Advertisement

Micro and Nanofabrication of Molecularly Imprinted Polymers

  • Marc Bompart
  • Karsten HauptEmail author
  • Cédric Ayela
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 325)

Abstract

Molecularly imprinted polymers (MIPs) are tailor-made receptors that possess the most important feature of biological antibodies and receptors – specific molecular recognition. They can thus be used in applications where selective binding events are of importance, such as chemical sensors, biosensors and biochips. For the development of microsensors, sensor arrays and microchips based on molecularly imprinted polymers, micro and nanofabrication methods are of great importance since they allow the patterning and structuring of MIPs on transducer surfaces. It has been shown that because of their stability, MIPs can be easily integrated in a number of standard microfabrication processes. Thereby, the possibility of photopolymerizing MIPs is a particular advantage. In addition to specific molecular recognition properties, nanostructured MIPs and MIP nanocomposites allow for additional interesting properties in such sensing materials, for example, amplification of electromagnetic waves by metal nanoparticles, magnetic susceptibility, structural colors in photonic crystals, or others. These materials will therefore find applications in particular for chemical and biochemical detection, monitoring and screening.

Keywords

Biosensor Lithography Microbiochip Microfabrication Molecularly imprinted polymer Nanocomposite Nanofabrication Nanomaterial Synthetic receptor 

References

  1. 1.
    Arshady R, Mosbach K (1981) Makromol Chem 182:687–692CrossRefGoogle Scholar
  2. 2.
    Wulff G, Sarhan A (1972) Angew Chem Int Ed 11:341Google Scholar
  3. 3.
    Haupt K (2003) Anal Chem 75:376A–383ACrossRefGoogle Scholar
  4. 4.
    Zimmerman SC, Lemcoff NG (2004) Chem Commun 5–14Google Scholar
  5. 5.
    Bossi A, Bonini F, Turner APF, Piletsky SA (2007) Biosens. Bioelectron. 22:1131–1137Google Scholar
  6. 6.
    Fischer L, Müller R, Ekberg B, Mosbach K (1991) J Am Chem Soc 113:9358–9360CrossRefGoogle Scholar
  7. 7.
    Schweitz L, Andersson LI, Nilsson S (1997) Anal Chem 69:1179–1183CrossRefGoogle Scholar
  8. 8.
    Vlatakis G, Andersson LI, Müller R, Mosbach K (1993) Nature 361:645–647CrossRefGoogle Scholar
  9. 9.
    Andersson LI (1996) Anal Chem 68:111–117CrossRefGoogle Scholar
  10. 10.
    Haupt K, Mayes AG, Mosbach K (1998) Anal Chem 70:3936–3939CrossRefGoogle Scholar
  11. 11.
    Surugiu I, Danielsson B, Ye L, Mosbach K, Haupt K (2001) Anal Chem 73:487–491CrossRefGoogle Scholar
  12. 12.
    Piletsky SA, Parhometz YP, Lavryk NV, Panasyuk TL, El’skaya AV (1994) Sens Actuators B 18–19:629–631CrossRefGoogle Scholar
  13. 13.
    Kriz D, Ramström O, Svensson A, Mosbach K (1995) Anal Chem 67:2142–2144CrossRefGoogle Scholar
  14. 14.
    Jakusch M, Janotta M, Mizaikoff B, Mosbach K, Haupt K (1999) Anal Chem 71:4786–4791CrossRefGoogle Scholar
  15. 15.
    Dickert FL, Hayden O (2002) Anal Chem 74:1302–1306CrossRefGoogle Scholar
  16. 16.
    Ayela C, Vandevelde F, Lagrange D, Haupt K, Nicu L (2007) Angew Chem Int Ed 46:9271–9274CrossRefGoogle Scholar
  17. 17.
    Andersson LI (2000) Analyst 125:1515–1517CrossRefGoogle Scholar
  18. 18.
    Crescenzi C, Bayoudh S, Cormack PAG, Klein T, Ensing K (2001) Anal Chem 73:2171–2177CrossRefGoogle Scholar
  19. 19.
    Pichon V, Haupt K (2006) J Liq Chromatogr Relat Technol 29:989–1023CrossRefGoogle Scholar
  20. 20.
    Liu JQ, Wulff G (2008) J Am Chem Soc 130:8044–8054CrossRefGoogle Scholar
  21. 21.
    Hedin-Dahlstrom J, Rosengren-Holmberg JP, Legrand S, Wikman S, Nicholls IA (2006) J Org Chem 71:4845–4853CrossRefGoogle Scholar
  22. 22.
    Alexander C, Smith CR, Whitcombe MJ, Vulfson EN (1999) J Am Chem Soc 121:6640–6651CrossRefGoogle Scholar
  23. 23.
    Allender CJ, Brain KR, Heard CM, Pellett MA (1997) Proc Int Symp Controlled Release Bioact Mater 24:585–586Google Scholar
  24. 24.
    Norell MC, Andersson HS, Nicholls IA (1998) J Mol Recogn 11:98–102CrossRefGoogle Scholar
  25. 25.
    Byrne ME, Park K, Peppas NA (2002) Adv Drug Deliv Rev 54:149–161CrossRefGoogle Scholar
  26. 26.
    Byrne ME, Hilt JZ, Peppas NA (2008) J Biomed Mater Res A 84A:137–147CrossRefGoogle Scholar
  27. 27.
    Lueking A, Cahill DJ, Müllner S (2005) Drug Discov Today 10:789–794CrossRefGoogle Scholar
  28. 28.
    Espina V, Mehta AI, Winters ME, Calvert V, Wulfkuhle J, Petricoin EF, Liotta LA (2003) Proteomics 3:2091–2100CrossRefGoogle Scholar
  29. 29.
    Takahashii K, Seio K, Sekime M, Hino O, Esashi M (2002) Sens Actuators B 83:67–76CrossRefGoogle Scholar
  30. 30.
    Bates AK, Rotschild M, Bloomstein TM, Fedynyshyn TH, Kunz RR, Liberman V, Switkes M (2001) IBM J Res Dev 45:605–614CrossRefGoogle Scholar
  31. 31.
    Heise C, Bier FF (2005) Top Curr Chem 261:1–27Google Scholar
  32. 32.
    Schena M, Shalon D, Davis RW, Brown PO (1995) Science 270:467–470CrossRefGoogle Scholar
  33. 33.
    Xia Y, Rogers JA, Paul KE, Whitesides GM (1999) Chem Rev 99:1823–1848Google Scholar
  34. 34.
    Lalo H, Vieu C (2009) Langmuir 7:7752–7758CrossRefGoogle Scholar
  35. 35.
    Ayela C, Nicu L, Soyer C, Cattan E, Bergaud C (2006) J Appl Phys 100:054908–054908–09CrossRefGoogle Scholar
  36. 36.
    Reculusa S, Heim M, Gao F, Mano N, Ravaine S, Kuhn A (2011) Adv Funct Mater 21:691–698CrossRefGoogle Scholar
  37. 37.
    Malitesta C, Losito I, Zambonin PG (1999) Anal Chem 71:1366–1370CrossRefGoogle Scholar
  38. 38.
    Pietrzyk A, Suriyanarayanan S, Kutner W, Chitta R, D’Souza F (2009) Anal Chem 81:2633–2643CrossRefGoogle Scholar
  39. 39.
    Hutchins RS, Bachas LG (1995) Anal Chem 67:1654–1660CrossRefGoogle Scholar
  40. 40.
    Spurlock LD, Jaramillo A, Praserthdam A, Lewis J, Brajtertoth A (1996) Anal Chim Acta 336:37–46CrossRefGoogle Scholar
  41. 41.
    Panasyuk TL, Mirsky VM, Piletsky SA, Wolfbeis OS (1999) Anal Chem 71:4609–4613CrossRefGoogle Scholar
  42. 42.
    Cheng ZL, Wang EK, Yang XR (2001) Biosens Bioelectron 16:179–185CrossRefGoogle Scholar
  43. 43.
    Ulyanova YV, Blackwell AE, Minteer SD (2006) Analyst 131:257–261CrossRefGoogle Scholar
  44. 44.
    Du D, Chen S, Cai J, Tao Y, Tu H, Zhang A (2008) Electrochim Acta 53:6589–6595CrossRefGoogle Scholar
  45. 45.
    Huang HC, Huang SY, Lin CI, Lee YD (2007) Anal Chim Acta 582:137–146CrossRefGoogle Scholar
  46. 46.
    Gomez-Caballero A, Goicolea MA, Barrio RJ (2005) Analyst 130:1012–1018CrossRefGoogle Scholar
  47. 47.
    Cai D, Ren L, Zhao HZ, Xu CJ, Zhang L, Yu Y, Wang HZ, Lan YC, Roberts MF, Chuang JH, Naughton MJ, Ren ZF, Chiles TC (2010) Nat Nanotechnol 5:597–601CrossRefGoogle Scholar
  48. 48.
    Lynch M, Mosher C, Huff J, Nettikadan S, Johnson J, Henderson E (2004) Proteomics 4:1695–1702Google Scholar
  49. 49.
    Leïchlé T, Nicu L (2008) J Appl Phys 104:111101–111101–16Google Scholar
  50. 50.
    Vancura C, Li Y, Lichtenberg J, Kirstein K-U, Hierlmann A, Josse F (2007) Anal Chem 79:1646–1654CrossRefGoogle Scholar
  51. 51.
    Shekhawat G, Tark S-H, Dravid VP (2006) Science 311:1592–1595CrossRefGoogle Scholar
  52. 52.
    Belaubre P, Guirardel M, Garcia G, Leberre V, Dagkessamanskaia A, Trévisiol E, François JM, Pourciel JB, Bergaud C (2003) Appl Phys Lett 82:3122–3124CrossRefGoogle Scholar
  53. 53.
    Vandevelde F, Leïchlé T, Ayela C, Bergaud C, Nicu L, Haupt K (2007) Langmuir 23:6490–6493CrossRefGoogle Scholar
  54. 54.
    Piner RD, Zhu J, Xu F, Hong SH, Mirkin CA (1999) Science 283:661–663CrossRefGoogle Scholar
  55. 55.
    Lewis A, Kheifetz Y, Shambrodt E, Radko A, Khatchatryan E, Sukenik C (1999) Appl Phys Lett 75:2689–2691CrossRefGoogle Scholar
  56. 56.
    Taha H, Marks RS, Gheber LA, Rousso I, Newman J, Sukenik C, Lewis A (2003) Appl Phys Lett 83:1041–1043CrossRefGoogle Scholar
  57. 57.
    Hyun J, Kim J, Craig SL, Chilkoti AJ (2004) J Am Chem Soc 126:4770–4771CrossRefGoogle Scholar
  58. 58.
    Demers LM, Ginger DS, Park SJ, Li Z, Chung SW, Mirkin CA (2002) Science 296:1836–1838CrossRefGoogle Scholar
  59. 59.
    Sokuler M, Gheber LA (2006) Nano Lett 6:848–853CrossRefGoogle Scholar
  60. 60.
    Belmont A-S, Sokuler M, Haupt K, Gheber LA (2007) Appl Phys Lett 90:193101–193101–3CrossRefGoogle Scholar
  61. 61.
    Ionescu RE, Marks RS, Gheber LA (2005) Nano Lett 5:821–827CrossRefGoogle Scholar
  62. 62.
    Abe K, Suzuki K, Citterio D (2008) Anal Chem 80:6928–6934CrossRefGoogle Scholar
  63. 63.
    Blanchard AP, Kaiser RJ, Hood LE (1996) Biosens Bioelectron 11:687–690CrossRefGoogle Scholar
  64. 64.
    Mannerbro R, Ranlöf M, Robinson N, Forchheimer R (2008) Synth Met 158:556–560CrossRefGoogle Scholar
  65. 65.
    Van Oosten CL, Bastiaansen CWM, Broer DJ (2009) Nat Mater 8:677–682CrossRefGoogle Scholar
  66. 66.
    Schmidt RH, Mosbach K, Haupt K (2004) Adv Mater 16:719–722CrossRefGoogle Scholar
  67. 67.
    Schmidt RH, Belmont A-S, Haupt K (2005) Anal Chim Acta 542:118–124CrossRefGoogle Scholar
  68. 68.
    Lieberzeit PA, Rehman A, Najafi B, Dickert FL (2008) Anal Bioanal Chem 391:2897–2903CrossRefGoogle Scholar
  69. 69.
    Sener G, Ozgur E, Yilmaz E, Uzun L, Say RI, Denizli A (2010) Biosens Bioelectron 26:815–821CrossRefGoogle Scholar
  70. 70.
    Kawata S, Sun HB, Tanaka T, Takada K (2001) Nature 412:697–698CrossRefGoogle Scholar
  71. 71.
    Conrad PG, Nishimura PT, Aherne D, Schwartz BJ, Wu D, Fang N, Zhang X, Roberts MJ, Shea KI (2003) Adv Mater 15:1541–1544CrossRefGoogle Scholar
  72. 72.
    Henry OYF, Piletsky SA, Cullen DC (2008) Biosens Bioelectron 23:1769–1775CrossRefGoogle Scholar
  73. 73.
    Huang HC, Lin CI, Joseph AK, Lee YD (2004) J Chromatogr A 1027:263–268CrossRefGoogle Scholar
  74. 74.
    Hilt JZ, Byrne ME, Peppas NA (2006) Chem Mater 18:5869–5875CrossRefGoogle Scholar
  75. 75.
    Guillon S, Lemaire R, Linares AV, Haupt K, Ayela C (2009) Lab Chip 9:2987–2991CrossRefGoogle Scholar
  76. 76.
    Linares AV, Cordin AF, Gheber LA, Haupt K (2011) Small 7:2318–2325CrossRefGoogle Scholar
  77. 77.
    Granlund T, Nyberg T, Roman LS, Svensson M, Inganäs O (2000) Adv Mater 12:269–273CrossRefGoogle Scholar
  78. 78.
    Kim E, Xia Y, Whitesides GM (1995) Nature 376:581–584CrossRefGoogle Scholar
  79. 79.
    Zhao X-M, Xia Y, Whitesides GM (1996) Adv Mater 8:837–840CrossRefGoogle Scholar
  80. 80.
    Blümel A, Klug A, Eder S, Scherf U, Moderegger E, List EJW (2007) Org Electron 8:389–395CrossRefGoogle Scholar
  81. 81.
    Gates BD, Xu Q, Stewart M, Ryan D, Willson CG, Whitesides GM (2005) Chem Rev 105:1171–1196CrossRefGoogle Scholar
  82. 82.
    Lalo H, Cau JC, Thibault C, Marsaud N, Severac C, Vieu C (2009) Microelectron Eng 86:1428–1430CrossRefGoogle Scholar
  83. 83.
    Yan M, Kapua A (2001) Anal Chim Acta 435:163–167CrossRefGoogle Scholar
  84. 84.
    Voicu R, Faid K, Farah AA, Bensebaa F, Barjovanu R, Py C, Tao Y (2007) Langmuir 23:5452–5458CrossRefGoogle Scholar
  85. 85.
    Lalo H, Ayela C, Dague E, Vieu C, Haupt K (2010) Lab Chip 10:1316–1318CrossRefGoogle Scholar
  86. 86.
    Balla T, Spearing SM, Mo KA (2008) J Phys D Appl Phys 41:174001–174001–10Google Scholar
  87. 87.
    Guo LJ (2007) Adv Mater 19:495–513CrossRefGoogle Scholar
  88. 88.
    Forchheimer D, Luo G, Montelius L, Ye L (2010) Analyst 135:1219–1223CrossRefGoogle Scholar
  89. 89.
    Ohtsu M (2009) Nanophotonics and nanofabrication. Wiley VCHGoogle Scholar
  90. 90.
    Girard C, Dereux A (1996) Rep Prog Phys 59:657–699CrossRefGoogle Scholar
  91. 91.
    Espanet A, Ecoffet C, Lougnot DJ (1999) J Polym Sci A Polym Chem 37:2075–2085CrossRefGoogle Scholar
  92. 92.
    Espanet A, Santos GD, Ecoffet C, Lougnot DJ (1999) Appl Surf Sci 138:87–92CrossRefGoogle Scholar
  93. 93.
    Ecoffet C, Espanet A, Lougnot DJ (1998) Adv Mater 10:411–414CrossRefGoogle Scholar
  94. 94.
    Fuchs Y, Linares AV, Mayes AG, Haupt K, Soppera O (2011) Chem Mater 23:3645–3651CrossRefGoogle Scholar
  95. 95.
    Soppera O, Jradi S, Ecoffet C, Lougnot DJ (2007) Proc SPIE 6647:6647OIGoogle Scholar
  96. 96.
    Chegel V, Whitcombe MJ, Turner NW, Piletsky SA (2009) Biosens Bioelectron 24:1270–1275CrossRefGoogle Scholar
  97. 97.
    Ishi-i T, Nakashima K, Shinkai S (1998) Chem Commun 9:1047–1048CrossRefGoogle Scholar
  98. 98.
    Zimmerman SC, Wendland MS, Rakow NA, Zharov I, Suslick KS (2002) Nature 418:399–403CrossRefGoogle Scholar
  99. 99.
    Pérez N, Whitcombe MJ, Vulfson EN (2001) Macromolecules 34:830–836CrossRefGoogle Scholar
  100. 100.
    Vaihinger D, Landfester K, Kräuter I, Brunner H, Tovar GEM (2002) Macromol Chem Phys 203:1965–1973CrossRefGoogle Scholar
  101. 101.
    Carter SR, Rimmer S (2004) Adv Funct Mater 14:553–561CrossRefGoogle Scholar
  102. 102.
    Biffis A, Graham NB, Siedlaczek G, Stalberg S, Wulff G (2001) Macromol Chem Phys 202:163–171CrossRefGoogle Scholar
  103. 103.
    Hunt CE, Pasetto P, Ansell RJ, Haupt K (2006) Chem Commun 16:1754–1756Google Scholar
  104. 104.
    Wulff G, Chong B-O, Kolb U (2006) Angew Chem Int Ed 45:2955–2958CrossRefGoogle Scholar
  105. 105.
    Carboni D, Flavin K, Servant A, Gouverneur V, Resmini M (2008) Chem Eur J 14:7059–7065Google Scholar
  106. 106.
    Hoshino Y, Kodama T, Okahata Y, Shea KJ (2008) J Am Chem Soc 130:15242–15243CrossRefGoogle Scholar
  107. 107.
    Pérez N, Whitcombe MJ, Vulfson EN (2000) J Appl Polym Sci 77:1851–1859CrossRefGoogle Scholar
  108. 108.
    Bompart M, Haupt K (2009) Aust J Chem 62:751–761CrossRefGoogle Scholar
  109. 109.
    Lu C, Zhou W, Han B, Yang H, Chen X, Wang X (2007) Anal Chem 79:5457–5461CrossRefGoogle Scholar
  110. 110.
    Gai Q-Q, Qu F, Liu Z-J, Dai R-J, Zhang Y-K (2010) J Chromatogr A 1217:5035–5042CrossRefGoogle Scholar
  111. 111.
    Li Y, Li X, Chu J, Dong C, Qi J, Yuan Y (2010) Environ Pollut 158:2317–2323CrossRefGoogle Scholar
  112. 112.
    Gonzato C, Courty M, Pasetto P, Haupt K (2011) Adv Funct Mater 21:3947–3953Google Scholar
  113. 113.
    Sondi I, Siiman O, Koester S, Matijevic E (2000) Langmuir 16:3107–3118CrossRefGoogle Scholar
  114. 114.
    Mitchell GP, Mirkin CA, Letsinger RL (1999) J Am Chem Soc 121:8122–8123CrossRefGoogle Scholar
  115. 115.
    Lin CI, Joseph AK, Chang CK, Lee YD (2004) J Chromatogr A 1027:259–262CrossRefGoogle Scholar
  116. 116.
    Diltemiz SE, Say RI, Büyüktiryaki S, Hür D, Denizli A, Ersöz A (2008) Talanta 75:890–896CrossRefGoogle Scholar
  117. 117.
    Li HB, Li YL, Cheng J (2010) Chem Mater 22:2451–2457CrossRefGoogle Scholar
  118. 118.
    Lee E, Park DW, Lee JO, Kim DS, Lee BH, Kim BS (2008) Colloids Surf A 313–314:202–206Google Scholar
  119. 119.
    Kan XW, Zhao Y, Geng ZR, Wang ZL, Zhu JJ (2008) J Phys Chem C 112:4849–4854CrossRefGoogle Scholar
  120. 120.
    Lee HY, Kim S (2009) Biosens Bioelectron 25:587–591CrossRefGoogle Scholar
  121. 121.
    Choong CL, Bendall JS, Milne WI (2009) Biosens Bioelectron 25:652–656CrossRefGoogle Scholar
  122. 122.
    He C, Long Y, Pan J, Li K, Liu F (2008) J Mater Chem 18:2849–2854CrossRefGoogle Scholar
  123. 123.
    Matsui J, Akamatsu K, Nishiguchi S, Miyoshi D, Nawafune H, Tamaki K, Sugimoto N (2004) Anal Chem 76:1310–1315CrossRefGoogle Scholar
  124. 124.
    Matsui J, Akamatsu K, Hara N, Miyoshi D, Nawafune H, Tamaki K, Sugimoto N (2005) Anal Chem 77:4282–4285CrossRefGoogle Scholar
  125. 125.
    Bompart M, De Wilde Y, Haupt K (2010) Adv Mater 22:2343–2348CrossRefGoogle Scholar
  126. 126.
    Chronakis IS, Jakob A, Hagström B, Ye L (2006) Langmuir 22:8960–8965CrossRefGoogle Scholar
  127. 127.
    Piperno S, Tse Sum Bui B, Haupt K, Gheber LA (2011) Langmuir 27:1547–1550CrossRefGoogle Scholar
  128. 128.
    Chronakis IS, Milosevie B, Frenot A, Ye L (2006) Macromolecules 39:357–361CrossRefGoogle Scholar
  129. 129.
    Yoshimatsu K, Ye L, Lindberg J, Chronakis IS (2008) Biosens Bioelectron 23:1208–1215CrossRefGoogle Scholar
  130. 130.
    Yoshimatsu K, Ye L, Stenlund P, Chronakis IS (2008) Chem Commun 17:2022–2024CrossRefGoogle Scholar
  131. 131.
    Yang H-H, Zhang S-Q, Tan F, Zhuang Z-X, Wang X-RJ (2005) J Am Chem Soc 127:1378–1379CrossRefGoogle Scholar
  132. 132.
    Li Y, Yang H-H, You Q-H, Zhuang Z-X, Wang X-R (2006) Anal Chem 78:317–320CrossRefGoogle Scholar
  133. 133.
    Li Y, Yin X-F, Chen F-R, Yang H-H, Zhuang Z-X, Wang X-R (2006) Macromolecules 39:4497–4499CrossRefGoogle Scholar
  134. 134.
    Vandevelde F, Belmont A-S, Pantigny J, Haupt K (2007) Adv Mater 19:3717–3720CrossRefGoogle Scholar
  135. 135.
    Linares AV, Vandevelde F, Pantigny J, Falcimaigne-Cordin A, Haupt K (2009) Adv Funct Mater 19:1–5CrossRefGoogle Scholar
  136. 136.
    Yang H-H, Zhang S-Q, Yang W, Chen X-L, Zhuang Z-X, Xu J-G, Wang X-R (2004) J Am Chem Soc 126:4054–4055CrossRefGoogle Scholar
  137. 137.
    Xie C, Liu B, Wang Z, Gao D, Guan G, Zhang Z (2008) Anal Chem 80:437–443CrossRefGoogle Scholar
  138. 138.
    Wu Z, Hu X, Tao CA, Li Y, Liu J, Yang C, Shen D, Li G (2008) J Mater Chem 18:5452–5458CrossRefGoogle Scholar
  139. 139.
    Wu Z, Tao CA, Lin CX, Shen DZ, Li GT (2008) Chem Eur J 14:11358–11368CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Compiègne University of Technology, UMR CNRS, 6022CompiègneFrance
  2. 2.Laboratoire de l’Intégration du Matériau au SystémeTALENCE, CedexFrance

Personalised recommendations