MALDI-ToF Mass Spectrometry for Studying Noncovalent Complexes of Biomolecules

  • Stefanie Mädler
  • Elisabetta Boeri Erba
  • Renato Zenobi
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 331)

Abstract

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been demonstrated to be a valuable tool to investigate noncovalent interactions of biomolecules. The direct detection of noncovalent assemblies is often more troublesome than with electrospray ionization. Using dedicated sample preparation techniques and carefully optimized instrumental parameters, a number of biomolecule assemblies were successfully analyzed. For complexes dissociating under MALDI conditions, covalent stabilization with chemical cross-linking is a suitable alternative. Indirect methods allow the detection of noncovalent assemblies by monitoring the fading of binding partners or altered H/D exchange patterns.

Keywords

Chemical crosslinking First shot phenomenon Intensity fading MALDI matrix SUPREX 

Abbreviations

ACN

Acetonitrile

ADP

Adenosine-5′-diphosphate

AMNP

2-Amino-4-methyl-5-nitropyridine

AMP

Adenosine-5′-monophosphate

ANA

2-Aminonicotinic acid

AP

Atmospheric pressure

ATP

Adenosine-5′-triphosphate

ATT

6-Aza-2-thiothymine

CHCA

α-Cyano-4-hydroxycinnamic acid

DHAP

Dihydroxyacetophenone

DHB

Dihydroxybenzoic acid

DNA

Deoxyribonucleic acid

ESI

Electrospray ionization

FA

Ferulic acid

hERα LBD

Human estrogen receptor α ligand binding domain

HIV

Human immunodeficiency virus

HPA

3-Hydroxypicolinic acid

IR

Infrared

iTRAQ

Isobaric tag for relative and absolute quantitation

Ka

Association constant

Kd

Dissociation constant

LILBID

Laser induced liquid beam or bead ionization/desorption

MALDI

Matrix-assisted laser desorption/ionization

MCP

Microchannel plate detector

MS

Mass spectrometry

NHS

N-Hydroxysuccinimide

PNA

p-Nitroaniline

RNA

Ribonucleic acid

SA

Sinapinic acid

TFA

Trifluoroacetic acid

THAP

Trihydroxyacetophenone

THF

Tetrahydrofuran

ToF

Time-of-flight

TrpR

Tryptophan repressor

UV

Ultraviolet

Notes

Acknowledgments

We would like to thank Richard Caprioli and Dobrin Nedelkov for providing original versions of figures. Financial support for this work from the Swiss National Science Foundation (grant no. 200020_124663) is gratefully acknowledged.

References

  1. 1.
    Coux O, Tanaka K, Goldberg AL (1996) Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 65:801–847CrossRefGoogle Scholar
  2. 2.
    Davies DR, Padlan EA, Sheriff S (1990) Antibody-antigen complexes. Annu Rev Biochem 59:439–473CrossRefGoogle Scholar
  3. 3.
    Scheeff ED, Bourne PE (2005) Structural evolution of the protein kinase-like superfamily. PLoS Comput Biol 1:e49CrossRefGoogle Scholar
  4. 4.
    Terwilliger NB (1998) Functional adaptations of oxygen-transport proteins. J Exp Biol 201:1085–1098Google Scholar
  5. 5.
    McGhee JD, Felsenfeld G (1980) Nucleosome structure. Annu Rev Biochem 49:1115–1156CrossRefGoogle Scholar
  6. 6.
    Thuong NT, Helene C (1993) Sequence-specific recognition and modification of double-helical DNA by oligonucleotides. Angew Chem Int Ed 32:666–690CrossRefGoogle Scholar
  7. 7.
    Phizicky EM, Fields S (1995) Protein-protein interactions - methods for detection and analysis. Microbiol Rev 59:94–123Google Scholar
  8. 8.
    Wyttenbach T, Bowers MT (2007) Annu Rev Phys Chem 58:511–533CrossRefGoogle Scholar
  9. 9.
    Bolbach G (2005) Matrix-assisted laser desorption/ionization analysis of non-covalent complexes: fundamentals and applications. Curr Pharm Des 11:2535–2557CrossRefGoogle Scholar
  10. 10.
    Bich C, Zenobi R (2009) Mass spectrometry of large complexes. Curr Opin Struct Biol 19:632–639CrossRefGoogle Scholar
  11. 11.
    Heck AJ (2008) Native mass spectrometry: a bridge between interactomics and structural biology. Nat Methods 5:927–933CrossRefGoogle Scholar
  12. 12.
    Schalley CA (2001) Molecular recognition and supramolecular chemistry in the gas phase. Mass Spectrom Rev 20:253–309CrossRefGoogle Scholar
  13. 13.
    Hardouin J, Hubert-Roux M, Delmas AF et al (2006) Identification of isoenzymes using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 20:725–732CrossRefGoogle Scholar
  14. 14.
    Schermann SM, Simmons DA, Konermann L (2005) Mass spectrometry-based approaches to protein-ligand interactions. Expert Rev Proteomics 2:475–485CrossRefGoogle Scholar
  15. 15.
    Rosinke B, Strupat K, Hillenkamp F et al (1995) Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of membrane-proteins and non-covalent complexes. J Mass Spectrom 30:1462–1468CrossRefGoogle Scholar
  16. 16.
    Farmer TB, Caprioli RM (1991) Assessing the multimeric states of proteins: studies using laser desorption mass spectrometry. Biol Mass Spectrom 20:796–800CrossRefGoogle Scholar
  17. 17.
    Wenzel RJ, Matter U, Schultheis L et al (2005) Analysis of megadalton ions using cryodetection MALDI time-of-flight mass spectrometry. Anal Chem 77:4329–4337CrossRefGoogle Scholar
  18. 18.
    Twerenbold D, Gerber D, Gritti D et al (2001) Single molecule detector for mass spectrometry with mass independent detection efficiency. Proteomics 1:66–69CrossRefGoogle Scholar
  19. 19.
    Frank M, Labov SE, Westmacott G et al (1999) Energy-sensitive cryogenic detectors for high-mass biomolecule mass spectrometry. Mass Spectrom Rev 18:155–186CrossRefGoogle Scholar
  20. 20.
    Hillenkamp F, Nazabal A, Roehling U, Wenzel R (2008) Method for analyzing ions of high mass in time-of-flight mass spectrometer, involves applying potential difference between front and back sides of electron multiplier to multiply number of electrons. WO2009086642-A1 WOCH000007Google Scholar
  21. 21.
    Spengler B, Kirsch D, Kaufmann R et al (1990) The detection of large molecules in matrix-assisted UV-laser desorption. Rapid Commun Mass Spectrom 4:301–305CrossRefGoogle Scholar
  22. 22.
    Chan TWD, Colburn AW, Derrick PJ (1992) Matrix-assisted laser desorption/ionization using a liquid matrix: formation of high-mass cluster ions from proteins. Oms 27:53–56Google Scholar
  23. 23.
    Juhasz P, Biemann K (1994) Mass spectrometric molecular-weight determination of highly acidic compounds of biological significance via their complexes with basic polypeptides. Proc Natl Acad Sci USA 91:4333–4337CrossRefGoogle Scholar
  24. 24.
    Tang X, Callahan JH, Zhou P et al (1995) Noncovalent protein-oligonucleotide interactions monitored by matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 67:4542–4548CrossRefGoogle Scholar
  25. 25.
    Song F (2007) A study of noncovalent protein complexes by matrix-assisted laser desorption/ionization. J Am Soc Mass Spectrom 18:1286–1290CrossRefGoogle Scholar
  26. 26.
    Benesch JLP, Ruotolo BT, Simmons DA et al (2007) Protein complexes in the gas phase: technology for structural genomics and proteomics. Chem Rev 107:3544–3567CrossRefGoogle Scholar
  27. 27.
    Ruotolo BT, Giles K, Campuzano I et al (2005) Evidence for macromolecular protein rings in the absence of bulk water. Science 310:1658–1661CrossRefGoogle Scholar
  28. 28.
    Karas M, Bahr U, Ingendoh A et al (1990) Principles and applications of matrix-assisted UV-laser desorption/ionization mass spectrometry. Anal Chim Acta 241:175–185CrossRefGoogle Scholar
  29. 29.
    Karas M, Bahr U (1990) Laser desorption ionization mass spectrometry of large biomolecules. Trends Anal Chem 9:321–325CrossRefGoogle Scholar
  30. 30.
    Hillenkamp F, Karas M, Beavis RC et al (1991) Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal Chem 63:A1193–A1202Google Scholar
  31. 31.
    Zehl M, Allmaier G (2005) Instrumental parameters in the MALDI-TOF mass spectrometric analysis of quaternary protein structures. Anal Chem 77:103–110CrossRefGoogle Scholar
  32. 32.
    Moniatte M, van der Goot FG, Buckley JT et al (1996) Characterisation of the heptameric pore-forming complex of the Aeromonas toxin aerolysin using MALDI-TOF mass spectrometry. FEBS Lett 384:269–272CrossRefGoogle Scholar
  33. 33.
    Kirpekar F, Berkenkamp S, Hillenkamp F (1999) Detection of double-stranded DNA by IR- and UV-MALDI mass spectrometry. Anal Chem 71:2334–2339CrossRefGoogle Scholar
  34. 34.
    Zehl M, Allmaier G (2004) Ultraviolet matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of intact hemoglobin complex from whole human blood. Rapid Commun Mass Spectrom 18:1932–1938CrossRefGoogle Scholar
  35. 35.
    Von Seggern CE, Cotter RJ (2003) Fragmentation studies of noncovalent sugar-sugar complexes by infrared atmospheric pressure MALDI. J Am Soc Mass Spectrom 14:1158–1165CrossRefGoogle Scholar
  36. 36.
    Von Seggern CE, Cotter RJ (2004) Study of peptide-sugar non-covalent complexes by infrared atmospheric pressure matrix-assisted laser desorption/ionization. J Mass Spectrom 39:736–742CrossRefGoogle Scholar
  37. 37.
    Moyer SC, Marzilli LA, Woods AS et al (2003) Atmospheric pressure matrix-assisted laser desorption/ionization (AP MALDI) on a quadrupole ion trap mass spectrometer. Int J Mass Spectrom 226:133–150CrossRefGoogle Scholar
  38. 38.
    Cohen LRH, Strupat K, Hillenkamp F (1997) Analysis of quaternary protein ensembles by matrix assisted laser desorption/ionization mass spectrometry. J Am Soc Mass Spectrom 8:1046–1052CrossRefGoogle Scholar
  39. 39.
    Horneffer V, Strupat K, Hillenkamp F (2006) Localization of noncovalent complexes in MALDI-preparations by CLSM. J Am Soc Mass Spectrom 17:1599–1604CrossRefGoogle Scholar
  40. 40.
    Wortmann A, Pimenova T, Alves S et al (2007) Investigation of the first shot phenomenon in MALDI mass spectrometry of protein complexes. Analyst 132:199–207CrossRefGoogle Scholar
  41. 41.
    Gruic-Sovulj I, Lüdemann H-C, Hillenkamp F et al (1997) Detection of noncovalent tRNA-aminoacyl-tRNA synthetase complexes by matrix-assisted laser desorption/ionization mass spectrometry. J Biol Chem 272:32084–32091CrossRefGoogle Scholar
  42. 42.
    Moniatte M, Lesieur C, Vécsey-Semjén B et al (1997) Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry in the subunit stoichiometry study of high-mass non-covalent complexes. Int J Mass Spectrom Ion Process 169(170):179–199CrossRefGoogle Scholar
  43. 43.
    Vogl T, Roth J, Sorg C et al (1999) Calcium-induced noncovalently linked tetramers of MRP8 and MRP14 detected by ultraviolet matrix-assisted laser desorption/ionization mass spectrometry. J Am Soc Mass Spectrom 10:1124–1130CrossRefGoogle Scholar
  44. 44.
    Strupat K, Sagi D, Bönisch H et al (2000) Oligomerization and substrate binding studies of the adenylate kinase from Sulfolobus acidocaldarius by matrix-assisted laser desorption/ionization mass spectrometry. Analyst 125:563–567CrossRefGoogle Scholar
  45. 45.
    Jespersen S, Niessen WMA, Tjaden UR et al (1998) Basic matrices in the analysis of non-covalent complexes by matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom 33:1088–1093CrossRefGoogle Scholar
  46. 46.
    Brunelle A, Chaurand P, Della-Negra S et al (1993) Surface secondary electron and secondary ion emission induced by large molecular ion impacts. Int J Mass Spectrom Ion Process 126:65–73CrossRefGoogle Scholar
  47. 47.
    Coeck S, Beck M, Delaure B et al (2006) Microchannel plate response to high-intensity ion bunches. Nucl Instrum Meth A 557:516–522CrossRefGoogle Scholar
  48. 48.
    Clark CG Jr, Wenzel RJ, Andreitchenko EV et al (2007) Controlled MegaDalton assembly with locally stiff but globally flexible polyphenylene dendrimers. J Am Chem Soc 129:3292–3301CrossRefGoogle Scholar
  49. 49.
    Nazabal A, Wenzel R, Zenobi R (2006) Immunoassays with direct mass spectrometric detection. Anal Chem 78:3562–3570CrossRefGoogle Scholar
  50. 50.
    Seyfried BK, Siekmann J, Belgacem O et al (2010) MALDI linear TOF mass spectrometry of PEGylated (glyco)proteins. J Mass Spectrom 45:612–617Google Scholar
  51. 51.
    van Remoortere A, van Zeijl RJM, van den Oever N et al (2010) MALDI imaging and profiling MS of higher mass proteins from tissue. J Am Soc Mass Spectrom 21:1922–1929Google Scholar
  52. 52.
    Kleinekofort W, Avdiev J, Brutschy B (1996) A new method of laser desorption mass spectrometry for the study of biological macromolecules. Int J Mass Spectrom Ion Process 152:135–142CrossRefGoogle Scholar
  53. 53.
    Wattenberg A, Sobott F, Brutschy B (2000) Detection of intact hemoglobin from aqueous solution with laser desorption mass spectrometry. Rapid Commun Mass Spectrom 14:859–861CrossRefGoogle Scholar
  54. 54.
    Wattenberg A, Sobott F, Barth HD et al (2000) Studying noncovalent protein complexes in aqueous solution with laser desorption mass spectrometry. Int J Mass Spectrom 203:49–57CrossRefGoogle Scholar
  55. 55.
    Morgner N, Barth HD, Brutschy B (2006) A new way to detect noncovalently bonded complexes of biomolecules from liquid micro-droplets by laser mass spectrometry. Aust J Chem 59:109–114CrossRefGoogle Scholar
  56. 56.
    Hoffmann J, Schmidt TL, Heckel A et al (2009) Probing the limits of liquid droplet laser desorption mass spectrometry in the analysis of oligonucleotides and nucleic acids. Rapid Commun Mass Spectrom 23:2176–2180CrossRefGoogle Scholar
  57. 57.
    Morgner N, Barth HD, Brutschy B et al (2008) Binding sites of the viral RNA element TAR and of TAR mutants for various peptide ligands, probed with LILBID: a new laser mass spectrometry. J Am Soc Mass Spectrom 19:1600–1611CrossRefGoogle Scholar
  58. 58.
    Morgner N, Kleinschroth T, Barth HD et al (2007) A novel approach to analyze membrane proteins by laser mass spectrometry: from protein subunits to the integral complex. J Am Soc Mass Spectrom 18:1429–1438CrossRefGoogle Scholar
  59. 59.
    Morgner N, Zickermann V, Kerscher S et al (2008) Subunit mass fingerprinting of mitochondrial complex I. Biochim Biophys Acta Bioenerg 1777:1384–1391CrossRefGoogle Scholar
  60. 60.
    Morgner N, Hoffmann J, Barth HD et al (2008) LILBID-mass spectrometry applied to the mass analysis of RNA polymerase II and an F1Fo-ATP synthase. Int J Mass Spectrom 277:309–313CrossRefGoogle Scholar
  61. 61.
    Hoffmann J, Sokolova L, Preiss L et al (2010) ATP synthases: cellular nanomotors characterized by LILBID mass spectrometry. Phys Chem Chem Phys 12:13375–13382CrossRefGoogle Scholar
  62. 62.
    Woods AS, Buchsbaum JC, Worrall TA et al (1995) Matrix-assisted laser desorption/ionization of noncovalently bound compounds. Anal Chem 67:4462–4465CrossRefGoogle Scholar
  63. 63.
    Reichenbecher W, Rüdiger A, Kroneck PMH et al (1996) One molecule of molybdopterin guanine dinucleotide is associated with each subunit of the heterodimeric Mo-Fe-S protein transhydroxylase of Pelobacter acidigallici as determined by SDS/PAGE and mass spectrometry. Eur J Biochem 237:406–413CrossRefGoogle Scholar
  64. 64.
    Salih B, Masselon C, Zenobi R (1998) Matrix-assisted laser desorption/ionization mass spectrometry of noncovalent protein-transition metal ion complexes. J Mass Spectrom 33:994–1002CrossRefGoogle Scholar
  65. 65.
    Lehmann E, Zenobi R (1998) Detection of specific noncovalent zinc finger peptide-oligodeoxynucleotide complexes by matrix-assisted laser desorption/ionization mass spectrometry. Angew Chem Int Ed 37:3430–3432CrossRefGoogle Scholar
  66. 66.
    Lehmann E, Zenobi R, Vetter S (1999) Matrix-assisted laser desorption/ionization mass spectra reflect solution-phase zinc finger peptide complexation. J Am Soc Mass Spectrom 10:27–34CrossRefGoogle Scholar
  67. 67.
    Woods AS, Koomen JM, Ruotolo BT et al (2002) A study of peptide-peptide interactions using MALDI ion mobility o-TOF and ESI mass spectrometry. J Am Soc Mass Spectrom 13:166–169CrossRefGoogle Scholar
  68. 68.
    Terrier P, Tortajada J, Zin G et al (2007) Noncovalent complexes between DNA and basic polypeptides or polyamines by MALDI-TOF. J Am Soc Mass Spectrom 18:1977–1989CrossRefGoogle Scholar
  69. 69.
    Glocker MO, Bauer SHJ, Kast J et al (1996) Characterization of specific noncovalent protein complexes by UV matrix-assisted laser desorption ionization mass spectrometry. J Mass Spectrom 31:1221–1227CrossRefGoogle Scholar
  70. 70.
    Lecchi P, Pannell LK (1995) The detection of intact double-stranded DNA by MALDI. J Am Soc Mass Spectrom 6:972–975CrossRefGoogle Scholar
  71. 71.
    Lin S, Cotter RJ, Woods AS (1998) Detection of non-covalent interaction of single and double stranded DNA with peptides by MALDI-TOF. Protein Struct Funct Genet Suppl 2:12–21CrossRefGoogle Scholar
  72. 72.
    Ohara K, Smietana M, Vasseur JJ (2006) Characterization of specific noncovalent complexes between guanidinium derivatives and single-stranded DNA by MALDI. J Am Soc Mass Spectrom 17:283–291CrossRefGoogle Scholar
  73. 73.
    Lin S, Long S, Ramirez SM et al (2000) Characterization of the "helix clamp" motif of HIV-1 reverse transcriptase using MALDI-TOF MS and surface plasmon resonance. Anal Chem 72:2635–2640CrossRefGoogle Scholar
  74. 74.
    Bahr U, Aygün H, Karas M (2008) Detection and relative quantification of siRNA double strands by MALDI mass spectrometry. Anal Chem 80:6280–6285CrossRefGoogle Scholar
  75. 75.
    Sudha R, Zenobi R (2002) The detection and stability of DNA duplexes probed by MALDI mass spectrometry. Helv Chim Acta 85:3136–3143CrossRefGoogle Scholar
  76. 76.
    Distler AM, Allison J (2002) Additives for the stabilization of double-stranded DNA in UV-MALDI MS. J Am Soc Mass Spectrom 13:1129–1137CrossRefGoogle Scholar
  77. 77.
    Luo SZ, Li YM, Qiang W et al (2004) Detection of specific noncovalent interaction of peptide with DNA by MALDI-TOF. J Am Soc Mass Spectrom 15:28–31CrossRefGoogle Scholar
  78. 78.
    Woods AS, Huestis MA (2001) A study of peptide-peptide interaction by matrix-assisted laser desorption/ionization. J Am Soc Mass Spectrom 12:88–96CrossRefGoogle Scholar
  79. 79.
    Zehl M, Allmaier G (2003) Investigation of sample preparation and instrumental parameters in the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of noncovalent peptide/peptide complexes. Rapid Commun Mass Spectrom 17:1931–1940CrossRefGoogle Scholar
  80. 80.
    Ciruela F, Burgueno J, Casado V et al (2004) Combining mass spectrometry and pull-down techniques for the study of receptor heteromerization. Direct epitope-epitope electrostatic interactions between adenosine A2A and dopamine D2 receptors. Anal Chem 76:5354–5363CrossRefGoogle Scholar
  81. 81.
    Woods AS (2004) The mighty arginine, the stable quaternary amines, the powerful aromatics, and the aggressive phosphate: their role in the noncovalent minuet. J Proteome Res 3:478–484CrossRefGoogle Scholar
  82. 82.
    Woods A, Zangen A (2001) A direct chemical interaction between dynorphin and excitatory amino acids. Neurochem Res 26:395–400CrossRefGoogle Scholar
  83. 83.
    Masselon C, Salih B, Zenobi R (1999) Matrix-assisted laser desorption/ionization Fourier transform mass spectrometry of luteinizing hormone releasing hormone-metal ion complexes. J Am Soc Mass Spectrom 10:19–26CrossRefGoogle Scholar
  84. 84.
    Friess SD, Zenobi R (2001) Protein structure information from mass spectrometry? Selective titration of arginine residues by sulfonates. J Am Soc Mass Spectrom 12:810–818CrossRefGoogle Scholar
  85. 85.
    Friess SD, Daniel JM, Hartmann R et al (2002) Mass spectrometric noncovalent probing of amino acids in peptides and proteins. Int J Mass Spectrom 219:269–281CrossRefGoogle Scholar
  86. 86.
    Friess SD, Daniel JM, Zenobi R (2004) Probing the surface accessibility of proteins with noncovalent receptors and MALDI mass spectrometry. Phys Chem Chem Phys 6:2664–2675CrossRefGoogle Scholar
  87. 87.
    Salih B, Zenobi R (1998) MALDI mass spectrometry of dye-peptide and dye-protein complexes. Anal Chem 70:1536–1543CrossRefGoogle Scholar
  88. 88.
    Greiner G, Seyfarth L, Poppitz W et al (2000) Complexation of metal ions by pseudotripeptides with different functionalized N-alkyl residues. Lett Pept Sci 7:133–141Google Scholar
  89. 89.
    Little DP, Jacob A, Becker T et al (1997) Direct detection of synthetic and biologically generated double-stranded DNA by MALDI-TOF MS. Int J Mass Spectrom Ion Process 169–170:323–330CrossRefGoogle Scholar
  90. 90.
    Tissot B, Gonnet F, Iborra A et al (2005) Mass spectrometry analysis of the oligomeric C1q protein reveals the B chain as the target of trypsin cleavage and interaction with fucoidan. Biochemistry 44:2602–2609CrossRefGoogle Scholar
  91. 91.
    Schlosser G, Pocsfalvi G, Malorni A et al (2003) Detection of immune complexes by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 17:2741–2747CrossRefGoogle Scholar
  92. 92.
    Kiselar JG, Downard KM (2000) Preservation and detection of specific antibody-peptide complexes by matrix-assisted laser desorption ionization mass spectrometry. J Am Soc Mass Spectrom 11:746–750CrossRefGoogle Scholar
  93. 93.
    Cohen SL, Chait BT (1996) Influence of matrix solution conditions on the MALDI-MS analysis of peptides and proteins. Anal Chem 68:31–37CrossRefGoogle Scholar
  94. 94.
    Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10000 Daltons. Anal Chem 60:2299–2301CrossRefGoogle Scholar
  95. 95.
    Kussmann M, Nordhoff E, Rahbek-Nielsen H et al (1997) Matrix-assisted laser desorption/ionization mass spectrometry sample preparation techniques designed for various peptide and protein analytes. J Mass Spectrom 32:593–601CrossRefGoogle Scholar
  96. 96.
    Davies GE, Stark GR (1970) Use of dimethyl suberimidate, a cross-linking reagent, in studying subunit structure of oligomeric proteins. Proc Natl Acad Sci USA 66:651–656CrossRefGoogle Scholar
  97. 97.
    Evans JT, Rohrmann GF (1997) The baculovirus single-stranded DNA binding protein, LEF-3, forms a homotrimer in solution. J Virol 71:3574–3579Google Scholar
  98. 98.
    Helin J, Caldentey J, Kalkkinen N et al (1999) Analysis of the multimeric state of proteins by matrix assisted laser desorption/ionization mass spectrometry after cross-linking with glutaraldehyde. Rapid Commun Mass Spectrom 13:185–190CrossRefGoogle Scholar
  99. 99.
    Wong SS (1991) Chemistry of protein conjugation and cross-linking. CRC, Boca RatonGoogle Scholar
  100. 100.
    Hermanson GT (2008) Bioconjugate techniques. Academic, San DiegoGoogle Scholar
  101. 101.
    Pierce TS (2009) Crosslinking technical handbook. Thermo Fisher Scientific, Rockford, IL, USAGoogle Scholar
  102. 102.
    Kalkhof S, Sinz A (2008) Chances and pitfalls of chemical cross-linking with amine-reactive N-hydroxysuccinimide esters. Anal Bioanal Chem 392:305–312CrossRefGoogle Scholar
  103. 103.
    Mädler S, Bich C, Touboul D et al (2009) Chemical cross-linking with NHS esters: a systematic study on amino acid reactivities. J Mass Spectrom 44:694–706CrossRefGoogle Scholar
  104. 104.
    Borchers C, Tomer KB (1999) Characterization of the noncovalent complex of human immunodeficiency virus glycoprotein 120 with its cellular receptor CD4 by matrix-assisted laser desorption/ionization mass spectrometry. Biochemistry 38:11734–11740CrossRefGoogle Scholar
  105. 105.
    Bich C, Scott M, Panagiotidis A et al (2008) Characterization of antibody-antigen interactions: comparison between surface plasmon resonance measurements and high-mass matrix-assisted laser desorption/ionization mass spectrometry. Anal Biochem 375:35–45CrossRefGoogle Scholar
  106. 106.
    Bovet C, Ruff M, Eiler S et al (2008) Monitoring ligand modulation of protein-protein interactions by mass spectrometry: estrogen receptor α-SRC1. Anal Chem 80:7833–7839CrossRefGoogle Scholar
  107. 107.
    Yanes O, Nazabal A, Wenzel R et al (2006) Detection of noncovalent complexes in biological samples by intensity fading and high-mass detection MALDI-TOF mass spectrometry. J Proteome Res 5:2711–2719CrossRefGoogle Scholar
  108. 108.
    Pimenova T, Pereira CP, Schaer DJ et al (2009) Characterization of high molecular weight multimeric states of human haptoglobin and hemoglobin-based oxygen carriers by high-mass MALDI MS. J Sep Sci 32:1224–1230CrossRefGoogle Scholar
  109. 109.
    Bich C, Baer S, Jecklin MC et al (2010) Probing the hydrophobic effect of noncovalent complexes by mass spectrometry. J Am Soc Mass Spectrom 21:286–289CrossRefGoogle Scholar
  110. 110.
    Layh-Schmitt G, Podtelejnikov A, Mann M (2000) Proteins complexed to the P1 adhesin of Mycoplasma pneumoniae. Microbiology 146:741–747Google Scholar
  111. 111.
    Larsson T, Bergström J, Nilsson C et al (2000) Use of an affinity proteomics approach for the identification of low-abundant bacterial adhesins as applied on the Lewisb-binding adhesin of Helicobacter pylori. FEBS Lett 469:155–158CrossRefGoogle Scholar
  112. 112.
    Woo JS, Kim DH, Allen PD et al (2008) TRPC3-interacting triadic proteins in skeletal muscle. Biochem J 411:399–405CrossRefGoogle Scholar
  113. 113.
    Young MM, Tang N, Hempel JC et al (2000) High throughput protein fold identification by using experimental constraints derived from intramolecular cross-links and mass spectrometry. Proc Natl Acad Sci USA 97:5802–5806CrossRefGoogle Scholar
  114. 114.
    Schilling B, Row RH, Gibson BW et al (2003) MS2Assign, automated assignment and nomenclature of tandem mass spectra of chemically crosslinked peptides. J Am Soc Mass Spectrom 14:834–850CrossRefGoogle Scholar
  115. 115.
    de Koning LJ, Kasper PT, Back JW et al (2006) Computer-assisted mass spectrometric analysis of naturally occurring and artificially introduced cross-links in proteins and protein complexes. FEBS J 273:281–291CrossRefGoogle Scholar
  116. 116.
    Yang T, Horejsh DR, Mahan KJ et al (1996) Mapping cross-linking sites in modified proteins with mass spectrometry: an application to cross-linked hemoglobins. Anal Biochem 242:55–63CrossRefGoogle Scholar
  117. 117.
    Soubannier V, Rusconi F, Vaillier J et al (1999) The second stalk of the yeast ATP synthase complex: identification of subunits showing cross-links with known positions of subunit 4 (subunit b). Biochemistry 38:15017–15024CrossRefGoogle Scholar
  118. 118.
    Fronzes R, Chaignepain S, Bathany K et al (2003) Topological and functional study of subunit h of the F1Fo ATP synthase complex in yeast Saccharomyces cerevisiae. Biochemistry 42:12038–12049CrossRefGoogle Scholar
  119. 119.
    Schäfer I, Rössle M, Biuković G et al (2006) Structural and functional analysis of the coupling subunit F in solution and topological arrangement of the stalk domains of the methanogenic A1A0 ATP synthase. J Bioenerg Biomembr 38:83–92CrossRefGoogle Scholar
  120. 120.
    Rappsilber J, Siniossoglou S, Hurt EC et al (2000) A generic strategy to analyze the spatial organization of multi-protein complexes by cross-linking and mass spectrometry. Anal Chem 72:267–275CrossRefGoogle Scholar
  121. 121.
    Chang Z, Kuchar J, Hausinger RP (2004) Chemical cross-linking and mass spectrometric identification of sites of interaction for UreD, UreF, and Urease. J Biol Chem 279:15305–15313CrossRefGoogle Scholar
  122. 122.
    Kitatsuji C, Kurogochi M, Nishimura S-I et al (2007) Molecular basis of guanine nucleotide dissociation inhibitor activity of human neuroglobin by chemical cross-linking and mass spectrometry. J Mol Biol 368:150–160CrossRefGoogle Scholar
  123. 123.
    Bennett KL, Kussmann M, Bjork P et al (2000) Chemical cross-linking with thiol-cleavable reagents combined with differential mass spectrometric peptide mapping - a novel approach to assess intermolecular protein contacts. Protein Sci 9:1503–1518CrossRefGoogle Scholar
  124. 124.
    Müller DR, Schindler P, Towbin H et al (2001) Isotope-tagged cross-linking reagents. A new tool in mass spectrometric protein interaction analysis. Anal Chem 73:1927–1934CrossRefGoogle Scholar
  125. 125.
    Back JW, Notenboom V, de Koning LJ et al (2002) Identification of cross-linked peptides for protein interaction studies using mass spectrometry and 18O labeling. Anal Chem 74:4417–4422CrossRefGoogle Scholar
  126. 126.
    Petrotchenko EV, Olkhovik VK, Borchers CH (2005) Isotopically coded cleavable cross-linker for studying protein-protein interaction and protein complexes. Mol Cell Proteomics 4:1167–1179CrossRefGoogle Scholar
  127. 127.
    Seebacher J, Mallick P, Zhang N et al (2006) Protein cross-linking analysis using mass spectrometry, isotope-coded cross-linkers, and integrated computational data processing. J Proteome Res 5:2270–2282CrossRefGoogle Scholar
  128. 128.
    Ihling C, Schmidt A, Kalkhof S et al (2006) Isotope-labeled cross-linkers and Fourier transform ion cyclotron resonance mass spectrometry for structural analysis of a protein/peptide complex. J Am Soc Mass Spectrom 17:1100–1113CrossRefGoogle Scholar
  129. 129.
    Sinz A (2007) Isotope-labeled photoaffinity reagents and mass spectrometry to identify protein-ligand interactions. Angew Chem Int Ed 46:660–662CrossRefGoogle Scholar
  130. 130.
    Hurst GB, Lankford TK, Kennel SJ (2004) Mass spectrometric detection of affinity purified crosslinked peptides. J Am Soc Mass Spectrom 15:832–839CrossRefGoogle Scholar
  131. 131.
    Pearson KM, Pannell LK, Fales HM (2002) Intramolecular cross-linking experiments on cytochrome c and ribonuclease A using an isotope multiplet method. Rapid Commun Mass Spectrom 16:149–159CrossRefGoogle Scholar
  132. 132.
    Sinz A, Kalkhof S, Ihling C (2005) Mapping protein interfaces by a trifunctional cross-linker combined with MALDI-TOF and ESI-FTICR mass spectrometry. J Am Soc Mass Spectrom 16:1921–1931CrossRefGoogle Scholar
  133. 133.
    Ahrends R, Kosinski J, Kirsch D et al (2006) Identifying an interaction site between MutH and the C-terminal domain of MutL by crosslinking, affinity purification, chemical coding and mass spectrometry. Nucleic Acids Res 34:3169–3180CrossRefGoogle Scholar
  134. 134.
    King GJ, Jones A, Kobe B et al (2008) Identification of disulfide-containing chemical cross-links in proteins using MALDI-TOF/TOF-mass spectrometry. Anal Chem 80:5036–5043CrossRefGoogle Scholar
  135. 135.
    Krauth F, Ihling CH, Rüttinger HH et al (2009) Heterobifunctional isotope-labeled amine-reactive photo-cross-linker for structural investigation of proteins by matrix-assisted laser desorption/ionization tandem time-of-flight and electrospray ionization LTQ-Orbitrap mass spectrometry. Rapid Commun Mass Spectrom 23:2811–2818CrossRefGoogle Scholar
  136. 136.
    Petrotchenko EV, Xiao KH, Cable J et al (2009) BiPS, a photocleavable, isotopically coded, fluorescent cross-linker for structural proteomics. Mol Cell Proteomics 8:273–286Google Scholar
  137. 137.
    Paramelle D, Cantel S, Enjalbal C et al (2009) A new generation of cross-linkers for selective detection by MALDI MS. Proteomics 9:5384–5388CrossRefGoogle Scholar
  138. 138.
    Steen H, Jensen ON (2002) Analysis of protein-nucleic acid interactions by photochemical cross-linking and mass spectrometry. Mass Spectrom Rev 21:163–182CrossRefGoogle Scholar
  139. 139.
    Jensen ON, Barofsky DF, Young MC et al (1993) Direct observation of UV-crosslinked protein-nucleic acid complexes by matrix-assisted laser desorption ionization mass spectrometry. Rapid Commun Mass Spectrom 7:496–501CrossRefGoogle Scholar
  140. 140.
    Bennett SE, Jensen ON, Barofsky DF et al (1994) UV-catalyzed cross-linking of Escherichia coli uracil-DNA glycosylase to DNA. Identification of amino acid residues in the single-stranded DNA binding site. J Biol Chem 269:21870–21879Google Scholar
  141. 141.
    Connor DA, Falick AM, Young MC et al (1998) Probing the binding region of the single-stranded DNA-binding domain of rat DNA polymerase beta using nanosecond-pulse laser-induced cross-linking and mass spectrometry. Photochem Photobiol 68:299–308CrossRefGoogle Scholar
  142. 142.
    Wang Q, Shoeman R, Traub P (2000) Identification of the amino acid residues of the amino terminus of vimentin responsible for DNA binding by enzymatic and chemical sequencing and analysis by MALDI-TOF. Biochemistry 39:6645–6651CrossRefGoogle Scholar
  143. 143.
    Urlaub H, Hartmuth K, Lührmann R (2002) A two-tracked approach to analyze RNA-protein crosslinking sites in native, nonlabeled small nuclear ribonucleoprotein particles. Methods 26:170–181CrossRefGoogle Scholar
  144. 144.
    Kühn-Hölsken E, Lenz C, Sander B et al (2005) Complete MALDI-ToF MS analysis of cross-linked peptide-RNA oligonucleotides derived from nonlabeled UV-irradiated ribonucleoprotein particles. RNA 11:1915–1930CrossRefGoogle Scholar
  145. 145.
    Pingoud V, Geyer H, Geyer R et al (2005) Identification of base-specific contacts in protein-DNA complexes by photocrosslinking and mass spectrometry: a case study using the restriction endonuclease SsoII. Mol Biosyst 1:135–141CrossRefGoogle Scholar
  146. 146.
    Kühn-Hölsken E, Dybkov O, Sander B et al (2007) Improved identification of enriched peptide–RNA cross-links from ribonucleoprotein particles (RNPs) by mass spectrometry. Nucleic Acids Res 35:e95CrossRefGoogle Scholar
  147. 147.
    Kühn-Hölsken E, Lenz C, Dickmanns A et al (2010) Mapping the binding site of snurportin 1 on native U1 snRNP by cross-linking and mass spectrometry. Nucleic Acids Res 38:5581–5593CrossRefGoogle Scholar
  148. 148.
    Geyer H, Geyer R, Pingoud V (2004) A novel strategy for the identification of protein-DNA contacts by photocrosslinking and mass spectrometry. Nucleic Acids Res 32:e132CrossRefGoogle Scholar
  149. 149.
    Naryshkin NA, Farrow MA, Ivanovskaya MG et al (1997) Chemical cross-linking of the human immunodeficiency virus type 1 Tat protein to synthetic models of the RNA recognition sequence TAR containing site-specific trisubstituted pyrophosphate analogues. Biochemistry 36:3496–3505CrossRefGoogle Scholar
  150. 150.
    Farrow MA, Aboul-ela F, Owen D et al (1998) Site-specific cross-linking of amino acids in the basic region of Human Immunodeficiency Virus type 1 Tat peptide to chemically modified TAR RNA duplexes. Biochemistry 37:3096–3108CrossRefGoogle Scholar
  151. 151.
    Qin J, Chait BT (1997) Identification and characterization of posttranslational modifications of proteins by MALDI ion trap mass spectrometry. Anal Chem 69:4002–4009CrossRefGoogle Scholar
  152. 152.
    Jensen ON, Kulkarni S, Aldrich JV et al (1996) Characterization of peptide-oligonucleotide heteroconjugates by mass spectrometry. Nucleic Acids Res 24:3866–3872CrossRefGoogle Scholar
  153. 153.
    Pimenova T, Nazabal A, Roschitzki B et al (2008) Epitope mapping on bovine prion protein using chemical cross-linking and mass spectrometry. J Mass Spectrom 43:185–195CrossRefGoogle Scholar
  154. 154.
    Dihazi GH, Sinz A (2003) Mapping low-resolution three-dimensional protein structures using chemical cross-linking and Fourier transform ion-cyclotron resonance mass spectrometry. Rapid Commun Mass Spectrom 17:2005–2014CrossRefGoogle Scholar
  155. 155.
    Gomes AF, Gozzo FC (2010) Chemical cross-linking with a diazirine photoactivatable cross-linker investigated by MALDI- and ESI-MS/MS. J Mass Spectrom 45:892–899CrossRefGoogle Scholar
  156. 156.
    Onisko B, Fernández EG, Freire ML et al (2005) Probing PrPSc structure using chemical cross-linking and mass spectrometry: evidence of the proximity of Gly90 amino termini in the PrP 27–30 aggregate. Biochemistry 44:10100–10109CrossRefGoogle Scholar
  157. 157.
    Mädler S, Seitz M, Robinson J et al (2010) Does chemical cross-linking with NHS esters reflect the chemical equilibrium of protein-protein noncovalent interactions in solution? J Am Soc Mass Spectrom 21:1775–1783CrossRefGoogle Scholar
  158. 158.
    Kiselar JG, Downard KM (1999) Antigenic surveillance of the influenza virus by mass spectrometry. Biochemistry 38:14185–14191CrossRefGoogle Scholar
  159. 159.
    Kiselar JG, Downard KM (1999) Direct identification of protein epitopes by mass spectrometry without immobilization of antibody and isolation of antibody-peptide complexes. Anal Chem 71:1792–1801CrossRefGoogle Scholar
  160. 160.
    Morrissey B, Downard KM (2008) Kinetics of antigen-antibody interactions employing a MALDI mass spectrometry immunoassay. Anal Chem 80:7720–7726CrossRefGoogle Scholar
  161. 161.
    Morrissey B, Downard KM (2006) A proteomics approach to survey the antigenicity of the influenza virus by mass spectrometry. Proteomics 6:2034–2041CrossRefGoogle Scholar
  162. 162.
    Morrissey B, Streamer M, Downard KM (2007) Antigenic characterisation of H3N2 subtypes of the influenza virus by mass spectrometry. J Virol Methods 145:106–114CrossRefGoogle Scholar
  163. 163.
    Ho JWK, Morrissey B, Downard KM (2007) A computer algorithm for the identification of protein interactions from the spectra of masses (PRISM). J Am Soc Mass Spectrom 18:563–566CrossRefGoogle Scholar
  164. 164.
    Villanueva J, Yanes O, Querol E et al (2003) Identification of protein ligands in complex biological samples using intensity-fading MALDI-TOF mass spectrometry. Anal Chem 75:3385–3395CrossRefGoogle Scholar
  165. 165.
    Yanes O, Villanueva J, Querol E et al (2007) Detection of non-covalent protein interactions by 'intensity fading' MALDI-TOF mass spectrometry: applications to proteases and protease inhibitors. Nat Protocol 2:119–130CrossRefGoogle Scholar
  166. 166.
    Yanes O, Villanueva J, Querol E et al (2005) Functional screening of serine protease inhibitors in the medical leech Hirudo medicinalis monitored by intensity fading MALDI-TOF MS. Mol Cell Proteomics 4:1602–1613CrossRefGoogle Scholar
  167. 167.
    Yanes O, Aviles FX, Roepstorff P et al (2007) Exploring the "intensity fading" phenomenon in the study of noncovalent interactions by MALDI-TOF mass spectrometry. J Am Soc Mass Spectrom 18:359–367CrossRefGoogle Scholar
  168. 168.
    Shabab M, Kulkarni MJ, Khan MI (2008) Study of papain-cystatin interaction by intensity fading MALDI-TOF-MS. Protein J 27:7–12CrossRefGoogle Scholar
  169. 169.
    Sanglas L, Aviles FX, Huber R et al (2009) Mammalian metallopeptidase inhibition at the defense barrier of Ascaris parasite. Proc Natl Acad Sci USA 106:1743–1747CrossRefGoogle Scholar
  170. 170.
    Wang Z, Yu X, Cui M et al (2009) Investigation of calmodulin-peptide interactions using matrix-assisted laser desorption/ionization mass spectrometry. J Am Soc Mass Spectrom 20:576–583CrossRefGoogle Scholar
  171. 171.
    Mishra M, Tamhane VA, Khandelwal N et al (2010) Interaction of recombinant CanPIs with Helicoverpa armigera gut proteases reveals their processing patterns, stability and efficiency. Proteomics 10:2845–2857CrossRefGoogle Scholar
  172. 172.
    Gimenez-Oya V, Villacanas O, Fernandez-Busquets X et al (2009) Mimicking direct protein-protein and solvent-mediated interactions in the CDP-methylerythritol kinase homodimer: a pharmacophore-directed virtual screening approach. J Mol Model 15:997–1007CrossRefGoogle Scholar
  173. 173.
    Sugaya M, Saito R, Matsumura Y et al (2008) Facile detection of specific RNA-polypeptide interactions by MALDI-TOF mass spectrometry. J Pept Sci 14:978–983CrossRefGoogle Scholar
  174. 174.
    Papac DI, Hoyes J, Tomer KB (1994) Direct analysis of affinity-bound analytes by MALDI/TOF MS. Anal Chem 66:2609–2613CrossRefGoogle Scholar
  175. 175.
    Papac DI, Hoyes J, Tomer KB (1994) Epitope mapping of the gastrin-releasing peptide/anti-bombesin monoclonal antibody complex by proteolysis followed by matrix-assisted laser desorption ionization mass-spectrometry. Protein Sci 3:1485–1492CrossRefGoogle Scholar
  176. 176.
    Zhao YM, Muir TW, Kent SBH et al (1996) Mapping protein-protein interactions by affinity-directed mass spectrometry. Proc Natl Acad Sci USA 93:4020–4024CrossRefGoogle Scholar
  177. 177.
    Parker CE, Tomer KB (2002) MALDI/MS-based epitope mapping of antigens bound to immobilized antibodies. Mol Biotechnol 20:49–62CrossRefGoogle Scholar
  178. 178.
    Raska CS, Parker CE, Sunnarborg SW et al (2003) Rapid and sensitive identification of epitope-containing peptides by direct matrix-assisted laser desorption/ionization tandem mass spectrometry of peptides affinity-bound to antibody beads. J Am Soc Mass Spectrom 14:1076–1085CrossRefGoogle Scholar
  179. 179.
    Schlosser G, Vékey K, Malorni A et al (2005) Combination of solid-phase affinity capture on magnetic beads and mass spectrometry to study non-covalent interactions: example of minor groove binding drugs. Rapid Commun Mass Spectrom 19:3307–3314CrossRefGoogle Scholar
  180. 180.
    Rüdiger AH, Rüdiger M, Carl UD et al (1999) Affinity mass spectrometry-based approaches for the analysis of protein-protein interaction and complex mixtures of peptide-ligands. Anal Biochem 275:162–170CrossRefGoogle Scholar
  181. 181.
    Legros C, Guette C, Martin-Eauclaire M-F et al (2009) Affinity capture using chimeric membrane proteins bound to magnetic beads for rapid ligand screening by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 23:745–755CrossRefGoogle Scholar
  182. 182.
    Kull S, Pauly D, Störmann B et al (2010) Multiplex detection of microbial and plant toxins by immunoaffinity enrichment and matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 82:2916–2924CrossRefGoogle Scholar
  183. 183.
    Peter J, Unverzagt C, Lenz H et al (1999) Purification of prostate-specific antigen from human serum by indirect immunosorption and elution with a hapten. Anal Biochem 273:98–104CrossRefGoogle Scholar
  184. 184.
    Neubert H, Jacoby ES, Bansal SS et al (2002) Enhanced affinity capture MALDI-TOF MS: orientation of an immunoglobulin G using recombinant protein G. Anal Chem 74:3677–3683CrossRefGoogle Scholar
  185. 185.
    Patrie SM, Mrksich M (2007) Self-assembled monolayers for MALDI-TOF mass spectrometry for immunoassays of human protein antigens. Anal Chem 79:5878–5887CrossRefGoogle Scholar
  186. 186.
    Evans-Nguyen KM, Tao S-C, Zhu H et al (2008) Protein arrays on patterned porous gold substrates interrogated with mass spectrometry: detection of peptides in plasma. Anal Chem 80:1448–1458CrossRefGoogle Scholar
  187. 187.
    Johnson EM, Ellis WR, Powers LS et al (2009) Affinity capture mass spectrometry of biomarker proteins using peptide ligands from biopanning. Anal Chem 81:5999–6005CrossRefGoogle Scholar
  188. 188.
    Nelson RW, Nedelkov D, Tubbs KA (2000) Biosensor chip mass spectrometry: a chip-based proteomics approach. Electrophoresis 21:1155–1163CrossRefGoogle Scholar
  189. 189.
    Nelson RW, Krone JR, Jansson O (1997) Surface plasmon resonance biomolecular interaction analysis mass spectrometry. 1. Chip-based analysis. Anal Chem 69:4363–4368CrossRefGoogle Scholar
  190. 190.
    Krone JR, Nelson RW, Dogruel D et al (1997) BIA/MS: interfacing biomolecular interaction analysis with mass spectrometry. Anal Biochem 244:124–132CrossRefGoogle Scholar
  191. 191.
    Nelson RW, Jarvik JW, Taillon BE et al (1999) BIA/MS of epitope-tagged peptides directly from E. coli lysate: multiplex detection and protein identification at low-femtomole to subfemtomole levels. Anal Chem 71:2858–2865CrossRefGoogle Scholar
  192. 192.
    Bellon S, Buchmann W, Gonnet F et al (2009) Hyphenation of surface plasmon resonance imaging to matrix-assisted laser desorption ionization mass spectrometry by on-chip mass spectrometry and tandem mass spectrometry analysis. Anal Chem 81:7695–7702CrossRefGoogle Scholar
  193. 193.
    Nedelkov D, Nelson RW (2003) Design and use of multi-affinity surfaces in biomolecular interaction analysis-mass spectrometry (BIA/MS): a step toward the design of SPR/MS arrays. J Mol Recognit 16:15–19CrossRefGoogle Scholar
  194. 194.
    Mehlmann M, Garvin AM, Steinwand M et al (2005) Reflectometric interference spectroscopy combined with MALDI−TOF mass spectrometry to determine quantitative and qualitative binding of mixtures of vancomycin derivatives. Anal Bioanal Chem 382:1942–1948CrossRefGoogle Scholar
  195. 195.
    Wang X, Chen G, Liu H et al (2010) Four-dimensional orthogonal electrophoresis system for screening protein complexes and protein-protein interactions combined with mass spectrometry. J Proteome Res 9:5325–5334CrossRefGoogle Scholar
  196. 196.
    Shevchenko A, Schaft D, Roguev A et al (2002) Deciphering protein complexes and protein interaction networks by tandem affinity purification and mass spectrometry. Mol Cell Proteomics 1:204–212CrossRefGoogle Scholar
  197. 197.
    Pflieger D, Junger MA, Müller M et al (2008) Quantitative proteomic analysis of protein complexes. Mol Cell Proteomics 7:326–346Google Scholar
  198. 198.
    Wales TE, Engen JR (2006) Hydrogen exchange mass spectrometry for the analysis of protein dynamics. Mass Spectrom Rev 25:158–170CrossRefGoogle Scholar
  199. 199.
    Mandell JG, Falick AM, Komives EA (1998) Identification of protein-protein interfaces by decreased amide proton solvent accessibility. Proc Natl Acad Sci USA 95:14705–14710CrossRefGoogle Scholar
  200. 200.
    Mandell JG, Baerga-Ortiz A, Akashi S et al (2001) Solvent accessibility of the thrombin-thrombomodulin interface. J Mol Biol 306:575–589CrossRefGoogle Scholar
  201. 201.
    Baerga-Ortiz A, Hughes CA, Mandell JG et al (2002) Epitope mapping of a monoclonal antibody against human thrombin by H/D-exchange mass spectrometry reveals selection of a diverse sequence in a highly conserved protein. Protein Sci 11:1300–1308CrossRefGoogle Scholar
  202. 202.
    Tuma R, Coward LU, Kirk MC et al (2001) Hydrogen-deuterium exchange as a probe of folding and assembly in viral capsids. J Mol Biol 306:389–396CrossRefGoogle Scholar
  203. 203.
    Hosia W, Johansson J, Griffiths WJ (2002) Hydrogen/deuterium exchange and aggregation of a polyvaline and a polyleucine alpha-helix investigated by matrix-assisted laser desorption ionization mass spectrometry. Mol Cell Proteomics 1:592–597CrossRefGoogle Scholar
  204. 204.
    Nazabal A, Dos RS, Bonneu M et al (2003) Conformational transition occurring upon amyloid aggregation of the HET-s prion protein of Podospora anserina analyzed by hydrogen/deuterium exchange and mass spectrometry. Biochemistry 42:8852–8861CrossRefGoogle Scholar
  205. 205.
    Kraus M, Bienert M, Krause E (2003) Hydrogen exchange studies on Alzheimer's amyloid-β peptides by mass spectrometry using matrix-assisted laser desorption/ionization and electrospray ionization. Rapid Commun Mass Spectrom 17:222–228CrossRefGoogle Scholar
  206. 206.
    Nazabal A, Hornemann S, Aguzzi A et al (2009) Hydrogen/deuterium exchange mass spectrometry identifies two highly protected regions in recombinant full-length prion protein amyloid fibrils. J Mass Spectrom 44:965–977CrossRefGoogle Scholar
  207. 207.
    Turner BT Jr, Maurer MC (2002) Evaluating the roles of thrombin and calcium in the activation of coagulation factor XIII using H/D exchange and MALDI-TOF MS. Biochemistry 41:7947–7954CrossRefGoogle Scholar
  208. 208.
    Catalina MI, Fischer MJE, Dekker FJ et al (2005) Binding of a diphosphorylated-ITAM peptide to spleen tyrosine kinase (Syk) induces distal conformational changes: a hydrogen exchange mass spectrometry study. J Am Soc Mass Spectrom 16:1039–1051CrossRefGoogle Scholar
  209. 209.
    Sabo TM, Farrell DH, Maurer MC (2006) Conformational analysis of gamma' peptide (410-427) interactions with thrombin anion binding exosite II. Biochemistry 45:7434–7445CrossRefGoogle Scholar
  210. 210.
    Nazabal A, Laguerre M, Schmitter J-M et al (2003) Hydrogen/deuterium exchange on yeast ATPase supramolecular protein complex analyzed at high sensitivity by MALDI mass spectrometry. J Am Soc Mass Spectrom 14:471–481CrossRefGoogle Scholar
  211. 211.
    Kipping M, Schierhorn A (2003) Improving hydrogen/deuterium exchange mass spectrometry by reduction of the back-exchange effect. J Mass Spectrom 38:271–276CrossRefGoogle Scholar
  212. 212.
    Hotchko M, Anand GS, Komives EA et al (2006) Automated extraction of backbone deuteration levels from amide H/2 H mass spectrometry experiments. Protein Sci 15:583–601CrossRefGoogle Scholar
  213. 213.
    Jørgensen TJD, Bache N, Roepstorff P et al (2005) Collisional activation by MALDI tandem time-of-flight mass spectrometry induces intramolecular migration of amide hydrogens in protonated peptides. Mol Cell Proteomics 4:1910–1919CrossRefGoogle Scholar
  214. 214.
    Bache N, Rand KD, Roepstorff P et al (2008) Gas-phase fragmentation of peptides by MALDI in-source decay with limited amide hydrogen (1H/2H) scrambling. Anal Chem 80:6431–6435CrossRefGoogle Scholar
  215. 215.
    Powell KD, Wales TE, Fitzgerald MC (2002) Thermodynamic stability measurements on multimeric proteins using a new H/D exchange- and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry-based method. Protein Sci 11:841–851CrossRefGoogle Scholar
  216. 216.
    Powell KD, Ghaemmaghami S, Wang MZ et al (2002) A general mass spectrometry-based assay for the quantitation of protein-ligand binding interactions in solution. J Am Chem Soc 124:10256–10257CrossRefGoogle Scholar
  217. 217.
    Ghaemmaghami S, Fitzgerald MC, Oas TG (2000) A quantitative, high-throughput screen for protein stability. Proc Natl Acad Sci USA 97:8296–8301CrossRefGoogle Scholar
  218. 218.
    Ghaemmaghami S, Oas TG (2001) Quantitative protein stability measurement in vivo. Nat Struct Biol 8:879–882CrossRefGoogle Scholar
  219. 219.
    Powell KD, Fitzgerald MC (2003) Accuracy and precision of a new H/D exchange- and mass spectrometry-based technique for measuring the thermodynamic properties of protein-peptide complexes. Biochemistry 42:4962–4970CrossRefGoogle Scholar
  220. 220.
    West GM, Tang L, Fitzgerald MC (2008) Thermodynamic analysis of protein stability and ligand binding using a chemical modification- and mass spectrometry-based strategy. Anal Chem 80:4175–4185CrossRefGoogle Scholar
  221. 221.
    West GM, Thompson JW, Soderblom EJ et al (2010) Mass spectrometry-based thermal shift assay for protein-ligand binding analysis. Anal Chem 82:5573–5581CrossRefGoogle Scholar
  222. 222.
    Hofner G, Merkel D, Wanner KT (2009) MS binding assays-with MALDI toward high throughput. ChemMedChem 4:1523–1528CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stefanie Mädler
    • 1
  • Elisabetta Boeri Erba
    • 1
  • Renato Zenobi
    • 1
  1. 1.Department of Chemistry and Applied BiosciencesETH ZurichZurichSwitzerland

Personalised recommendations