Tetramolecular Quadruplex Stability and Assembly

  • Phong Lan Thao TranEmail author
  • Anne De Cian
  • Julien Gros
  • Rui Moriyama
  • Jean-Louis MergnyEmail author
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 330)


Guanine quadruplexes (G4) are unusual four-stranded nucleic acid structures formed by G-rich DNA/RNA. Beyond their likely biological relevance, the self-assembly, stability, and rigidity of these structures are also interesting for nanotechnology and biotechnology applications. Therefore, efforts are carried out to understand the rules that govern stability and folding of G-quadruplexes. We focus this chapter on tetramolecular conformations which are simple tractable models. We report here the experimental parameters, molecules, and modifications that affect thermal stability and/or association kinetics of these structures. Some chemical modifications which facilitate tetramolecular quadruplex formation and can be useful for nano- or biotechnology are also described.


Association kinetics Chemical modifications Nanotechnology and biotechnology applications Tetramolecular quadruplexes Thermal stability 







Circular dichroism


Deoxyribonucleic acid




Human immunodeficiency virus type 1


Locked nucleic acid


Nuclear magnetic resonance


2′-O-Methyl ribonucleic acid


Polyethylene glycol


Peptide nucleic acid


Ribonucleic acid






Untranslated region



This work has been supported by ANR (QuantADN, F-DNA and G4-Toolbox), Conseil Régional d’Aquitaine, ARC and FRM. We would like to thank all our collaborators, past and present, for helpful discussions.


  1. 1.
    Gellert M, Lipsett MN, Davies DR (1962) Helix formation by guanylic acid. Proc Natl Acad Sci USA 48:2013–2018Google Scholar
  2. 2.
    Huppert JL, Balasubramanian S (2005) Prevalence of quadruplexes in the human genome. Nucleic Acids Res 33(9):2908–2916Google Scholar
  3. 3.
    Lopes J et al (2011) G-quadruplex-induced instability during leading-strand replication. EMBO J 30(19):4033–4046Google Scholar
  4. 4.
    Rodriguez R et al (2012) Small-molecule-induced DNA damage identifies alternative DNA structures in human genes. Nat Chem Biol 8(3):301–310Google Scholar
  5. 5.
    Piazza A et al (2010) Genetic instability triggered by G-quadruplex interacting Phen-DC compounds in Saccharomyces cerevisiae. Nucleic Acids Res 38(13):4337–4348Google Scholar
  6. 6.
    Ribeyre C et al (2009) The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo. PLoS Genet 5(5):e1000475Google Scholar
  7. 7.
    De Cian A et al (2008) Plasmodium telomeric sequences: structure, stability and quadruplex targeting by small compounds. Chembiochem 9(16):2730–2739Google Scholar
  8. 8.
    Sarkies P et al (2012) FANCJ coordinates two pathways that maintain epigenetic stability at G-quadruplex DNA. Nucleic Acids Res 40(4):1485–1498Google Scholar
  9. 9.
    Paeschke K, Capra JA, Zakian VA (2011) DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell 145(5):678–691Google Scholar
  10. 10.
    Gomez D et al (2010) A G-quadruplex structure within the 5′-UTR of TRF2 mRNA represses translation in human cells. Nucleic Acids Res 38(20):7187–7198Google Scholar
  11. 11.
    Wu Y, Shin-ya K, Brosh RM Jr (2008) FANCJ helicase defective in Fanconia anemia and breast cancer unwinds G-quadruplex DNA to defend genomic stability. Mol Cell Biol 28(12):4116–4128Google Scholar
  12. 12.
    Qin Y, Hurley LH (2008) Structures, folding patterns, and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions. Biochimie 90(8):1149–1171Google Scholar
  13. 13.
    Kumari S et al (2007) An RNA G-quadruplex in the 5′ UTR of the NRAS proto-oncogene modulates translation. Nat Chem Biol 3(4):218–221Google Scholar
  14. 14.
    Gonzalez V, Hurley LH (2010) The c-MYC NHE III(1): function and regulation. Annu Rev Pharmacol Toxicol 50:111–129Google Scholar
  15. 15.
    Riou JF et al (2002) Cell senescence and telomere shortening induced by a new series of specific G-quadruplex DNA ligands. Proc Natl Acad Sci USA 99(5):2672–2677Google Scholar
  16. 16.
    Drygin D et al (2009) Anticancer activity of CX-3543: a direct inhibitor of rRNA biogenesis. Cancer Res 69(19):7653–7661Google Scholar
  17. 17.
    Cookson JC et al (2005) Pharmacodynamics of the G-quadruplex-stabilizing telomerase inhibitor 3,11-difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl]acridinium methosulfate (RHPS4) in vitro: activity in human tumor cells correlates with telomere length and can be enhanced, or antagonized, with cytotoxic agents. Mol Pharmacol 68(6):1551–1558Google Scholar
  18. 18.
    Borbone N et al (2011) d(CGGTGGT) forms an octameric parallel G-quadruplex via stacking of unusual G(:C):G(:C):G(:C):G(:C) octads. Nucleic Acids Res 39(17):7848–7857Google Scholar
  19. 19.
    Krishnan-Ghosh Y, Liu D, Balasubramanian S (2004) Formation of an interlocked quadruplex dimer by d(GGGT). J Am Chem Soc 126(35):11009–11016Google Scholar
  20. 20.
    Sket P, Plavec J (2010) Tetramolecular DNA quadruplexes in solution: insights into structural diversity and cation movement. J Am Chem Soc 132(36):12724–12732Google Scholar
  21. 21.
    Smith FW, Lau FW, Feigon J (1994) d(G3T4G3) forms an asymmetric diagonally looped dimeric quadruplex with guanosine 5′-syn-syn-anti and 5′-syn-anti-anti N-glycosidic conformations. Proc Natl Acad Sci USA 91(22):10546–10550Google Scholar
  22. 22.
    Smith FW, Feigon J (1992) Quadruplex structure of oxytricha telomeric DNA oligonucleotides. Nature 356(6365):164–168Google Scholar
  23. 23.
    Galezowska E, Gluszynska A, Juskowiak B (2007) Luminescence study of G-quadruplex formation in the presence of Tb3+ ion. J Inorg Biochem 101(4):678–685Google Scholar
  24. 24.
    Worlinsky JL, Basu S (2009) Detection of quadruplex DNA by luminescence enhancement of lanthanide ions and energy transfer from lanthanide chelates. J Phys Chem B 113(4):865–868Google Scholar
  25. 25.
    Wong A, Wu G (2003) Selective binding of monovalent cations to the stacking G-quartet structure formed by guanosine 5′-monophosphate: a solid-state NMR study. J Am Chem Soc 125(45):13895–13905Google Scholar
  26. 26.
    Venczel EA, Sen D (1993) Parallel and antiparallel G-DNA structures from a complex telomeric sequence. Biochemistry 32(24):6220–6228Google Scholar
  27. 27.
    Sket P, Plavec J (2007) Not all G-quadruplexes exhibit ion-channel-like properties: NMR study of ammonium ion (non)movement within the d(G(3)T(4)G(4))(2) quadruplex. J Am Chem Soc 129(28):8794–8800Google Scholar
  28. 28.
    Hud NV et al (1999) Binding sites and dynamics of ammonium ions in a telomere repeat DNA quadruplex. J Mol Biol 285(1):233–243Google Scholar
  29. 29.
    Podbevsek P, Sket P, Plavec J (2008) Stacking and not solely topology of T3 loops controls rigidity and ammonium ion movement within d(G4T3G4)2 G-quadruplex. J Am Chem Soc 130(43):14287–14293Google Scholar
  30. 30.
    Podbevsek P, Hud NV, Plavec J (2007) NMR evaluation of ammonium ion movement within a unimolecular G-quadruplex in solution. Nucleic Acids Res 35(8):2554–2563Google Scholar
  31. 31.
    Patel PK, Koti AS, Hosur RV (1999) NMR studies on truncated sequences of human telomeric DNA: observation of a novel A-tetrad. Nucleic Acids Res 27(19):3836–3843Google Scholar
  32. 32.
    Pan B et al (2003) Crystal structure of an RNA purine-rich tetraplex containing adenine tetrads: implications for specific binding in RNA tetraplexes. Structure 11(7):815–823Google Scholar
  33. 33.
    Pan B et al (2003) An eight-stranded helical fragment in RNA crystal structure: implications for tetraplex interaction. Structure 11(7):825–831Google Scholar
  34. 34.
    Patel PK, Hosur RV (1999) NMR observation of T-tetrads in a parallel stranded DNA quadruplex formed by Saccharomyces cerevisiae telomere repeats. Nucleic Acids Res 27(12):2457–2464Google Scholar
  35. 35.
    Patel PK, Bhavesh NS, Hosur RV (2000) NMR observation of a novel C-tetrad in the structure of the SV40 repeat sequence GGGCGG. Biochem Biophys Res Commun 270(3):967–971Google Scholar
  36. 36.
    Cheong C, Moore PB (1992) Solution structure of an unusually stable RNA tetraplex containing G- and U-quartet structures. Biochemistry 31(36):8406–8414Google Scholar
  37. 37.
    Deng J, Xiong Y, Sundaralingam M (2001) X-Ray analysis of an RNA tetraplex (UGGGGU)(4) with divalent Sr(2+) ions at subatomic resolution (0.61 A). Proc Natl Acad Sci USA 98(24):13665–13670Google Scholar
  38. 38.
    Pan B, Shi K, Sundaralingam M (2006) Base-tetrad swapping results in dimerization of RNA quadruplexes: implications for formation of the i-motif RNA octaplex. Proc Natl Acad Sci USA 103(9):3130–3134Google Scholar
  39. 39.
    Mergny JL et al (2006) Kinetics of double-chain reversals bridging contiguous quartets in tetramolecular quadruplexes. Nucleic Acids Res 34(8):2386–2397Google Scholar
  40. 40.
    Kettani A, Kumar RA, Patel DJ (1995) Solution structure of a DNA quadruplex containing the fragile X syndrome triplet repeat. J Mol Biol 254(4):638–656Google Scholar
  41. 41.
    Kettani A et al (1998) Solution structure of a Na cation stabilized DNA quadruplex containing G.G.G.G and G.C.G.C tetrads formed by G-G-G-C repeats observed in adeno-associated viral DNA. J Mol Biol 282(3):619–636Google Scholar
  42. 42.
    Bouaziz S, Kettani A, Patel DJ (1998) A K cation-induced conformational switch within a loop spanning segment of a DNA quadruplex containing G-G-G-C repeats. J Mol Biol 282(3):637–652Google Scholar
  43. 43.
    Zavasnik J, Podbevsek P, Plavec J (2011) Observation of water molecules within the bimolecular d(GCTGC)G-quadruplex. Biochemistry 50(19):4155–4161Google Scholar
  44. 44.
    Lim KW et al (2009) Sequence variant (CTAGGG)n in the human telomere favors a G-quadruplex structure containing a G.C.G.C tetrad. Nucleic Acids Res 37(18):6239–6248Google Scholar
  45. 45.
    Webba da Silva M (2005) Experimental demonstration of T:(G:G:G:G):T hexad and T:A:A:T tetrad alignments within a DNA quadruplex stem. Biochemistry 44(10):3754–3764Google Scholar
  46. 46.
    Zhang N et al (2001) Dimeric DNA quadruplex containing major groove-aligned A-T-A-T and G-C-G-C tetrads stabilized by inter-subunit Watson-Crick A-T and G-C pairs. J Mol Biol 312(5):1073–1088Google Scholar
  47. 47.
    Zhang N et al (2001) V-shaped scaffold: a new architectural motif identified in an A x (G x G x G x G) pentad-containing dimeric DNA quadruplex involving stacked G(anti) x G(anti) x G(anti) x G(syn) tetrads. J Mol Biol 311(5):1063–1079Google Scholar
  48. 48.
    Phan AT et al (2005) An interlocked dimeric parallel-stranded DNA quadruplex: a potent inhibitor of HIV-1 integrase. Proc Natl Acad Sci USA 102(3):634–639Google Scholar
  49. 49.
    Kettani A et al (2000) A dimeric DNA interface stabilized by stacked A.(G.G.G.G).A hexads and coordinated monovalent cations. J Mol Biol 297(3):627–644Google Scholar
  50. 50.
    Lipay JM, Mihailescu MR (2009) NMR spectroscopy and kinetic studies of the quadruplex forming RNA r(UGGAGGU). Mol Biosyst 5(11):1347–1355Google Scholar
  51. 51.
    Liu H et al (2002) A dimeric RNA quadruplex architecture comprised of two G:G(:A):G:G(:A) hexads, G:G:G:G tetrads and UUUU loops. J Mol Biol 322(5):955–970Google Scholar
  52. 52.
    Matsugami A et al (2001) An intramolecular quadruplex of (GGA)(4) triplet repeat DNA with a G:G:G:G tetrad and a G(:A):G(:A):G(:A):G heptad, and its dimeric interaction. J Mol Biol 313(2):255–269Google Scholar
  53. 53.
    Matsugami A et al (2003) Intramolecular higher order packing of parallel quadruplexes comprising a G:G:G:G tetrad and a G(:A):G(:A):G(:A):G heptad of GGA triplet repeat DNA. J Biol Chem 278(30):28147–28153Google Scholar
  54. 54.
    Phillips K et al (1997) The crystal structure of a parallel-stranded guanine tetraplex at 0.95 A resolution. J Mol Biol 273(1):171–182Google Scholar
  55. 55.
    Mergny JL, Phan AT, Lacroix L (1998) Following G-quartet formation by UV-spectroscopy. FEBS Lett 435(1):74–78Google Scholar
  56. 56.
    Ralph RK, Connors WJ, Khorana HG (1962) Secondary structure and aggregation in deoxyguanosine oligonucleotides. J Am Chem Soc 84(11):2265–2266Google Scholar
  57. 57.
    Wyatt JR, Davis PW, Freier SM (1996) Kinetics of G-quartet-mediated tetramer formation. Biochemistry 35(24):8002–8008Google Scholar
  58. 58.
    Mergny JL et al (2005) Kinetics of tetramolecular quadruplexes. Nucleic Acids Res 33(1):81–94Google Scholar
  59. 59.
    Petraccone L et al (2005) Thermodynamics and kinetics of PNA-DNA quadruplex-forming chimeras. J Am Chem Soc 127(46):16215–16223Google Scholar
  60. 60.
    Bardin C, Leroy JL (2008) The formation pathway of tetramolecular G-quadruplexes. Nucleic Acids Res 36(2):477–488Google Scholar
  61. 61.
    Rosu F et al (2010) Tetramolecular G-quadruplex formation pathways studied by electrospray mass spectrometry. Nucleic Acids Res 38(15):5217–5225Google Scholar
  62. 62.
    Mergny JL et al (2005) Thermal difference spectra: a specific signature for nucleic acid structures. Nucleic Acids Res 33(16):e138Google Scholar
  63. 63.
    Merkina EE, Fox KR (2005) Kinetic stability of intermolecular DNA quadruplexes. Biophys J 89(1):365–373Google Scholar
  64. 64.
    De Cian A, Mergny JL (2007) Quadruplex ligands may act as molecular chaperones for tetramolecular quadruplex formation. Nucleic Acids Res 35(8):2483–2493Google Scholar
  65. 65.
    Sun H, Yabuki A, Maizels N (2001) A human nuclease specific for G4 DNA. Proc Natl Acad Sci USA 98(22):12444–12449Google Scholar
  66. 66.
    Chung IK et al (1992) Eukaryotic topoisomerase II cleavage of parallel stranded DNA tetraplexes. Nucleic Acids Res 20(8):1973–1977Google Scholar
  67. 67.
    Arimondo PB et al (2000) Interaction of human DNA topoisomerase I with G-quartet structures. Nucleic Acids Res 28(24):4832–4838Google Scholar
  68. 68.
    Lyonnais S et al (2003) G-quartets direct assembly of HIV-1 nucleocapsid protein along single-stranded DNA. Nucleic Acids Res 31(19):5754–5763Google Scholar
  69. 69.
    Gavathiotis E et al (2003) Drug recognition and stabilisation of the parallel-stranded DNA quadruplex d(TTAGGGT)4 containing the human telomeric repeat. J Mol Biol 334(1):25–36Google Scholar
  70. 70.
    Lubitz I, Borovok N, Kotlyar A (2007) Interaction of monomolecular G4-DNA nanowires with TMPyP: evidence for intercalation. Biochemistry 46(45):12925–12929Google Scholar
  71. 71.
    Collie GW et al (2012) Structural basis for telomeric G-quadruplex targeting by naphthalene diimide ligands. J Am Chem Soc 134(5):2723–2731Google Scholar
  72. 72.
    Haider SM, Parkinson GN, Neidle S (2003) Structure of a G-quadruplex-ligand complex. J Mol Biol 326(1):117–125Google Scholar
  73. 73.
    Clark GR et al (2003) Structure of the first parallel DNA quadruplex-drug complex. J Am Chem Soc 125(14):4066–4067Google Scholar
  74. 74.
    Campbell NH et al (2008) Structural basis of DNA quadruplex recognition by an acridine drug. J Am Chem Soc 130(21):6722–6724Google Scholar
  75. 75.
    Phan AT et al (2005) Small-molecule interaction with a five-guanine-tract G-quadruplex structure from the human MYC promoter. Nat Chem Biol 1(3):167–173Google Scholar
  76. 76.
    Han H, Cliff CL, Hurley LH (1999) Accelerated assembly of G-quadruplex structures by a small molecule. Biochemistry 38(22):6981–6986Google Scholar
  77. 77.
    Moriyama R et al (2011) DNA assembly and re-assembly activated by cationic comb-type copolymer. Biomaterials 32(9):2351–2358Google Scholar
  78. 78.
    Maruyama A et al (1997) Comb-type polycations effectively stabilize DNA triplex. Bioconjug Chem 8(1):3–6Google Scholar
  79. 79.
    Maruyama A et al (1998) Characterization of interpolyelectrolyte complexes between double-stranded DNA and polylysine comb-type copolymers having hydrophilic side chains. Bioconjug Chem 9(2):292–299Google Scholar
  80. 80.
    Torigoe H et al (2009) Synergistic stabilization of nucleic acid assembly by 2′-O,4′-C-methylene-bridged nucleic acid modification and additions of comb-type cationic copolymers. Biochemistry 48(15):3545–3553Google Scholar
  81. 81.
    Kim WJ et al (2001) Comb-type cationic copolymer expedites DNA strand exchange while stabilizing DNA duplex. Chemistry 7(1):176–180Google Scholar
  82. 82.
    Torigoe H et al (1999) Poly(l-lysine)-graft-dextran copolymer promotes pyrimidine motif triplex DNA formation at physiological pH. Thermodynamic and kinetic studies. J Biol Chem 274(10):6161–6167Google Scholar
  83. 83.
    Kim WJ, Akaike T, Maruyama A (2002) DNA strand exchange stimulated by spontaneous complex formation with cationic comb-type copolymer. J Am Chem Soc 124(43):12676–12677Google Scholar
  84. 84.
    Wu L et al (2008) Poly(l-lysine)-graft-dextran copolymer accelerates DNA hybridization by two orders. Soft Matter 4:744–747Google Scholar
  85. 85.
    Moriyama R et al (2011) The role of cationic comb-type copolymers in chaperoning DNA annealing. Biomaterials 32(30):7671–7676Google Scholar
  86. 86.
    Darisipudi MN et al (2011) Dual blockade of the homeostatic chemokine CXCL12 and the proinflammatory chemokine CCL2 has additive protective effects on diabetic kidney disease. Am J Pathol 179(1):116–124Google Scholar
  87. 87.
    Urata H et al (1992) Synthesis and properties of mirror-image DNA. Nucleic Acids Res 20(13):3325–3332Google Scholar
  88. 88.
    Miyoshi D, Nakao A, Sugimoto N (2002) Molecular crowding regulates the structural switch of the DNA G-quadruplex. Biochemistry 41(50):15017–15024Google Scholar
  89. 89.
    Xue Y et al (2007) Human telomeric DNA forms parallel-stranded intramolecular G-quadruplex in K + solution under molecular crowding condition. J Am Chem Soc 129(36):11185–11191Google Scholar
  90. 90.
    Kumar N, Basundra R, Maiti S (2009) Elevated polyamines induce c-MYC overexpression by perturbing quadruplex-WC duplex equilibrium. Nucleic Acids Res 37(10):3321–3331Google Scholar
  91. 91.
    Yin F, Liu J, Peng X (2003) Triethylene tetraamine: a novel telomerase inhibitor. Bioorg Med Chem Lett 13(22):3923–3926Google Scholar
  92. 92.
    Petraccone L, Barone G, Giancola C (2005) Quadruplex-forming oligonucleotides as tools in anticancer therapy and aptamers design: energetic aspects. Curr Med Chem Anticancer Agents 5(5):463–475Google Scholar
  93. 93.
    Bock LC et al (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355(6360):564–566Google Scholar
  94. 94.
    Li WX et al (1994) A novel nucleotide-based thrombin inhibitor inhibits clot-bound thrombin and reduces arterial platelet thrombus formation. Blood 83(3):677–682Google Scholar
  95. 95.
    Bates PJ et al (1999) Antiproliferative activity of G-rich oligonucleotides correlates with protein binding. J Biol Chem 274(37):26369–26377Google Scholar
  96. 96.
    Girvan AC et al (2006) AGRO100 inhibits activation of nuclear factor-kappaB (NF-kappaB) by forming a complex with NF-kappaB essential modulator (NEMO) and nucleolin. Mol Cancer Ther 5(7):1790–1799Google Scholar
  97. 97.
    Wyatt JR et al (1994) Combinatorially selected guanosine-quartet structure is a potent inhibitor of human immunodeficiency virus envelope-mediated cell fusion. Proc Natl Acad Sci USA 91(4):1356–1360Google Scholar
  98. 98.
    Kusser W (2000) Chemically modified nucleic acid aptamers for in vitro selections: evolving evolution. J Biotechnol 74(1):27–38Google Scholar
  99. 99.
    Tran PLT et al (2011) A mirror-image tetramolecular DNA quadruplex. Chem Commun (Camb) 47(19):5437–5439Google Scholar
  100. 100.
    Gros J et al (2007) Guanines are a quartet’s best friend: impact of base substitutions on the kinetics and stability of tetramolecular quadruplexes. Nucleic Acids Res 35(9):3064–3075Google Scholar
  101. 101.
    Gros J et al (2008) 8-Amino guanine accelerates tetramolecular G-quadruplex formation. Chem Commun (Camb) 25:2926–8Google Scholar
  102. 102.
    Sannohe Y, Sugiyama H (2010) Overview of formation of G-quadruplex structures. Curr Protoc Nucleic Acid Chem 40:Unit 17.2.1–17.2.17, Chapter 17Google Scholar
  103. 103.
    Saccà B, Lacroix L, Mergny JL (2005) The effect of chemical modifications on the thermal stability of different G-quadruplex-forming oligonucleotides. Nucleic Acids Res 33(4):1182–1192Google Scholar
  104. 104.
    Randazzo A et al (2004) NMR solution structure of a parallel LNA quadruplex. Nucleic Acids Res 32(10):3083–3092Google Scholar
  105. 105.
    Nielsen JT, Arar K, Petersen M (2006) NMR solution structures of LNA (locked nucleic acid) modified quadruplexes. Nucleic Acids Res 34(7):2006–2014Google Scholar
  106. 106.
    Petraccone L et al (2006) Energetic aspects of locked nucleic acids quadruplex association and dissociation. Biopolymers 83(6):584–594Google Scholar
  107. 107.
    Esposito V et al (2009) Effects of the introduction of inversion of polarity sites in the quadruplex forming oligonucleotide TGGGT. Bioorg Med Chem 17(5):1997–2001Google Scholar
  108. 108.
    Datta B, Schmitt C, Armitage BA (2003) Formation of a PNA2-DNA2 hybrid quadruplex. J Am Chem Soc 125(14):4111–4118Google Scholar
  109. 109.
    Paul A et al (2008) Combining G-quadruplex targeting motifs on a single peptide nucleic acid scaffold: a hybrid (3+1) PNA-DNA bimolecular quadruplex. Chemistry 14(28):8682–8689Google Scholar
  110. 110.
    Roy S et al (2011) Kinetic discrimination in recognition of DNA quadruplex targets by guanine-rich heteroquadruplex-forming PNA probes. Chem Commun (Camb) 47(30):8524–8526Google Scholar
  111. 111.
    Krishnan-Ghosh Y, Stephens E, Balasubramanian S (2004) A PNA4 quadruplex. J Am Chem Soc 126(19):5944–5945Google Scholar
  112. 112.
    Esposito V et al (2003) PNA-DNA chimeras forming quadruplex structures. Nucleosides Nucleotides Nucleic Acids 22(5–8):1681–1684Google Scholar
  113. 113.
    Wlotzka B et al (2002) In vivo properties of an anti-GnRH Spiegelmer: an example of an oligonucleotide-based therapeutic substance class. Proc Natl Acad Sci USA 99(13):8898–8902Google Scholar
  114. 114.
    Kim Y, Yang CJ, Tan W (2007) Superior structure stability and selectivity of hairpin nucleic acid probes with an l-DNA stem. Nucleic Acids Res 35(21):7279–7287Google Scholar
  115. 115.
    Lin C et al (2009) Mirror image DNA nanostructures for chiral supramolecular assemblies. Nano Lett 9(1):433–436Google Scholar
  116. 116.
    Sayyed SG et al (2009) Podocytes produce homeostatic chemokine stromal cell-derived factor-1/CXCL12, which contributes to glomerulosclerosis, podocyte loss and albuminuria in a mouse model of type 2 diabetes. Diabetologia 52(11):2445–2454Google Scholar
  117. 117.
    Garbesi A et al (1993) l-DNAs as potential antimessenger oligonucleotides: a reassessment. Nucleic Acids Res 21(18):4159–4165Google Scholar
  118. 118.
    Urata H et al (2002) Anti-HIV-1 activity of l-DNA quadruplex. Nucleic Acids Res Suppl (2):163–164Google Scholar
  119. 119.
    Szalai VA, Singer MJ, Thorp HH (2002) Site-specific probing of oxidative reactivity and telomerase function using 7,8-dihydro-8-oxoguanine in telomeric DNA. J Am Chem Soc 124(8):1625–1631Google Scholar
  120. 120.
    Esposito V et al (2004) Effects of an 8-bromodeoxyguanosine incorporation on the parallel quadruplex structure [d(TGGGT)]4. Org Biomol Chem 2(3):313–318Google Scholar
  121. 121.
    Virgilio A et al (2005) 8-Methyl-2′-deoxyguanosine incorporation into parallel DNA quadruplex structures. Nucleic Acids Res 33(19):6188–6195Google Scholar
  122. 122.
    Mekmaysy CS et al (2008) Effect of O6-methylguanine on the stability of G-quadruplex DNA. J Am Chem Soc 130(21):6710–6711Google Scholar
  123. 123.
    Matsugami A et al (2007) Structure of a human telomeric DNA sequence stabilized by 8-bromoguanosine substitutions, as determined by NMR in a K+ solution. FEBS J 274(14):3545–3556Google Scholar
  124. 124.
    Tran PLT et al (2011) Effects of 8-methylguanine on structure, stability and kinetics of formation of tetramolecular quadruplexes. Biochimie 93(3):399–408Google Scholar
  125. 125.
    Amato J et al (2011) Targeting G-quadruplex structure in the human c-Kit promoter with short PNA sequences. Bioconjug Chem 22(4):654–663Google Scholar
  126. 126.
    Stefl R et al (2003) Formation pathways of a guanine-quadruplex DNA revealed by molecular dynamics and thermodynamic analysis of the substates. Biophys J 85(3):1787–1804Google Scholar
  127. 127.
    Marsh TC, Henderson E (1994) G-wires: self-assembly of a telomeric oligonucleotide, d(GGGGTTGGGG), into large superstructures. Biochemistry 33(35):10718–10724Google Scholar
  128. 128.
    Kotlyar AB et al (2005) In vitro synthesis of uniform poly(dG)-poly(dC) by Klenow exo- fragment of polymerase I. Nucleic Acids Res 33(2):525–535Google Scholar
  129. 129.
    Cohen H et al (2007) Polarizability of G4-DNA observed by electrostatic force microscopy measurements. Nano Lett 7(4):981–986Google Scholar
  130. 130.
    Lyonnais S et al (2008) Functionalization of DNA G-wires for patterning and nanofabrication. Nucleic Acids Symp Ser (Oxf) (52):689–690Google Scholar
  131. 131.
    Protozanova E, Macgregor RB Jr (1996) Frayed wires: a thermally stable form of DNA with two distinct structural domains. Biochemistry 35(51):16638–16645Google Scholar
  132. 132.
    Batalia MA et al (2002) Self-assembly of frayed wires and frayed-wire networks: nanoconstruction with multistranded DNA. Nano Lett 2(4):269–274Google Scholar
  133. 133.
    Venczel EA, Sen D (1996) Synapsable DNA. J Mol Biol 257(2):219–224Google Scholar
  134. 134.
    Fahlman RP, Sen D (1998) Cation-regulated self-association of “synapsable” DNA duplexes. J Mol Biol 280(2):237–244Google Scholar
  135. 135.
    Kaucher MS, Harrell WA Jr, Davis JT (2006) A unimolecular G-quadruplex that functions as a synthetic transmembrane Na+ transporter. J Am Chem Soc 128(1):38–39Google Scholar
  136. 136.
    Sakai N et al (2006) Dendritic folate rosettes as ion channels in lipid bilayers. J Am Chem Soc 128(7):2218–2219Google Scholar
  137. 137.
    Ma L et al (2008) Large and stable transmembrane pores from guanosine-bile acid conjugates. J Am Chem Soc 130(10):2938–2939Google Scholar
  138. 138.
    Lubitz I, Kotlyar A (2011) Self-assembled G4-DNA-silver nanoparticle structures. Bioconjug Chem 22(3):482–487Google Scholar
  139. 139.
    Lubitz I, Kotlyar A (2011) G4-DNA-coated gold nanoparticles: synthesis and assembly. Bioconjug Chem 22(10):2043–2047Google Scholar
  140. 140.
    Miyoshi D et al (2005) DNA nanowire sensitive to the surrounding condition. Nucleic Acids Symp Ser (Oxf) (49):43–44Google Scholar
  141. 141.
    Miyoshi D et al (2007) Artificial G-wire switch with 2,2′-bipyridine units responsive to divalent metal ions. J Am Chem Soc 129(18):5919–5925Google Scholar
  142. 142.
    Mergny JL et al (2006) Quadruplex Nucleic Acids. Royal Society of Chemistry Chapter 2. Energetics, Kinetics and Dynamics of Quadruplex Folding:31–80Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Laboratoire ARNAUniversité de BordeauxBordeauxFrance
  2. 2.INSERM, U869, Laboratoire ARNA, IECBPessacFrance
  3. 3.INSERM, U565, CNRS UMR7196, Muséum National d’Histoire NaturelleParis Cedex 05France

Personalised recommendations