancer 128(5): 1080–1094. doi: 10.1002/ijc.25432 CrossRefGoogle Scholar
  218. 218.
    Boultwood J, Wainscoat JS (2007) Gene silencing by DNA methylation in haematological malignancies. Br J Haematol 138(1):3–11. doi: 10.1111/j.1365-2141.2007.06604.x, pii: BJH6604CrossRefGoogle Scholar
  219. 219.
    Esteller M, Corn PG, Baylin SB, Herman JG (2001) A gene hypermethylation profile of human cancer. Cancer Res 61(8):3225–3229Google Scholar
  220. 220.
    Kim YK, Seo DW, Kang DW, Lee HY, Han JW, Kim SN (2006) Involvement of HDAC1 and the PI3K/PKC signaling pathways in NF-kappaB activation by the HDAC inhibitor apicidin. Biochem Biophys Res Commun 347(4):1088–1093. doi: 10.1016/j.bbrc.2006.06.196, pii: S0006-291X(06)01550-6CrossRefGoogle Scholar
  221. 221.
    el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75(4):817–825. doi: 10.1016/0092-8674(93)90500-P CrossRefGoogle Scholar
  222. 222.
    Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75(4):805–816. doi: 10.1016/0092-8674(93)90499-G CrossRefGoogle Scholar
  223. 223.
    Abbas T, Dutta A (2009) p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9(6):400–414. doi: 10.1038/nrc2657 CrossRefGoogle Scholar
  224. 224.
    Ocker M, Schneider-Stock R (2007) Histone deacetylase inhibitors: signalling towards p21cip1/waf1. Int J Biochem Cell Biol 39(7–8):1367–1374. doi: 10.1016/j.biocel.2007.03.001, pii: S1357-2725(07)00079-9CrossRefGoogle Scholar
  225. 225.
    Gartel AL, Radhakrishnan SK (2005) Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res 65(10):3980–3985. doi: 10.1158/0008-5472.CAN-04-3995, pii: 65/10/3980CrossRefGoogle Scholar
  226. 226.
    Claus R, Lubbert M (2003) Epigenetic targets in hematopoietic malignancies. Oncogene 22(42):6489–6496. doi: 10.1038/sj.onc.1206814 CrossRefGoogle Scholar
  227. 227.
    Fang JY, Lu YY (2002) Effects of histone acetylation and DNA methylation on p21( WAF1) regulation. World J Gastroenterol 8(3):400–405Google Scholar
  228. 228.
    Riggs MG, Whittaker RG, Neumann JR, Ingram VM (1977) n-Butyrate causes histone modification in HeLa and Friend erythroleukaemia cells. Nature 268(5619):462–464. doi: 10.1038/268462a0 CrossRefGoogle Scholar
  229. 229.
    Candido EP, Reeves R, Davie JR (1978) Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 14(1):105–113. doi: 10.1016/0092-8674(78)90305-7 CrossRefGoogle Scholar
  230. 230.
    Sealy L, Chalkley R (1978) The effect of sodium butyrate on histone modification. Cell 14(1):115–121. doi: 10.1016/0092-8674(78)90306-9 CrossRefGoogle Scholar
  231. 231.
    Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27(2):104–119. doi: 10.1111/j.1365-2036.2007.03562.x, pii: APT3562CrossRefGoogle Scholar
  232. 232.
    Jin Z, El-Deiry WS (2005) Overview of cell death signaling pathways. Cancer Biol Ther 4(2):139–163, doi: 10.4161/cbt.4.2.1508, pii: 1508CrossRefGoogle Scholar
  233. 233.
    Strathmann J, Gerhauser C (2012) Anti-proliferative and apoptosis-inducing properties of Xanthohumol, a prenylated chalcone from hops (Humulus lupulus L.). In: Diederich M (ed) Natural compounds as inducers of cell death. Springer, HeidelbergGoogle Scholar
  234. 234.
    Verkerk R, Schreiner M, Krumbein A, Ciska E, Holst B, Rowland I, De Schrijver R, Hansen M, Gerhauser C, Mithen R, Dekker M (2009) Glucosinolates in Brassica vegetables: the influence of the food supply chain on intake, bioavailability and human health. Mol Nutr Food Res 53(suppl 2):S219. doi: 10.1002/mnfr.200800065 CrossRefGoogle Scholar
  235. 235.
    Cheung KL, Kong AN (2010) Molecular targets of dietary phenethyl isothiocyanate and sulforaphane for cancer chemoprevention. AAPS J 12(1):87–97. doi: 10.1208/s12248-009-9162-8 CrossRefGoogle Scholar
  236. 236.
    Lea MA, Rasheed M, Randolph VM, Khan F, Shareef A, desBordes C (2002) Induction of histone acetylation and inhibition of growth of mouse erythroleukemia cells by S-allylmercaptocysteine. Nutr Cancer 43(1):90–102. doi: 10.1207/S15327914NC431_11 CrossRefGoogle Scholar
  237. 237.
    Higdon JV, Delage B, Williams DE, Dashwood RH (2007) Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 55(3):224–236. doi: 10.1016/j.phrs.2007.01.009, pii: S1043-6618(07)00032-1CrossRefGoogle Scholar
  238. 238.
    Ellis L, Atadja PW, Johnstone RW (2009) Epigenetics in cancer: targeting chromatin modifications. Mol Cancer Ther 8(6):1409–1420. doi: 10.1158/1535-7163.MCT-08-0860 CrossRefGoogle Scholar
  239. 239.
    Dammann R, Schagdarsurengin U, Seidel C, Strunnikova M, Rastetter M, Baier K, Pfeifer GP (2005) The tumor suppressor RASSF1A in human carcinogenesis: an update. Histol Histopathol 20(2):645–663Google Scholar
  240. 240.
    Agathanggelou A, Cooper WN, Latif F (2005) Role of the Ras-association domain family 1 tumor suppressor gene in human cancers. Cancer Res 65(9):3497–3508. doi: 10.1158/0008-5472.CAN-04-4088, pii: 65/9/3497CrossRefGoogle Scholar
  241. 241.
    Tommasi S, Dammann R, Zhang Z, Wang Y, Liu L, Tsark WM, Wilczynski SP, Li J, You M, Pfeifer GP (2005) Tumor susceptibility of Rassf1a knockout mice. Cancer Res 65(1):92–98, pii: 65/1/92Google Scholar
  242. 242.
    Shivakumar L, Minna J, Sakamaki T, Pestell R, White MA (2002) The RASSF1A tumor suppressor blocks cell cycle progression and inhibits cyclin D1 accumulation. Mol Cell Biol 22(12):4309–4318. doi: 10.1128/MCB.22.12.4309-4318.2002 CrossRefGoogle Scholar
  243. 243.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70. doi: 10.1016/S0092-8674(00)81683-9 CrossRefGoogle Scholar
  244. 244.
    Herranz D, Serrano M (2010) SIRT1: recent lessons from mouse models. Nat Rev Cancer 10(12):819–823. doi: 10.1038/nrc2962 CrossRefGoogle Scholar
  245. 245.
    Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2(7):489–501. doi: 10.1038/nrc839 CrossRefGoogle Scholar
  246. 246.
    Hollander MC, Blumenthal GM, Dennis PA (2011) PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat Rev Cancer 11(4):289–301. doi: 10.1038/nrc3037 CrossRefGoogle Scholar
  247. 247.
    Michie AM, McCaig AM, Nakagawa R, Vukovic M (2010) Death-associated protein kinase (DAPK) and signal transduction: regulation in cancer. FEBS J 277(1):74–80. doi: 10.1111/j.1742-4658.2009.07414.x, pii: EJB7414CrossRefGoogle Scholar
  248. 248.
    Jacinto FV, Esteller M (2007) Mutator pathways unleashed by epigenetic silencing in human cancer. Mutagenesis 22(4):247–253. doi: 10.1093/mutage/gem009 CrossRefGoogle Scholar
  249. 249.
    Esteller M (2000) Epigenetic lesions causing genetic lesions in human cancer: promoter hypermethylation of DNA repair genes. Eur J Cancer 36(18):2294–2300, doi:10.1016/S0959-8049(00)00303-8 pii: S0959804900003038CrossRefGoogle Scholar
  250. 250.
    Sawan C, Vaissiere T, Murr R, Herceg Z (2008) Epigenetic drivers and genetic passengers on the road to cancer. Mutat Res 642(1–2):1–13. doi: 10.1016/j.mrfmmm.2008.03.002, pii: S0027-5107(08)00061-4Google Scholar
  251. 251.
    Jacinto FV, Esteller M (2007) MGMT hypermethylation: a prognostic foe, a predictive friend. DNA Repair (Amst) 6(8):1155–1160. doi: 10.1016/j.dnarep.2007.03.013, pii: S1568-7864(07)00131-0CrossRefGoogle Scholar
  252. 252.
