Advertisement

Investigation of Quadruplex Structure Under Physiological Conditions Using In-Cell NMR

  • Robert Hänsel
  • Silvie Foldynová-Trantírková
  • Volker DötschEmail author
  • Lukáš Trantírek
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 330)

Abstract

In this chapter we describe the application of in-cell NMR spectroscopy to the investigation of G-quadruplex structures inside living Xenopus laevis oocytes and in X. laevis egg extract. First, in-cell NMR spectroscopy of nucleic acids (NA) is introduced and applications and limitations of the approach are discussed. In the following text the application of in-cell NMR spectroscopy to investigation of G-quadruplexes are reviewed. Special emphasis is given to the discussion of the influence of the intracellular environmental factors such as low molecular weight compounds, molecular crowding, and hydration on structural behavior of G-quadruplexes. Finally, future perspectives of in-cell NMR spectroscopy for quantitative characterization of G-quadruplexes and NA are discussed.

Graphical Abstract

Keywords

G-quadruplex In vivo In-cell NMR Molecular crowding Xenopus laevis 

Notes

Acknowledgements

LT acknowledges support from a VIDI career development grant by the Netherlands Organization for Scientific Research (NOW). RH acknowledges support from the Fond der Chemischen Industrie (FCI). Support from The Center for Biomolecular Magnetic Resonance (BMRZ), the Cluster of Excellence Frankfurt (Macromolecular Complexes), and the EU (Bio-NMR) is also gratefully acknowledged.

