Stereoselective Alkene Synthesis pp 239-269

Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 327)

Alkene Synthesis Through Transition Metal-Catalyzed Cross-Coupling of N-Tosylhydrazones

Chapter

Abstract

Abstract

In this chapter, alkene synthesis based on the reaction of N-tosylhydrazones is described. The reactivity of tosylhydrazones is determined by either the acidity of α-proton and hydrazone proton or the electropositivity of the carbon of C=N bond. This leads to diverse reactivities and a series of N-tosylhydrazone-based olefination methodologies. Both non-catalytic and transition metal-catalyzed olefinations from N-tosylhydrazones are introduced in this chapter. Most of the transition metal-catalyzed reactions proceed via metal carbene transformations. The synthesis of alkenes through Pd-catalyzed cross-coupling reactions of N-tosylhydrazones is particularly attractive and will be discussed in detail.

Graphical Abstract

Keywords

Alkene synthesis Cross-coupling Metal carbene N-Tosylhydrazones 

References

  1. 1.
    Bamford WR, Stevens TS (1952) J Chem Soc 4735–4740Google Scholar
  2. 2.
    Shapiro RH (1976) Org React 23:405–507Google Scholar
  3. 3.
    Vedejs E, Dolphin JM, Stolle WT (1979) J Am Chem Soc 101:249–251Google Scholar
  4. 4.
    Li P, Zhao J, Wu C, Larock RC, Shi F (2011) Org Lett 13:3340–3343Google Scholar
  5. 5.
    Inamoto K (2008) Yakugaku Zasshi 128:997–1005Google Scholar
  6. 6.
    Friedman L, Shechter H (1961) J Am Chem Soc 83:3159–3160Google Scholar
  7. 7.
    Kirmse W, Buschoff M (1967) Chem Ber 100:1491–1506Google Scholar
  8. 8.
    Shapiro RH, Duncan JH, Clopton JC (1967) J Am Chem Soc 89:471–472Google Scholar
  9. 9.
    Kenar JA, Nickon A (1997) Tetrahedron 53:14871–14894Google Scholar
  10. 10.
    Olmstead KK, Nickon A (1999) Tetrahedron 55:3585–3594Google Scholar
  11. 11.
    Shapiro RH, Heath MJ (1967) J Am Chem Soc 89:5734–5735Google Scholar
  12. 12.
    Adlington RM, Barrett AGM (1983) Acc Chem Res 16:55–59Google Scholar
  13. 13.
    Nicolaou KC, Yang Z, Liu JJ, Ueno H, Nantermet PG, Guy RK, Claiborne CF, Renaud J, Couladouros EA, Paulvannan K, Sorensen EJ (1994) Nature 367:630–634Google Scholar
  14. 14.
    Mayr M, Bataille CJR, Gosiewska S, Raskatov JA, Brown JM (2008) Tetrahedron Asymmetry 19:1328–1332Google Scholar
  15. 15.
    (2007) Reduction of carbonyl compounds to alkenes. In: Sundberg RJ, Carey FA (eds) Advanced organic chemistry part B, 5th edn. Springer Science, Business Media, LLCGoogle Scholar
  16. 16.
    Vedejs E, Stolle WT (1977) Tetrahedron Lett 18:135–138Google Scholar
  17. 17.
    Chamberlin R, Bloom SH (1990) Org React 39:1–83Google Scholar
  18. 18.
    Taylor EJ, Djerassi C (1976) J Am Chem Soc 98:2275–2281Google Scholar
  19. 19.
    Hutchins RO, Kacher M, Rua L (1975) J Org Chem 40:923–926Google Scholar
  20. 20.
    Girotra NN, Wendler NL (1982) Tetrahedron Lett 23:5501–5504Google Scholar
  21. 21.
    Greco MN, Maryanoff BE (1992) Tetrahedron Lett 33:5009–5012Google Scholar
  22. 22.
    Staudinger H, Siegwart J (1920) Helv Chim Acta 3:833–840Google Scholar
  23. 23.
    Barton DHR, Smith EH, Willis BJ (1970) J Chem Soc D 1225–1226Google Scholar
  24. 24.
    Kellogg RM, Wassenaar S (1970) Tetrahedron Lett 11:1987–1990Google Scholar
  25. 25.
    Garratt PJ, Payne D, Tocher DA (1990) J Org Chem 55:1909–1915Google Scholar
  26. 26.
    Wagner K, Weiss D, Beckert R (2000) Eur J Org Chem 3001–3005Google Scholar
  27. 27.
    Shimasaki T, Kato S-i, Shinmyozu T (2007) J Org Chem 72:6251–6254Google Scholar
  28. 28.
    Seyfrieda MS, Lindena A, Mlostoń G, Heimgartner H (2009) Helv Chim Acta 92:1800–1816Google Scholar
  29. 29.
    Plunkett KN, Godula K, Nuckolls C, Tremblay N, Whalley AC, Xiao S (2009) Org Lett 11:2225–2228Google Scholar
  30. 30.
    Pijper TC, Pijper D, Pollard MM, Dumur F, Davey SG, Meetsma A, Feringa BL (2010) J Org Chem 75:825–838Google Scholar
  31. 31.
    Ciscato LFML, Bastos EL, Bartoloni FH, Gunther W, Weiss D, Beckert R, Baader WJ (2010) J Braz Chem Soc 21:1896–1904Google Scholar
  32. 32.
    Katritzky AR, Tymoshenko DO, Belyakov SA (1999) J Org Chem 64:3332–3334Google Scholar
  33. 33.
    Katritzky AR, Wang J, Karodia N, Li J (1997) J Org Chem 62:4142–4147Google Scholar
  34. 34.
    Kurek-Tyrlik A, Marczak S, Michalak K, Wicha J, Zarecki A (2001) J Org Chem 66:6994–7001Google Scholar
  35. 35.
    Chandrasekhar S, Takhi M, Yadav JS (1995) Tetrahedron Lett 36:307–310Google Scholar
  36. 36.
    Chandrasekhar S, Takhi M, Yadav JS (1995) Tetrahedron Lett 36:5071–5074Google Scholar
  37. 37.
    Chandrasekhar S, Reddy MV, Rajaiah G (2000) Tetrahedron Lett 41:10131–10134Google Scholar
  38. 38.
    Yadav JS, Chandrasekhar S, Sasmal PK (1997) Tetrahedron Lett 38:8765–8768Google Scholar
  39. 39.
    Chandrasekhar S, Reddy MV, Takhi M (1999) Tetrahedron Lett 39:6535–6538Google Scholar
  40. 40.
    Wicha J, Zarecki A (2004) J Org Chem 69:5810–5812Google Scholar
  41. 41.
    Jung ME, Hagiwara A (1991) Tetrahedron Lett 32:3025–3028Google Scholar
  42. 42.
    Frimer AA, Weiss J, Rosental Z (1994) J Org Chem 59:2516–2522Google Scholar
  43. 43.
    Kabalka GW, Wu Z, Ju YH (2001) Tetrahedron Lett 42:4759–4760Google Scholar
  44. 44.
    Feng X-W, Wang J, Zhang J, Yang J, Wang N, Yu X-Q (2010) Org Lett 12:4408–4410Google Scholar
  45. 45.
    Doyle MP, Forbes DC (1998) Chem Rev 98:911–935Google Scholar
  46. 46.
    Doyle MP, Duffy R, Ratnikov M, Zhou L (2010) Chem Rev 110:704–724Google Scholar
  47. 47.
    Maas G (2004) Chem Soc Rev 33:183–190Google Scholar
  48. 48.
    Zhang Z, Wang JB (2008) Tetrahedron 64:6577–6605Google Scholar
  49. 49.
    Aggarwal VK, de Vicente J, Bonnert RV (2001) Org Lett 3:2785–2788Google Scholar
  50. 50.
    Aggarwal VK, Alonso E, Hynd G, Lydon KM, Palmer MJ, Porcelloni M, Studley JR (2001) Angew Chem Int Ed 41:1430–1433Google Scholar
  51. 51.
    Aggarwal VK, Patel M, Studley J (2002) Chem Commun 38:1514–1515Google Scholar
  52. 52.
    Aggarwal VK, Alonso E, Bae I, Hynd G, Lydon KM, Palmer MJ, Patel M, Porcelloni M, Richardson J, Stenson RA, Studley JR, Vasse J-L, Winn CL (2003) J Am Chem Soc 125:10926–10940Google Scholar
  53. 53.
    Doyle MP, Yan M (2002) J Org Chem 67:602–604Google Scholar
  54. 54.
    Doyle MP, Hu W, Phillips IM (2002) Org Lett 2:1777–1779Google Scholar
  55. 55.
    Xiao F, Wang J (2006) J Org Chem 71:5789–5791Google Scholar
  56. 56.
    Bronstein HE, Choi N, Scott LT (2002) J Am Chem Soc 124:8870–8875Google Scholar
  57. 57.
    Smegal JA, Meier IK, Schwartz J (1986) J Am Chem Soc 108:1322–1323Google Scholar
  58. 58.
    Lu X, Fang H, Ni Z (1989) J Organomet Chem 373:77–84Google Scholar
  59. 59.
    Lee M-Y, Chen Y, Zhang XP (2003) Organometallics 22:4905–4909Google Scholar
  60. 60.
    Kühn FE, Santos AM (2004) Mini-Rev Org Chem 1:55–64Google Scholar
  61. 61.
    Herrmann WA, Wang M (1991) Angew Chem Int Ed 30:1641–1643Google Scholar
  62. 62.
    Fujimura O, Honma T (1998) Tetrahedron Lett 39:625–626Google Scholar
  63. 63.
    Mirafzal GA, Cheng G, Woo LK (2002) J Am Chem Soc 124:176–177Google Scholar
  64. 64.
    Cheng G, Mirafzal GA, Woo LK (2003) Organometallics 22:1468–1474Google Scholar
  65. 65.
    Lebel H, Davi M (2008) Adv Synth Catal 350:2352–2358Google Scholar
  66. 66.
    Aggarwal VK, Fulton JR, Sheldon CG, de Vicente J (2003) J Am Chem Soc 125:6034–6035Google Scholar
  67. 67.
    Fulton JR, Aggarwal VK, de Vicente J (2005) Eur J Org Chem 1479–1492Google Scholar
  68. 68.
    Zhu S, Liao Y, Zhu S (2004) Org Lett 6:377–380Google Scholar
  69. 69.
    Reiser O (2006) Angew Chem Int Ed 45:2838–2840Google Scholar
  70. 70.
    Torborg C, Beller M (2009) Adv Synth Catal 351:3027–3043Google Scholar
  71. 71.
    Wu X-F, Anbarasan P, Neumann H, Beller M (2010) Angew Chem Int Ed 49:9047–9050Google Scholar
  72. 72.
    Zhang Y, Wang J (2011) Eur J Org Chem 1015–1026Google Scholar
  73. 73.
    Greenman KL, Carter DS, Van Vranken DL (2001) Tetrahedron 57:5219–5225Google Scholar
  74. 74.
    Franssen NMG, Walters AJC, Reek JNH, de Bruin B (2011) Catal Sci Technol 1:153–165Google Scholar
  75. 75.
    Barluenga J, Valdés C (2011) Angew Chem Int Ed 50:7486–7500Google Scholar
  76. 76.
    Shao Z, Zhang H (2011) Chem Soc Rev 41:560–572Google Scholar
  77. 77.
    Greenman KL, Van Vranken DL (2005) Tetrahedron 61:6438–6441Google Scholar
  78. 78.
    Devine SK, Van Vranken DL (2007) Org Lett 9:2047–2049Google Scholar
  79. 79.
    Kudirka R, Devine SKJ, Adams CS, Van Vranken DL (2009) Angew Chem Int Ed 48:3677–3680Google Scholar
  80. 80.
    Devine SKJ, Van Vranken DL (2008) Org Lett 10:1909–1911Google Scholar
  81. 81.
    Kudirka R, Van Vranken DL (2008) J Org Chem 73:3585–3588Google Scholar
  82. 82.
    Yu W-Y, Tsoi Y, Zhou Z, Chan ASC (2009) Org Lett 11:469–472Google Scholar
  83. 83.
    Tsoi Y-T, Zhou Z, Chan ASC, Yu W-Y (2010) Org Lett 12:4506–4509Google Scholar
  84. 84.
    Peng C, Wang Y, Wang J (2008) J Am Chem Soc 130:1566–1567Google Scholar
  85. 85.
