Circular Dichroism of Quadruplex Structures

  • Antonio Randazzo
  • Gian Piero Spada
  • Mateus Webba da Silva
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 330)

Abstract

Circular dichroism (CD) is a widespread technique for studying the polymorphism of G-quadruplexes. In this chapter the CD spectral features characteristic of different folding topologies of G4-DNA are analyzed in terms of the sequence of the syn or anti glycosidic bond angle (GBA) within a quadruplex stem. Depending on the GBA sequence, the chiral disposition of two stacked guanines, adjacent along a strand, is different and this leads to a predictable contribution to the overall CD spectrum. The CD spectra of a series of G-quadruplexes, chosen as prototypal of the most common strand folding, are illustrated. The validity and the prediction power of the approach is corroborated by the analysis of CD spectra of structurally modified G4-DNA either with chemically modified guanines or polarity inversion site (5′-5′ or 3′-3′) along the strands or additional nucleobases contributing to the stacking.

Keywords

Circular Dichroism G-quadruplex DNA RNA 

References

  1. 1.
    Paramasivan S, Rujan I, Bolton PH (2007) Circular dichroism of quadruplex DNAs: applications to structure, cation effects and ligand binding. Methods 43:324–331CrossRefGoogle Scholar
  2. 2.
    Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S (2006) Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res 34:5402–5415CrossRefGoogle Scholar
  3. 3.
    Masiero S, Trotta R, Pieraccini S, De Tito S, Perone R, Randazzo A, Spada GP (2010) A non-empirical chromophoric interpretation of CD spectra of DNA G-quadruplex structures. Org Biomol Chem 8:2683–2692CrossRefGoogle Scholar
  4. 4.
    Kypr J, Kejnovská I, Renčiuk D, Vorlíčková M (2009) Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res 37:1713–1725CrossRefGoogle Scholar
  5. 5.
    Jaumot J, Eritja R, Navea S, Gargallo R (2009) Classification of nucleic acids structures by means of the chemometric analysis of circular dichroism spectra. Anal Chim Acta 642:117–126CrossRefGoogle Scholar
  6. 6.
    Berova N, Nakanishi K, Woody RW (2000) Circular dichroism: principles and applications, 2nd edn. Wiley-VCH, New YorkGoogle Scholar
  7. 7.
    Berova N, Di Bari L, Pescitelli G (2007) Application of electronic circular dichroism in configurational and conformational analysis of organic compounds. Chem Soc Rev 36:914–931CrossRefGoogle Scholar
  8. 8.
    Gottarelli G, Lena S, Masiero S, Pieraccini S, Spada GP (2008) The use of circular dichroism spectroscopy for studying the chiral molecular self-assembly: an overview. Chirality 20:471–485CrossRefGoogle Scholar
  9. 9.
    van Dijk L, Bobbert PA, Spano FC (2010) Extreme sensitivity of circular dichroism to long-range excitonic couplings in helical supramolecular assemblies. J Phys Chem B 114:817–825CrossRefGoogle Scholar
  10. 10.
    Fasman GD (1996) Circular dichroism and the conformational analysis of biomolecules. Plenum, New YorkCrossRefGoogle Scholar
  11. 11.
    Johnson JE, Smith JS, Kozak ML, Johnson FB (2008) In vivo veritas: using yeast to probe the biological functions of G-quadruplexes. Biochimie 90:1250–1263CrossRefGoogle Scholar
  12. 12.
    Henderson E, Hardin CC, Walk SK, Tinoco I Jr, Blackburn EH (1987) Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine·guanine base pairs. Cell 51:899–908CrossRefGoogle Scholar
  13. 13.
    Neidle S, Parkinson GN (2002) Telomere maintenance as a target for anticancer drug discovery. Nat Rev Drug Discov 1:383–393CrossRefGoogle Scholar
  14. 14.
    Incles CM, Schultes CM, Neidle S (2003) Telomerase inhibitors in cancer therapy: current status and future directions. Curr Opin Investig Drugs 4:675–685Google Scholar
  15. 15.
    Neidle S, Balasubramanian S (2006) Quadruplex nucleic acids. RSC, CambridgeCrossRefGoogle Scholar
  16. 16.
    Parkinson GN (2006) Fundamentals of quadruplex structures. In: Neidle S, Balasubramanian S (eds) Quadruplex nucleic acids. RSC, CambridgeGoogle Scholar
  17. 17.
    Harada H, Nakanishi K (1983) Circular dichroic spectroscopy – exciton coupling in organic stereochemistry. University Science Book, Mill ValleyGoogle Scholar
  18. 18.
    Berova N, Nakanishi K (2000) Principles and applications of exciton chirality method. In: Berova N, Nakanishi K, Woody RW (eds) Circular dichroism – principles and applications, 2nd edn. Wiley-VCH, New YorkGoogle Scholar
  19. 19.
    Superchi S, Giorgio E, Rosini C (2004) Structural determinations by circular dichroism spectra analysis using coupled oscillator methods: an update of the applications of the DeVoe polarizability model. Chirality 16:422–451CrossRefGoogle Scholar
  20. 20.
    Clark LB (1994) Electronic spectra of crystalline guanosine: transition moment directions of the guanine chromophore. J Am Chem Soc 116:5265–5270CrossRefGoogle Scholar
  21. 21.
    Füelsher MP, Serrano-Andrés L, Roos BO (1997) A theoretical study of the electronic spectra of adenine and guanine. J Am Chem Soc 119:6168–6176CrossRefGoogle Scholar
  22. 22.
    Gottarelli G, Palmieri P, Spada GP (1990) The exciton optical activity of the four-stranded helix of poly(G). Gazz Chim Ital 120:101–107Google Scholar
  23. 23.
    Gray DM, Wen JD, Gray CW, Repges R, Repges C, Raabe G, Fleischhauer J (2008) Measured and calculated CD spectra of G-quartets stacked with the same or opposite polarities. Chirality 20:431–440CrossRefGoogle Scholar
  24. 24.
    Webba da Silva M (2007) Geometric formalism for DNA quadruplex folding. Chemistry 13:9738–9745CrossRefGoogle Scholar
  25. 25.
    Webba da Silva M, Trajkovski M, Sannohe Y, Ma’ani Hessari N, Sugiyama H, Plavec J (2009) Design of a G-quadruplex topology through glycosidic bond angles. Angew Chem 121:9331–9334; Angew Chem Int Ed 48:9167–9170Google Scholar
  26. 26.
    Snatzke G (2000) Circular dichroism: an introduction. In: Berova N, Nakanishi K, Woody RW (eds) Circular dichroism – principles and applications, 2nd edn. Wiley-VCH, New YorkGoogle Scholar
  27. 27.
    Gottarelli G, Masiero S, Spada GP (1998) The use of CD spectroscopy for the study of the self-assembly of guanine derivatives. Enantiomer 3:429–438Google Scholar
  28. 28.
    Wen JD, Gray DN (2002) The Ff gene 5 single-stranded DNA-binding protein binds to the transiently folded form of an intramolecular G-quadruplex. Biochemistry 41:11438–11448CrossRefGoogle Scholar
  29. 29.
    Esposito V, Randazzo A, Piccialli G, Petraccone L, Giancola C, Mayol L (2004) Effects of an 8-bromodeoxyguanosine incorporation on the parallel quadruplex structure [d(TGGGT)]4. Org Biomol Chem 2:313–318CrossRefGoogle Scholar
  30. 30.
    Uesugi S, Ikehara M (1977) Carbon-13 magnetic resonance spectra of 8-substituted purine nucleosides. Characteristic shifts for the syn conformation. J Am Chem Soc 99:3250–3253CrossRefGoogle Scholar
  31. 31.
    Jordan F, Niv H (1977) C8-amino purine nucleosides. A well-defined steric determinant of glycosyl conformational preferences. Biochim Biophys Acta 476:265–271CrossRefGoogle Scholar
  32. 32.
    Uesugi S, Ohkubo M, Urata H, Ikeara M, Kobayashi Y, Kyogoku Y (1984) Ribooligonucleotides, r(C-G-C-G) analogues containing 8-substituted guanosine residues, form left-handed duplexes with Z-form-like structure. J Am Chem Soc 106:3675–3676CrossRefGoogle Scholar
  33. 33.
    Virgilio A, Esposito V, Randazzo A, Mayol L, Galeone A (2005) 8-Methyl-2'-deoxyguanosine incorporation into parallel DNA quadruplex structures. Nucleic Acids Res 33:6188–6195CrossRefGoogle Scholar
  34. 34.
    Esposito V, Virgilio A, Pepe A, Oliviero G, Mayol L, Galeone A (2009) Effects of the introduction of inversion of polarity sites in the quadruplex forming oligonucleotide TGGGT. Bioorg Med Chem 17:1997–2001CrossRefGoogle Scholar
  35. 35.
    Petraccone L, Duro I, Randazzo A, Virno A, Mayol L, Giancola C (2007) Biophysical properties of quadruplexes containing two or three 8-bromodeoxyguanosine residues. Nucleosides Nucleotides Nucleic Acids 26:669–674CrossRefGoogle Scholar
  36. 36.
    Esposito V, Virgilio A, Randazzo A, Galeone A, Mayol L (2005) A new class of DNA quadruplexes formed by oligodeoxyribonucleotides containing a 3'-3' or 5'-5' inversion of polarity site. Chem Commun 31:3953–3955CrossRefGoogle Scholar
  37. 37.
    Virno A, Zaccaria F, Virgilio A, Esposito V, Galeone A, Mayol L, Randazzo A (2007) Molecular modelling studies of four stranded quadruplexes containing a 3'-3' or 5'-5' inversion of polarity site. Nucleosides Nucleotides Nucleic Acids 26(8–9):1139–1143CrossRefGoogle Scholar
  38. 38.
    Karsisiotis AI, Hessari NM, Novellino E, Spada GP, Randazzo A, Webba da Silva M (2011) Topological characterization of nucleic acid G-quadruplexes by UV absorption and circular dichroism. Angew Chem Int Ed Engl 50(45):10645–10648CrossRefGoogle Scholar
  39. 39.
    Hu LY, Lim KW, Bouaziz S, Phan AT (2009) Giardia telomeric sequence d(TAGGG)4 forms two intramolecular G-quadruplexes in K+ solution: effect of loop length and sequence on the folding topology. J Am Chem Soc 131:16824–16831CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Antonio Randazzo
    • 1
  • Gian Piero Spada
    • 2
  • Mateus Webba da Silva
    • 3
  1. 1.Dipartimento di Chimica Farmaceutica e TossicologicaUniversità degli Studi di Napoli “Federico II”NapoliItaly
  2. 2.Dipartimento di Chimica Organica “A. Mangini”Alma Mater Studiorum-Università di BolognaBolognaItaly
  3. 3.School of Biomedical SciencesUniversity of UlsterColeraineUK

Personalised recommendations