References

  1. 1.
    Huppert JL, Balasubramanian S (2005) Prevalence of quadruplexes in the human genome. Nucleic Acids Res 33:2908CrossRefGoogle Scholar
  2. 2.
    Huppert JL, Balasubramanian S (2007) G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res 35:406CrossRefGoogle Scholar
  3. 3.
    Brooks TA, Kendrick S, Hurley L (2010) Making sense of G-quadruplex and i-motif functions in oncogene promoters. FEBS J 277:3459CrossRefGoogle Scholar
  4. 4.
    Wu Y, Brosh RM Jr (2010) G-quadruplex nucleic acids and human disease. FEBS J 277:3470CrossRefGoogle Scholar
  5. 5.
    Bacolla A, Wells RD (2009) Non-B DNA conformations as determinants of mutagenesis and human disease. Mol Carcinog 48:273CrossRefGoogle Scholar
  6. 6.
    Heckel A, Famulok M (2008) Building objects from nucleic acids for a nanometer world. Biochimie 90:1096CrossRefGoogle Scholar
  7. 7.
    Collie GW, Parkinson GN (2011) The application of DNA and RNA G-quadruplexes to therapeutic medicines. Chem Soc Rev 40:5867CrossRefGoogle Scholar
  8. 8.
    Sedoris KC, Thomas SD, Clarkson CR, Muench D, Islam A, Singh R, Miller DM (2012) Genomic c-Myc quadruplex DNA selectively kills leukemia. Mol Cancer Ther 11:66CrossRefGoogle Scholar
  9. 9.
    Li J, Correia JJ, Wang L, Trent JO, Chaires JB (2005) Not so crystal clear: the structure of the human telomere G-quadruplex in solution differs from that present in a crystal. Nucleic Acids Res 33:4649CrossRefGoogle Scholar
  10. 10.
    Phan AT (2010) Human telomeric G-quadruplex: structures of DNA and RNA sequences. FEBS J 277:1107CrossRefGoogle Scholar
  11. 11.
    Dai J, Carver M, Yang D (2008) Polymorphism of human telomeric quadruplex structures. Biochimie 90:1172CrossRefGoogle Scholar
  12. 12.
    Hansel R, Lohr F, Foldynova-Trantirkova S, Bamberg E, Trantirek L, Dotsch V (2011) The parallel G-quadruplex structure of vertebrate telomeric repeat sequences is not the preferred folding topology under physiological conditions. Nucleic Acids Res 39:5768CrossRefGoogle Scholar
  13. 13.
    Heddi B, Phan AT (2011) Structure of human telomeric DNA in crowded solution. J Am Chem Soc 133:9824CrossRefGoogle Scholar
  14. 14.
    Inoue M, Miyoshi D, Sugimoto N (2005) Structural switch of telomere DNA by pH and monovalent cation. Nucleic Acids Symp Ser (Oxf) 243Google Scholar
  15. 15.
    Karimata H, Miyoshi D, Sugimoto N (2005) Structure and stability of DNA quadruplexes under molecular crowding conditions. Nucleic Acids Symp Ser (Oxf) 239Google Scholar
  16. 16.
    Lim KW, Amrane S, Bouaziz S, Xu W, Mu Y, Patel DJ, Luu KN, Phan AT (2009) Structure of the human telomere in K+ solution: a stable basket-type G-quadruplex with only two G-tetrad layers. J Am Chem Soc 131:4301CrossRefGoogle Scholar
  17. 17.
    Miller MC, Buscaglia R, Chaires JB, Lane AN, Trent JO (2010) Hydration is a major determinant of the G-quadruplex stability and conformation of the human telomere 3' sequence of d[AG(3)[TTAG(3)](3)]. J Am Chem Soc 132:17105–17107CrossRefGoogle Scholar
  18. 18.
    Miyoshi D, Matsumura S, Li W, Sugimoto N (2003) Structural polymorphism of telomeric DNA regulated by pH and divalent cation. Nucleosides Nucleotides Nucleic Acids 22:203CrossRefGoogle Scholar
  19. 19.
    Parkinson GN, Lee MP, Neidle S (2002) Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417:876CrossRefGoogle Scholar
  20. 20.
    Rencluk D, Kejnovska I, Skolakova P, Bednarova K, Motlova J, Vorlickova M (2009) Arrangements of human telomere DNA quadruplex in physiologically relevant K+ solutions. Nucleic Acids Res 37:6625CrossRefGoogle Scholar
  21. 21.
    Xue Y, Kan ZY, Wang Q, Yao Y, Liu J, Hao YH, Tan Z (2007) Human telomeric DNA forms parallel-stranded intramolecular G-quadruplex in K+ solution under molecular crowding condition. J Am Chem Soc 129:11185CrossRefGoogle Scholar
  22. 22.
    Li W, Wu P, Ohmichi T, Sugimoto N (2002) Characterization and thermodynamic properties of quadruplex/duplex competition. FEBS Lett 526:77CrossRefGoogle Scholar
