Polyarenes II pp 111-140 | Cite as

Three-Dimensional Aromatic Networks

Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 350)


Three-dimensional (3D) networks consisting of aromatic units and linkers are reviewed from various aspects. To understand principles for the construction of such compounds, we generalize the roles of building units, the synthetic approaches, and the classification of networks. As fundamental compounds, cyclophanes with large aromatic units and aromatic macrocycles with linear acetylene linkers are highlighted in terms of transannular interactions between aromatic units, conformational preference, and resolution of chiral derivatives. Polycyclic cage compounds are constructed from building units by linkages via covalent bonds, metal-coordination bonds, or hydrogen bonds. Large cage networks often include a wide range of guest species in their cavity to afford novel inclusion compounds. Topological isomers consisting of two or more macrocycles are formed by cyclization of preorganized species. Some complicated topological networks are constructed by self-assembly of simple building units.

Graphical Abstract


Aromatic unit Cage compound Linker Macrocycle Topological isomer 





Circular dichroism






Electrospray ionization


High performance liquid chromatography




Matrix-assisted laser desorption time-of-flight




  1. 1.
    Hopf H (2000) Classics in hydrocarbon chemistry. Wiley-VCH, Weinheim (Chap. 12)Google Scholar
  2. 2.
    Klauk H (ed) (2006) Organic electronics: materials, manufacturing, and applications. Wiley-VCH, WeinheimGoogle Scholar
  3. 3.
    Müllen K, Scherf U (eds) (2006) Organic light emitting devices: synthesis, properties and applications. Wiley-VCH, WeinheimGoogle Scholar
  4. 4.
    Balzani V, Credi A, Venturi M (eds) (2008) Molecular devices and machines: concepts and perspectives for the nanoworld. Wiley-VCH, WeinheimGoogle Scholar
  5. 5.
    Müller TJ, Bunz UHF (eds) (2007) Functional organic materials: syntheses, strategies and applications. Wiley-VCH, WeinheimGoogle Scholar
  6. 6.
    Astruc D (ed) (2002) Modern arene chemistry. Wiley-VCH, WeinheimGoogle Scholar
  7. 7.
    Harvey RG (1997) Polycyclic aromatic hydrocarbons. Wiley-VCH, New YorkGoogle Scholar
  8. 8.
    Gutsche CD (ed) (2008) Calixarenes: an introduction, 2nd edn. RSC, CambridgeGoogle Scholar
  9. 9.
    Diederich F, Stang PJ, Tykwinski RR (eds) (2005) Acetylene chemistry. Chemistry, biology and material science. Wiley-VCH, WeinheimGoogle Scholar
  10. 10.
    Hopf H (2000) Classics in hydrocarbon chemistry. Wiley-VCH, Weinheim (Chap. 15.2)Google Scholar
  11. 11.
    Toyota S (2010) Chem Rev 110:5398Google Scholar
  12. 12.
    Ghosh S, Mukherjee PS (2006) J Org Chem 71:8412Google Scholar
  13. 13.
    Sengupta S, Sadhukhan SK (1998) Tetrahedron Lett 39:1237Google Scholar
  14. 14.
    Turner DR, Pastor A, Alajarin M, Steed JW (2004) Struct Bond 108:97Google Scholar
  15. 15.
    Hardie MJ (2004) Struct Bond 111:139Google Scholar
  16. 16.
    Negishi E (ed) (2002) Handbook of organopalladium chemistry for organic synthesis. Wiley, New YorkGoogle Scholar
  17. 17.
    Ackermann L (ed) (2009) Modern arylation methods. Wiley-VCH, WeinheimGoogle Scholar
  18. 18.
    Ma S (ed) (2010) Handbook of cyclization reactions. Wiley-VCH, Weinheim (Chaps. 11 and 12)Google Scholar
  19. 19.
    Frank D, Higson S (2011) Macrocycles: construction, chemistry and nanotechnology applications. Wiley, ChichesterGoogle Scholar
  20. 20.
    Paker D (1996) Macrocycle synthesis: a practical approach. Oxford University Press, OxfordGoogle Scholar
  21. 21.
    Chakrabarty R, Mukherjee PS, Stang PJ (2011) Chem Rev 111:6810Google Scholar
  22. 22.
    Stang PJ (2009) J Org Chem 74:2Google Scholar
  23. 23.
    Flapan E (2000) When topology meets chemistry. Cambridge University Press, Cambridge (Chap. 5)Google Scholar
  24. 24.
    Mislow K (1999) Top Stereochem 22:1Google Scholar
  25. 25.
    Wolf C (2008) Dynamic stereochemistry of chiral compounds. The Royal Society of Chemistry, Cambridge (Chap. 9)Google Scholar
  26. 26.
    Wisner JA, Blight BA (2008) In: Diederich F, Stang PJ, Tykwinski RR (eds) Modern supramolecular chemistry: strategies for macrocycle synthesis. Wiley-VCH, Weinheim (Chap. 10)Google Scholar
  27. 27.
    Davis F, Higson S (2011) Macrocycles: construction, chemistry, and nanotechnology applications, vol 2. Wiley, ChichesterGoogle Scholar
  28. 28.
    Vögtle F (1993) Cyclophane chemistry synthesis, structures and reactions. Wiley, ChichesterGoogle Scholar
  29. 29.
    Gleiter R, Hopf H (eds) (2004) Modern cyclophane chemistry. Wiley-VCH, WeinheimGoogle Scholar
  30. 30.
    Haenel M, Staab HA (1973) Chem Ber 106:2203Google Scholar
  31. 31.
    Blank NE, Haenel MW (1983) Chem Ber 116:827Google Scholar
  32. 32.
    Haenel MW (1978) Chem Ber 111:1789Google Scholar
  33. 33.
    Kawabata T, Shinmyozu T, Inazu T, Yoshino T (1979) Chem Lett 8:315Google Scholar
  34. 34.
    Blank NE, Haenel MW (1981) Chem Ber 114:1520Google Scholar
  35. 35.
    Golden JH (1961) J Chem Soc 844Google Scholar
  36. 36.
    Toyoda T, Misumi S (1978) Tetrahedron Lett 19:1479Google Scholar
  37. 37.
    Iwama A, Toyoda T, Yoshida M, Otsubo T, Sakata Y, Misumi S (1978) Bull Chem Soc Jpn 51:2988Google Scholar
  38. 38.
    Haley MM, Pak JJ, Brand SC (1999) Top Curr Chem 201:82Google Scholar
  39. 39.
    Huang H, Stewart T, Gutmann M, Ohhara T, Niimura N, Li Y-X, Wen J-F, Bau R, Wong HNC (2009) J Org Chem 74:359Google Scholar
  40. 40.
    Staab HA, Wehinger E (1968) Angew Chem Int Ed Engl 7:225Google Scholar
  41. 41.
    Staab HA, Wehinger E, Thorwart W (1972) Chem Ber 105:2290Google Scholar
  42. 42.
    Boese R, Matzger AJ, Vollhardt KPC (1997) J Am Chem Soc 119:2052Google Scholar
  43. 43.
    Collins SK, Yap GPA, Fallis AG (2000) Org Lett 2:3189Google Scholar
  44. 44.
    Solooki D, Bradshaw JD, Tessier CA, Youngs WJ, See RF, Churchill M, Ferrara JD (1994) J Organomet Chem 470:231Google Scholar
  45. 45.
    Heuft MA, Collins SK, Fallis AG (2003) Org Lett 5:1911Google Scholar
  46. 46.
    Rubin Y (1997) Chem Eur J 3:1009Google Scholar
  47. 47.
    Rubin Y, Parker TC, Khan SI, Holliman CL, McElvany SW (1996) J Am Chem Soc 118:5308Google Scholar
  48. 48.
    Umeda R, Sonoda M, Wakabayashi T, Tobe Y (2005) Chem Lett 34:1574Google Scholar
  49. 49.
    Tobe Y, Nakagawa N, Naemura K, Wakabayashi T, Shida T, Achiba Y (1998) J Am Chem Soc 120:4544Google Scholar
  50. 50.
    Tobe Y, Nakagawa N, Kishi J, Sonoda M, Naemura K, Wakabayashi T, Shida T, Achiba Y (2001) Tetrahedron 57:3629Google Scholar
  51. 51.
    Tobe Y, Umeda R, Sonoda M, Wakabayashi T (2005) Chem Eur J 11:1603Google Scholar
  52. 52.
    Kawase T (2007) Synlett 2609Google Scholar
  53. 53.
    Kawase T, Oda M (2006) Pure Appl Chem 78:831Google Scholar
  54. 54.
    Toyota S (2012) Pure Appl Chem 84:917Google Scholar
  55. 55.
    Toyota S (2011) Chem Lett 40:12Google Scholar
  56. 56.
    Toyota S, Goichi M, Kotani M (2004) Angew Chem Int Ed 43:2248Google Scholar
  57. 57.
    Toyota S, Goichi M, Kotani M, Takezaki M (2005) Bull Chem Soc Jpn 78:2214Google Scholar
  58. 58.
    Toyota S, Suzuki S, Goichi M (2006) Chem Eur J 12:2482Google Scholar
  59. 59.
    Toyota S, Miyahara H, Goichi M, Yamasaki S, Iwanaga T (2009) Bull Chem Soc Jpn 82:931Google Scholar
  60. 60.
    Ishikawa T, Shimasaki T, Akashi H, Iwanaga T, Toyota S, Yamasaki M (2010) Bull Chem Soc Jpn 83:220Google Scholar
  61. 61.
    Ishikawa T, Shimasaki T, Akashi H, Toyota S (2008) Org Lett 10:417Google Scholar
  62. 62.
    Toyota S, Kawakami T, Shinnishi R, Sugiki R, Suzuki S, Iwanaga T (2010) Org Biomol Chem 8:4997Google Scholar
  63. 63.
    Toyota S, Harada H, Miyahara H, Kawakami T, Wakamatsu K, Iwanaga T (2011) Bull Chem Soc Jpn 84:829Google Scholar
  64. 64.
    Kissel P, van Heijst J, Enning R, Stemmer A, Schlüter AD, Sakamoto J (2010) Org Lett 12:2778Google Scholar
  65. 65.
    Kissel P, Schlüter AD, Sakamoto J (2009) Chem Eur J 15:8955Google Scholar
  66. 66.
    Kissel P, Erni R, Schweizer WB, Rossell MD, King BT, Bauer T, Götzinger S, Schlüter AD, Sakamoto J (2012) Nat Chem 4:287Google Scholar
  67. 67.
    Ishikawa T, Iwanaga T, Toyota S, Yamasaki M (2011) Bull Chem Soc Jpn 84:729Google Scholar
  68. 68.
    Chen S, Yan Q, Li T, Zhao D (2010) Org Lett 12:4784Google Scholar
  69. 69.
    Miki K, Fujita M, Inoue Y, Senda Y, Kowada T, Ohe K (2010) J Org Chem 75:3537Google Scholar
  70. 70.
    Miyamoto K, Iwanaga T, Toyota S (2010) Chem Lett 39:299Google Scholar
  71. 71.
    Vögtle F, Gross J, Seel C, Nieger M (1992) Angew Chem Int Ed Engl 31:1069Google Scholar
  72. 72.
    Gross J, Harder G, Vögtle F, Stephan H, Gloe K (1995) Angew Chem Int Ed Engl 34:481Google Scholar
  73. 73.
    Gross J, Harder G, Siepen A, Harren J, Vögtle F, Stephan H, Gloe K, Ahlers B, Cammamm K, Rissanen K (1996) Chem Eur J 2:1585Google Scholar
  74. 74.
    Nierle J, Kuck D (2006) Synthesis 2914Google Scholar
  75. 75.
    Lélias-Vanderperre A, Chambron J-C, Espinosa E, Terrier P, Leize-Wagner E (2007) Org Lett 9:2961Google Scholar
  76. 76.
    Kim J, Kook Y, Park N, Hahn JH, Ahn KH (2005) J Org Chem 70:7087Google Scholar
  77. 77.
    Shomura R, Higashibayashi S, Sakurai H, Matsushita Y, Sato A, Higuchi M (2012) Tetrahedron Lett 53:783Google Scholar
  78. 78.
    Brotin T, Dutasta J-P (2009) Chem Rev 109:88Google Scholar
  79. 79.
    Fogarty HA, Berthault P, Brotin T, Huber G, Desvaux H, Dutasta J-P (2007) J Am Chem Soc 129:10332Google Scholar
  80. 80.
    Fairchild RM, Joseph AI, Holman KT, Fogarty HA, Brotin T, Dutasta J-P, Boutin C, Huber G, Berthault P (2010) J Am Chem Soc 132:15505Google Scholar
  81. 81.
    Masu H, Katagiri K, Kato T, Kagechika H, Tominaga M, Azumaya I (2008) J Org Chem 73:5143Google Scholar
  82. 82.
    Nishio M, Hirota M, Umezawa Y (1998) The CH/π interaction: evidence nature, and consequences. Wiley-VCH, New YorkGoogle Scholar
  83. 83.
    Nishio M (2011) Phys Chem Chem Phys 13:13873Google Scholar
  84. 84.
    Tominaga M, Masu H, Katagiri K, Kato T, Azumaya I (2005) Org Lett 7:3785Google Scholar
  85. 85.
    Tominaga M, Masu H, Katagiri K, Azumaya I (2007) Tetrahedron Lett 48:4369Google Scholar
  86. 86.
    Karlen SD, Garcia-Garibay MA (2005) Top Curr Chem 262:179Google Scholar
  87. 87.
    Khuong T-AV, Nunez JE, Godinez CE, Garcia-Garibay MA (2006) Acc Chem Res 39:413Google Scholar
  88. 88.
    Commins P, Nunez JE, Garcia-Garibay MA (2011) J Org Chem 76:8355Google Scholar
  89. 89.
    Chen C-F (2011) Chem Commun 47:1674Google Scholar
  90. 90.
    Zhang C, Chen C-F (2007) J Org Chem 72:9339Google Scholar
  91. 91.
    Hu S-Z, Chen C-F (2010) Chem Commun 46:4199Google Scholar
  92. 92.
    Tian X-H, Chen C-F (2010) Chem Eur J 16:8072Google Scholar
  93. 93.
    Fujita M, Oguro D, Miyazawa M, Oka H, Yamaguchi K, Ogura K (1995) Nature 378:469Google Scholar
  94. 94.
    Fujita M, Tominaga M, Hori M, Therrien B (2005) Acc Chem Res 38:371Google Scholar
  95. 95.
    Bunzen J, Iwasa J, Bonakdarzadeh P, Numata E, Rissanen K, Sato S, Fujita M (2012) Angew Chem Int Ed 51:3161Google Scholar
  96. 96.
    Yoshizawa N, Klostermanm JK, Fujita M (2009) Angew Chem Int Ed 48:3418Google Scholar
  97. 97.
    Brinker UH, Mieusset J-L (eds) (2010) Molecular encapsulation: organic reactions in constrained systems. Wiley, ChichesterGoogle Scholar
  98. 98.
    Murase T, Nishijima Y, Fujita M (2012) Chem Asian J 7:826Google Scholar
  99. 99.
    Kuehl CJ, Yamamoto T, Seidel SR, Stang PJ (2002) Org Lett 4:913Google Scholar
  100. 100.
    Yang H-B, Ghosh K, Das N, Stang PJ (2006) Org Lett 8:3991Google Scholar
  101. 101.
    Caulder DL, Raymond KN (1999) Acc Chem Res 32:975Google Scholar
  102. 102.
    Caulder DL, Powers RE, Parac TN, Raymond KN (1998) Angew Chem Int Ed Engl 37:1840Google Scholar
  103. 103.
    Fiedler D, Pagliero D, Brumaghim JL, Bergman RG, Raymond KN (2004) Inorg Chem 43:846Google Scholar
  104. 104.
    Kishi N, Li Z, Yoza K, Akita M, Yoshizawa M (2011) J Am Chem Soc 133:11438Google Scholar
  105. 105.
    Li Z, Kishi N, Hasegawa K, Akita M, Yoshizawa M (2011) Chem Commun 47:8605Google Scholar
  106. 106.
    Kottas GS, Clarke LI, Horinek D, Michl J (2005) Chem Rev 105:1281Google Scholar
  107. 107.
    Caskeym DC, Michl J (2005) J Org Chem 70:5442Google Scholar
  108. 108.
    Caskeym DC, Wang B, Zheng X, Michl J (2005) Collec Czech Chem Commun 70:1970Google Scholar
  109. 109.
    Cram DJ, Cram JM (1994) Container molecules and their guests. The Royal Society of Chemistry, CambridgeGoogle Scholar
  110. 110.
    Conn MM, Rebek J Jr (1997) Chem Rev 97:1647Google Scholar
  111. 111.
    Hof F, Craig SL, Nuckolls C, Rebek J Jr (2002) Angew Chem Int Ed 41:1488Google Scholar
  112. 112.
    Scarso A, Trembleau L, Rebek J Jr (2004) J Am Chem Soc 126:13512Google Scholar
  113. 113.
    Ajami D, Rebek J Jr (2009) Nat Chem 1:87Google Scholar
  114. 114.
    Ajami D, Rebek J Jr (2006) J Am Chem Soc 128:5314Google Scholar
  115. 115.
    Rebek J Jr (2009) Acc Chem Res 42:1660Google Scholar
  116. 116.
    Nishimura N, Yoza K, Kobayashi K (2010) J Am Chem Soc 132:777Google Scholar
  117. 117.
    Kobayashi K, Yamada Y, Yamanaka M, Sei Y, Yamaguchi K (2004) J Am Chem Soc 126:13896Google Scholar
  118. 118.
    Beves JE, Blight BA, Campbell CJ, Leigh DA, McBurney RT (2011) Angew Chem Int Ed 50:9260Google Scholar
  119. 119.
    Stoddart JF (2009) Chem Soc Rev 38:1802Google Scholar
  120. 120.
    Forgan RS, Sauvage J-P, Stoddart JF (2011) Chem Rev 111:5434Google Scholar
  121. 121.
    Sauvage J-P, Amabilino DB (2012) Top Curr Chem 323:107Google Scholar
  122. 122.
    Bruns CJ, Stoddart JF (2012) Top Curr Chem 323:19Google Scholar
  123. 123.
    Sauvage J-P, Amabilino DB (2012) In: Gale P, Steed J (eds) Supramolecular chemistry: from molecules to nanomaterials. Wiley, ChichesterGoogle Scholar
  124. 124.
    Dietrich-Buchecker CO, Sauvage J-P, Kern JM (1984) J Am Chem Soc 106:3043Google Scholar
  125. 125.
    Ashton PR, Goodnow TT, Kaifer AE, Reddington MV, Slawin AMZ, Spencer N, Stoddart JF, Vicent C, Williams DJ (1989) Angew Chem Int Ed Engl 28:1396Google Scholar
  126. 126.
    Fujita M, Ibukuro F, Seki H, Kamo O, Imanari M, Ogura K (1996) J Am Chem Soc 118:899Google Scholar
  127. 127.
    Niu Z, Gibson HW (2009) Chem Rev 109:6024Google Scholar
  128. 128.
    Cougnon FBL, Jenkins NA, Pantos GD, Sanders JKM (2012) Angew Chem Int Ed 51:1443Google Scholar
  129. 129.
    Pentecost CD, Chichak KS, Peters AJ, Cave GWV, Cantrill SJ, Stoddart JF (2007) Angew Chem Int Ed 46:218Google Scholar
  130. 130.
    Ibukuro F, Fujita M, Yamaguchi K, Sauvage J-P (1999) J Am Chem Soc 121:11014Google Scholar
  131. 131.
    Peinador C, Blanco V, Quintela JM (2009) J Am Chem Soc 131:920Google Scholar
  132. 132.
    Fujita M, Fujita N, Ogura K, Yamaguchi K (1999) Nature 400:52Google Scholar
  133. 133.
    Yamauchi Y, Yoshizawa M, Fujita M (2008) J Am Chem Soc 130:5832Google Scholar
  134. 134.
    Westcott A, Fisher J, Harding LP, Rizkallah P, Hardie M (2008) J Am Chem Soc 130:2950Google Scholar
  135. 135.
    Freye S, Hey J, Torras-Galán A, Stalke D, Herbst-Irmer R, John M, Clever GH (2012) Angew Chem Int Ed 51:2191Google Scholar
  136. 136.
    Chen C-T, Gantzel P, Siegel JS, Baldridge KK, English EB, Ho DM (1995) Angew Chem Int Ed Engl 34:2657Google Scholar
  137. 137.
    Cantrill SJ, Chichak KS, Peters AJ, Stoddart JF (2005) Acc Chem Res 38:1Google Scholar
  138. 138.
    Loren JC, Yoshizawa M, Haldimann RF, Linden A, Siegel JS (2003) Angew Chem Int Ed 42:5701Google Scholar
  139. 139.
    Chichak KS, Cantrill SJ, Pease AR, Chiu S-H, Cava GWV, Atwood JL, Stoddart JF (2004) Science 304:1308Google Scholar
  140. 140.
    Irngartinger H (1973) Chem. Ber. 106:761Google Scholar
  141. 141.
    Toyota S, Kawai K, Iwanaga T, Wakamatsu K, Eur J Org Chem, in press. DOI: 10.1002/ejoc.201200765

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceOkayama University of ScienceOkayamaJapan

Personalised recommendations