    Fang MZ, Jin Z, Wang Y, Liao J, Yang GY, Wang LD, Yang CS (2005) Promoter hypermethylation and inactivation of O(6)-methylguanine-DNA methyltransferase in esophageal squamous cell carcinomas and its reactivation in cell lines. Int J Oncol 26(3):615–622Google Scholar
  253. 253.
    Gerhauser C (2008) Cancer chemopreventive potential of apples, apple juice, and apple components. Planta Med 74(13):1608–1624. doi: 10.1055/s-0028-1088300 CrossRefGoogle Scholar
  254. 254.
    McCabe MT, Low JA, Daignault S, Imperiale MJ, Wojno KJ, Day ML (2006) Inhibition of DNA methyltransferase activity prevents tumorigenesis in a mouse model of prostate cancer. Cancer Res 66(1):385–392. doi: 10.1158/0008-5472.CAN-05-2020, pii: 66/1/385CrossRefGoogle Scholar
  255. 255.
    Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441(7092):431–436. doi: 10.1038/nature04870 CrossRefGoogle Scholar
  256. 256.
    Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444. doi: 10.1038/nature07205 CrossRefGoogle Scholar
  257. 257.
    Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867. doi: 10.1038/nature01322 CrossRefGoogle Scholar
  258. 258.
    Chaturvedi MM, Sung B, Yadav VR, Kannappan R, Aggarwal BB (2011) NF-kappaB addiction and its role in cancer: ‘one size does not fit all’. Oncogene 30(14):1615–1630. doi: 10.1038/onc.2010.566 CrossRefGoogle Scholar
  259. 259.
    Perkins ND (2012) The diverse and complex roles of NF-kappaB subunits in cancer. Nat Rev Cancer 12(2):121–132. doi: 10.1038/nrc3204 Google Scholar
  260. 260.
    Chen L, Fischle W, Verdin E, Greene WC (2001) Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science 293(5535):1653–1657. doi: 10.1126/science.1062374, pii: 293/5535/1653CrossRefGoogle Scholar
  261. 261.
    Chen LF, Greene WC (2003) Regulation of distinct biological activities of the NF-kappaB transcription factor complex by acetylation. J Mol Med (Berl) 81(9):549–557. doi: 10.1007/s00109-003-0469-0 CrossRefGoogle Scholar
  262. 262.
    Ghizzoni M, Haisma HJ, Maarsingh H, Dekker FJ (2011) Histone acetyltransferases are crucial regulators in NF-kappaB mediated inflammation. Drug Discov Today 16(11–12): 504–511. doi: 10.1016/j.drudis.2011.03.009, pii: S1359-6446(11)00103-6CrossRefGoogle Scholar
  263. 263.
    Aggarwal BB, Shishodia S (2006) Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 71(10):1397–1421. doi: 10.1016/j.bcp.2006.02.009, pii: S0006-2952(06)00095-5CrossRefGoogle Scholar
  264. 264.
    Padhye S, Ahmad A, Oswal N, Sarkar FH (2009) Emerging role of Garcinol, the antioxidant chalcone from Garcinia indica Choisy and its synthetic analogs. J Hematol Oncol 2:38. doi: 10.1186/1756-8722-2-38 CrossRefGoogle Scholar
  265. 265.
    Prasad S, Ravindran J, Sung B, Pandey MK, Aggarwal BB (2010) Garcinol potentiates TRAIL-induced apoptosis through modulation of death receptors and antiapoptotic proteins. Mol Cancer Ther 9(4):856–868. doi: 10.1158/1535-7163.MCT-09-1113 CrossRefGoogle Scholar
  266. 266.
    Singh S, Aggarwal BB (1995) Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane) [corrected]. J Biol Chem 270(42):24995–25000. doi: 10.1074/jbc.270.18.10631 CrossRefGoogle Scholar
  267. 267.
    Feldman BJ, Feldman D (2001) The development of androgen-independent prostate cancer. Nat Rev Cancer 1(1):34–45. doi: 10.1038/35094009 CrossRefGoogle Scholar
  268. 268.
    DeMarzo AM, Nelson WG, Isaacs WB, Epstein JI (2003) Pathological and molecular aspects of prostate cancer. Lancet 361(9361):955–964. doi: 10.1016/S0140-6736(03)12779-1 CrossRefGoogle Scholar
  269. 269.
    Wang D, Tindall DJ (2011) Androgen action during prostate carcinogenesis. Methods Mol Biol 776:25–44. doi: 10.1007/978-1-61779-243-4_2 CrossRefGoogle Scholar
  270. 270.
    Zhou J, Geng G, Wu JH (2009) Synthesis and in vitro characterization of ionone-based chalcones as novel antiandrogens effective against multiple clinically relevant androgen receptor mutants. Invest New Drugs. doi: 10.1007/s10637-009-9251-7
  271. 271.
    Shah S, Small E (2010) Emerging biological observations in prostate cancer. Expert Rev Anticancer Ther 10(1):89–101. doi: 10.1586/era.09.161 CrossRefGoogle Scholar
  272. 272.
    Walsh PC (2010) Chemoprevention of prostate cancer. N Engl J Med 362(13):1237–1238. doi: 10.1056/NEJMe1001045, pii: 362/13/1237CrossRefGoogle Scholar
  273. 273.
    Barker N, Clevers H (2006) Mining the Wnt pathway for cancer therapeutics. Nat Rev Drug Discov 5(12):997–1014. doi: 10.1038/nrd2154 CrossRefGoogle Scholar
  274. 274.
    Klaus A, Birchmeier W (2008) Wnt signalling and its impact on development and cancer. Nat Rev Cancer 8(5):387–398. doi: 10.1038/nrc2389 CrossRefGoogle Scholar
  275. 275.
    Martinez P, Blasco MA (2011) Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat Rev Cancer 11(3):161–176. doi: 10.1038/nrc3025 CrossRefGoogle Scholar
  276. 276.
    Phipps SM, Love WK, Mott TE, Andrews LG, Tollefsbol TO (2009) Differential expression of epigenetic modulators during human embryonic stem cell differentiation. Mol Biotechnol 41(3):201–207. doi: 10.1007/s12033-008-9118-8 CrossRefGoogle Scholar
  277. 277.
    Gronemeyer H, Gustafsson JA, Laudet V (2004) Principles for modulation of the nuclear receptor superfamily. Nat Rev Drug Discov 3(11):950–964. doi: 10.1038/nrd1551 CrossRefGoogle Scholar
  278. 278.
    Delage B, Dashwood RH (2008) Dietary manipulation of histone structure and function. Annu Rev Nutr 28:347–366. doi: 10.1146/annurev.nutr.28.061807.155354 CrossRefGoogle Scholar
  279. 279.
    Esteller M (2007) Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum Mol Genet 16(Spec no. 1):R50–R59. doi: 10.1093/hmg/ddm018, pii: 16/R1/R50CrossRefGoogle Scholar
  280. 280.
    Niles RM (2007) Biomarker and animal models for assessment of retinoid efficacy in cancer chemoprevention. Acta Pharmacol Sin 28(9):1383–1391. doi: 10.1111/j.1745-7254.2007.00685.x CrossRefGoogle Scholar
  281. 281.
    Tang XH, Albert M, Scognamiglio T, Gudas LJ (2009) A DNA methyltransferase inhibitor and all-trans retinoic acid reduce oral cavity carcinogenesis induced by the carcinogen 4-nitroquinoline 1-oxide. Cancer Prev Res (Phila) 2(12):1100–1110. doi: 10.1158/1940-6207.CAPR-09-0136 CrossRefGoogle Scholar
  282. 282.
    Chen D, Cui QC, Yang H, Dou QP (2006) Disulfiram, a clinically used anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition of the proteasome activity. Cancer Res 66(21):10425–10433. doi: 10.1158/0008-5472.CAN-06-2126, pii: 66/21/10425CrossRefGoogle Scholar
  283. 283.
    Tan S, Wang C, Lu C, Zhao B, Cui Y, Shi X, Ma X (2009) Quercetin is able to demethylate the p16INK4a gene promoter. Chemotherapy 55(1):6–10. doi: 10.1159/000166383 Google Scholar
  284. 284.
    Fini L, Piazzi G, Daoud Y, Selgrad M, Maegawa S, Garcia M, Fogliano V, Romano M, Graziani G, Vitaglione P, Carmack SW, Gasbarrini A, Genta RM, Issa JP, Boland CR, Ricciardiello L (2011) Chemoprevention of intestinal polyps in ApcMin/+ mice fed with western or balanced diets by drinking annurca apple polyphenol extract. Cancer Prev Res (Phila) 4(6):907–15. doi: 10.1158/1940-6207.CAPR-10-0359 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Division Epigenomics and Cancer Risk FactorsGerman Cancer Research CenterHeidelbergGermany

Personalised recommendations