  23. 23.
    Miyoshi D, Matsumura S, Nakano S, Sugimoto N (2004) Duplex dissociation of telomere DNAs induced by molecular crowding. J Am Chem Soc 126:165CrossRefGoogle Scholar
  24. 24.
    Luu KN, Phan AT, Kuryavyi V, Lacroix L, Patel DJ (2006) Structure of the human telomere in K+ solution: an intramolecular (3+1) G-quadruplex scaffold. J Am Chem Soc 128:9963CrossRefGoogle Scholar
  25. 25.
    Dai J, Carver M, Punchihewa C, Jones RA, Yang D (2007) Structure of the Hybrid-2 type intramolecular human telomeric G-quadruplex in K+ solution: insights into structure polymorphism of the human telomeric sequence. Nucleic Acids Res 35:4927CrossRefGoogle Scholar
  26. 26.
    Wang Y, Patel DJ (1993) Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure 1:263CrossRefGoogle Scholar
  27. 27.
    Serber Z, Dotsch V (2001) In-cell NMR spectroscopy. Biochemistry 40:14317CrossRefGoogle Scholar
  28. 28.
    Serber Z, Keatinge-Clay AT, Ledwidge R, Kelly AE, Miller SM, Dotsch V (2001) High-resolution macromolecular NMR spectroscopy inside living cells. J Am Chem Soc 123:2446CrossRefGoogle Scholar
  29. 29.
    Serber Z, Ledwidge R, Miller SM, Dotsch V (2001) Evaluation of parameters critical to observing proteins inside living Escherichia coli by in-cell NMR spectroscopy. J Am Chem Soc 123:8895CrossRefGoogle Scholar
  30. 30.
    Selenko P, Serber Z, Gadea B, Ruderman J, Wagner G (2006) Quantitative NMR analysis of the protein G B1 domain in Xenopus laevis egg extracts and intact oocytes. Proc Natl Acad Sci USA 103:11904CrossRefGoogle Scholar
  31. 31.
    Serber Z, Selenko P, Hansel R, Reckel S, Lohr F, Ferrell JE Jr, Wagner G, Dotsch V (2006) Investigating macromolecules inside cultured and injected cells by in-cell NMR spectroscopy. Nat Protoc 1:2701CrossRefGoogle Scholar
  32. 32.
    Hansel R, Foldynova-Trantirkova S, Lohr F, Buck J, Bongartz E, Bamberg E, Schwalbe H, Dotsch V, Trantirek L (2009) Evaluation of parameters critical for observing nucleic acids inside living Xenopus laevis oocytes by in-cell NMR spectroscopy. J Am Chem Soc 131:15761CrossRefGoogle Scholar
  33. 33.
    Sakakibara D, Sasaki A, Ikeya T, Hamatsu J, Hanashima T, Mishima M, Yoshimasu M, Hayashi N, Mikawa T, Walchli M, Smith BO, Shirakawa M, Guntert P, Ito Y (2009) Protein structure determination in living cells by in-cell NMR spectroscopy. Nature 458:102CrossRefGoogle Scholar
  34. 34.
    Chin DJ, Green GA, Zon G, Szoka FC Jr, Straubinger RM (1990) Rapid nuclear accumulation of injected oligodeoxyribonucleotides. New Biol 2:1091Google Scholar
  35. 35.
    Clarenc JP, Lebleu B, Leonetti JP (1993) Characterization of the nuclear binding sites of oligodeoxyribonucleotides and their analogs. J Biol Chem 268:5600Google Scholar
  36. 36.
    Fisher TL, Terhorst T, Cao X, Wagner RW (1993) Intracellular disposition and metabolism of fluorescently-labeled unmodified and modified oligonucleotides microinjected into mammalian cells. Nucleic Acids Res 21:3857CrossRefGoogle Scholar
  37. 37.
    Leonetti JP, Mechti N, Degols G, Gagnor C, Lebleu B (1991) Intracellular distribution of microinjected antisense oligonucleotides. Proc Natl Acad Sci USA 88:2702CrossRefGoogle Scholar
  38. 38.
    Lukacs GL, Haggie P, Seksek O, Lechardeur D, Freedman N, Verkman AS (2000) Size-dependent DNA mobility in cytoplasm and nucleus. J Biol Chem 275:1625CrossRefGoogle Scholar
  39. 39.
    Bement WM, Capco DG (1990) Transformation of the amphibian oocyte into the egg: structural and biochemical events. J Electron Microsc Tech 16:202CrossRefGoogle Scholar
  40. 40.
    Grandin N, Charbonneau M (1991) Cycling of intracellular free calcium and intracellular pH in Xenopus embryos: a possible role in the control of the cell cycle. J Cell Sci 99(Pt 1):5Google Scholar
  41. 41.
    Grandin N, Charbonneau M (1991) Intracellular free calcium oscillates during cell division of Xenopus embryos. J Cell Biol 112:711CrossRefGoogle Scholar
  42. 42.