    Chen S, Wang J (2008) Chem Commun 44:4198–4200Google Scholar
  86. 86.
    Peng C, Yan G, Wang Y, Jiang Y, Zhang Y, Wang J (2010) Synthesis 24:4154–4168Google Scholar
  87. 87.
    Barluenga J, Moriel P, Valdés C, Aznar F (2007) Angew Chem Int Ed 46:5587–5590Google Scholar
  88. 88.
    Messaoudi S, Tréguier B, Hamze A, Morvan E, Brion J-D, Alami M (2009) J Med Chem 52:4538–4542Google Scholar
  89. 89.
    Barluenga J, Tomás-Gamasa M, Moriel P (2008) Chem Eur J 14:4792–4795Google Scholar
  90. 90.
    Brachet E, Hamze A, Peyrat J-F, Brion J-D, Alami M (2010) Org Lett 12:4042–4045Google Scholar
  91. 91.
    Barluenga J, Tomás-Gamasa M, Aznar F, Valdés C (2010) Chem Eur J 16:12801–12803Google Scholar
  92. 92.
    Barluenga J, Escribano M, Moriel P, Aznar F, Valdés C (2009) Chem Eur J 15:13291–13294Google Scholar
  93. 93.
    Rasolofonjatovo E, Tréguier B, Provot O, Hamze A, Morvan E, Brion J-D, Alami M (2011) Tetrahedron Lett 52:1036–1040Google Scholar
  94. 94.
    Barluenga J, Florentino L, Aznar F, Valdés C (2011) Org Lett 13:510–513Google Scholar
  95. 95.
    Davies HML, Huby NJS, Cantrell WR Jr, Olive JL (1993) J Am Chem Soc 115:9468–9479Google Scholar
  96. 96.
    Corradi A, Leonelli C, Rizzuti A, Rosa R, Veronesi P, Grandi R, Baldassari S, Villa C (2007) Molecules 12:1482–1495Google Scholar
  97. 97.
    Fustero S, Simón-Fuentes A, Sanz-Cervera JF (2009) Org Prep Proced Int 41:253–290Google Scholar
  98. 98.
    Barluenga J, Tomás-Gamasa M, Aznar F (2010) Adv Synth Catal 352:3235–3240Google Scholar
  99. 99.
    Barluenga J, Escribano M, Aznar F, Valdés C (2010) Angew Chem Int Ed 49:6856–6859Google Scholar
  100. 100.
    Hartwig JF (2004) Palladium-catalyzed amination of aryl halides and sulfonates. In: Astruc D (ed) Modern arene chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRGGoogle Scholar
  101. 101.
    Liao X, Weng Z, Hartwig JF (2008) J Am Chem Soc 130:195–200Google Scholar
  102. 102.
    Tréguier B, Hamze A, Provot O, Brion J-D, Alami M (2009) Tetrahedron Lett 50:6549–6552Google Scholar
  103. 103.
    Zhao X, Jing J, Lu K, Zhang Y, Wang J (2010) Chem Commun 46:1724–1726Google Scholar
  104. 104.
    Zhou L, Ye F, Ma J, Wang J (2011) Angew Chem Int Ed 50:3510–3514Google Scholar
  105. 105.
    Chen Z-S, Duan X-H, Wu L-Y, Ali S, Ji K-G, Zhou P-X, Liu X-Y, Liang Y-M (2011) Chem Eur J 17:6918–6921Google Scholar
  106. 106.
    Xiao Q, Ma J, Yang Y, Zhang Y, Wang J (2009) Org Lett 11:4732–4735Google Scholar
  107. 107.
    Zhang Z, Liu Y, Gong M, Zhao X, Zhang Y, Wang J (2010) Angew Chem Int Ed 49:1139–1142Google Scholar
  108. 108.
    Zhou L, Ye F, Zhang Y, Wang J (2010) J Am Chem Soc 132:13590–13591Google Scholar
  109. 109.
    Zhou L, Ye F, Ma J, Zhang Y, Wang J (2010) Angew Chem Int Ed 50:3510–3514Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of ChemistryPeking UniversityBeijingChina
  2. 2.Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of ChemistryPeking UniversityBeijingChina

Personalised recommendations