    Grandin N, Charbonneau M (1991) Changes in intracellular free calcium activity in Xenopus eggs following imposed intracellular pH changes using weak acids and weak bases. Biochim Biophys Acta 1091:242CrossRefGoogle Scholar
  43. 43.
    Ito Y, Selenko P (2010) Cellular structural biology. Curr Opin Struct Biol 20:640CrossRefGoogle Scholar
  44. 44.
    Guigas G, Kalla C, Weiss M (2007) The degree of macromolecular crowding in the cytoplasm and nucleoplasm of mammalian cells is conserved. FEBS Lett 581:5094CrossRefGoogle Scholar
  45. 45.
    Guigas G, Kalla C, Weiss M (2007) Probing the nanoscale viscoelasticity of intracellular fluids in living cells. Biophys J 93:316CrossRefGoogle Scholar
  46. 46.
    Speil J, Kubitscheck U (2010) Single ovalbumin molecules exploring nucleoplasm and nucleoli of living cell nuclei. Biochim Biophys Acta 1803:396CrossRefGoogle Scholar
  47. 47.
    Williams SP, Haggie PM, Brindle KM (1997) 19F NMR measurements of the rotational mobility of proteins in vivo. Biophys J 72:490CrossRefGoogle Scholar
  48. 48.
    Zhang JL, Fu Y, Zheng L, Li W, Li H, Sun Q, Xiao Y, Geng F (2009) Natural isoflavones regulate the quadruplex-duplex competition in human telomeric DNA. Nucleic Acids Res 37:2471CrossRefGoogle Scholar
  49. 49.
    Miyoshi D, Sugimoto N (2008) Molecular crowding effects on structure and stability of DNA. Biochimie 90:1040CrossRefGoogle Scholar
  50. 50.
    Elcock AH (2010) Models of macromolecular crowding effects and the need for quantitative comparisons with experiment. Curr Opin Struct Biol 20:196CrossRefGoogle Scholar
  51. 51.
    Borman S (2011) DNA Folding in ‘crowded’ conditions. Chem Eng News 89:6Google Scholar
  52. 52.
    Xue Y, Liu JQ, Zheng KW, Kan ZY, Hao YH, Tan Z (2011) Kinetic and thermodynamic control of G-quadruplex folding. Angew Chem Int Ed Engl 50:8046–8050CrossRefGoogle Scholar
  53. 53.
    Petraccone L, Spink C, Trent JO, Garbett NC, Mekmaysy CS, Giancola C, Chaires JB (2011) Structure and stability of higher-order human telomeric quadruplexes. J Am Chem Soc 133:20951CrossRefGoogle Scholar
  54. 54.
    Wu Z, Delaglio F, Tjandra N, Zhurkin VB, Bax A (2003) Overall structure and sugar dynamics of a DNA dodecamer from homo- and heteronuclear dipolar couplings and 31P chemical shift anisotropy. J Biomol NMR 26:297CrossRefGoogle Scholar
  55. 55.
    Ogino S, Kubo S, Umemoto R, Huang S, Nishida N, Shimada I (2009) Observation of NMR signals from proteins introduced into living mammalian cells by reversible membrane permeabilization using a pore-forming toxin, streptolysin O. J Am Chem Soc 131:10834CrossRefGoogle Scholar
  56. 56.
    Inomata K, Ohno A, Tochio H, Isogai S, Tenno T, Nakase I, Takeuchi T, Futaki S, Ito Y, Hiroaki H, Shirakawa M (2009) High-resolution multi-dimensional NMR spectroscopy of proteins in human cells. Nature 458:106CrossRefGoogle Scholar
  57. 57.
    Fiala R, Spackova N, Foldynova-Trantirkova S, Sponer J, Sklenar V, Trantirek L (2011) NMR cross-correlated relaxation rates reveal ion coordination sites in DNA. J Am Chem Soc 133:13790CrossRefGoogle Scholar
  58. 58.
    Azarkh M, Okle O, Singh V, Seemann IT, Hartig JS, Dietrich DR, Drescher M (2011) Long-range distance determination in a DNA model system inside Xenopus laevis oocytes by in-cell spin-label EPR. Chembiochem 12:1992CrossRefGoogle Scholar
  59. 59.
    Krstic I, Hansel R, Romainczyk O, Engels JW, Dotsch V, Prisner TF (2011) Long-range distance measurements on nucleic acids in cells by pulsed EPR spectroscopy. Angew Chem Int Ed Engl 50:5070CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Robert Hänsel
    • 1
  • Silvie Foldynová-Trantírková
    • 2
  • Volker Dötsch
    • 1
    Email author
  • Lukáš Trantírek
    • 3
  1. 1.Institute of Biophysical Chemistry and Center for Biomolecular Magnetic ResonanceGoethe UniversityFrankfurt/MainGermany
  2. 2.Department of Medical OncologyUniversity Medical Center UtrechtUtrechtThe Netherlands
  3. 3.Department of ChemistryUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations