Supramolecular Naphthalenediimide Nanotubes

  • Nandhini Ponnuswamy
  • Artur R. Stefankiewicz
  • Jeremy K. M. Sanders
  • G. Dan Pantoş
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 322)


Amino acid functionalized naphthalenediimides (NDIs) when dissolved in chloroform form a dynamic combinatorial library (DCL) in which the NDI building blocks are connected through reversible hydrogen bonds forming a versatile new supramolecular assembly in solution with intriguing host–guest properties. In chlorinated solvents the NDIs form supramolecular nanotubes which complex C60, ion-pairs, and extended aromatic molecules. In the presence of C70 a new hexameric receptor is formed at the expense of the nanotube; the equilibrium nanotube – hexameric receptor can be influenced by acid–base reactions. Achiral NDIs are incorporated in nanotubes formed by either dichiral or monochiral NDIs experiencing the “sergeants-and-soldiers” effect.


Circular dichroism Fullerenes Host–guest Ion-pairs Sergeants-and-soldiers Supramolecular chemistry Supramolecular polymers 


  1. 1.
    Reek JNH, Otto S (2010) Dynamic combinatorial chemistry. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  2. 2.
    Lehn JM (2007) From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem Soc Rev 36:151–160CrossRefGoogle Scholar
  3. 3.
    Lehn JM (1999) Dynamic combinatorial chemistry and virtual combinatorial libraries. Chem Eur J 5:2455–2463CrossRefGoogle Scholar
  4. 4.
    Corbett PT, Leclaire L, Vial L, West KR, Weitor J-L, Sanders JKM, Otto S (2006) Dynamic combinatorial chemistry. Chem Rev 106:3652–3711CrossRefGoogle Scholar
  5. 5.
    Herrmann A (2009) Dynamic mixtures and combinatorial libraries: imines as probes for molecular evolution at the interface between chemistry and biology. Org Biomol Chem 7:3195–3204CrossRefGoogle Scholar
  6. 6.
    Ladame S (2008) Dynamic combinatorial chemistry: on the road to fulfilling the promise. Org Biomol Chem 6:219–226CrossRefGoogle Scholar
  7. 7.
    Hunter CA (2004) Quantifying intermolecular interactions: guidelines for the molecular recognition toolbox. Angew Chem Int Ed 43:5310–5324CrossRefGoogle Scholar
  8. 8.
    Crego Calama M, Hulst R, Fokkens R, Nibbering NMM, Timmerman P, Reinhoudt DN (1998) Libraries of non-covalent hydrogen-bonded assemblies; combinatorial synthesis of supramolecular systems. Chem Commun 1021–1022Google Scholar
  9. 9.
    Timmerman P, Vreekamp RH, Hulst R, Verboom W, Reinhoudt DN, Rissanen K, Udachin KA, Ripmeester J (1997) Noncovalent assembly of functional groups on calix[4]arene molecular boxes. Chem Eur J 3:1823–1832CrossRefGoogle Scholar
  10. 10.
    Hof F, Nuckolls C, Rebek J Jr (2000) Diversity and selection in self-assembled tetrameric capsules. J Am Chem Soc 122:4251–4252CrossRefGoogle Scholar
  11. 11.
    Wyler R, de Mendoza J, Rebek J Jr (1993) A synthetic cavity assembles through self-complementary hydrogen bonds. Angew Chem Int Ed 32:1699–1701CrossRefGoogle Scholar
  12. 12.
    Pengo P, Pantoş GD, Otto S, Sanders JKM (2006) Efficient and mild microwave-assisted stepwise functionalization of naphthalenediimide with α-amino acids. J Org Chem 71:7063–7066CrossRefGoogle Scholar
  13. 13.
    Tambara K, Ponnuswamy N, Hennrich G, Pantoş GD (2011) Microwave-assisted synthesis of naphthalenemonoimide and N-desymmetrized naphthalenediimides. J Org Chem 76:3338–3347CrossRefGoogle Scholar
  14. 14.
    Anderson TW, Pantoş GD, Sanders JKM (2011) Supramolecular chemistry of monochiral naphthalenediimides. Org Biomol Chem 9:7547–7553Google Scholar
  15. 15.
    Pantoş GD, Pengo P, Sanders JKM (2007) Hydrogen-bonded helical organic nanotubes. Angew Chem Int Ed 46:194–197CrossRefGoogle Scholar
  16. 16.
    Ponnuswamy N, Pantoş GD, Smulders MMJ, Sanders JKM (2012) Thermodynamics of Supramolecular Naphthalenediimide Nanotube Formation: The Influence of solvents, side-chains and guest templates. J Am Chem Soc doi: 10.1021/ja2088647
  17. 17.
    Anderson TW, Pantoş GD, Sanders JKM (2010) The sergeants-and-soldiers effect: chiral amplification in naphthalenediimide nanotubes. Org Biomol Chem 8:4274–4280CrossRefGoogle Scholar
  18. 18.
    Palmans ARA, Meijer EW (2007) Amplification of chirality in dynamic supramolecular aggregates. Angew Chem Int Ed 46:8948–8968CrossRefGoogle Scholar
  19. 19.
    Smulders MMJ, Filot IAW, Leenders JMA, van der Schoot P, Palmans ARA, Schenning APHJ, Meijer EW (2010) Tuning the extent of chiral amplification by temperature in a dynamic supramolecular polymer. J Am Chem Soc 132:611–619CrossRefGoogle Scholar
  20. 20.
    Smulders MMJ, Stals PJM, Mes T, Paffen TF, Schenning APHJ, Palmans ARA, Meijer EW (2010) Probing the limits of the majority-rules principle in a dynamic supramolecular polymer. J Am Chem Soc 132:620–626CrossRefGoogle Scholar
  21. 21.
    Van Gestel J (2004) Amplification of chirality in helical supramolecular polymers. The majority-rules principle. Macromolecules 37:3894–3898CrossRefGoogle Scholar
  22. 22.
    Van Gestel J, Palmans ARA, Titulaer B, Vekemans JAJM, Meijer EW (2005) “Majority-rules” operative in chiral columnar stacks of C 3-symmetrical molecules. J Am Chem Soc 127:5490–5494CrossRefGoogle Scholar
  23. 23.
    Bulheller BM, Pantoş GD, Sanders JKM, Hirst JD (2009) Electronic structure and circular dichroism spectroscopy of naphthalenediimide nanotubes. Phys Chem Chem Phys 11:6060–6065CrossRefGoogle Scholar
  24. 24.
    Green MM, Reidy MP, Johnson RJ, Darling G, Oleary DJ, Willson G (1989) Macromolecular stereochemistry: the out-of-proportion influence of optically active comonomers on the conformational characteristics of polyisocyanates. The sergeants and soldiers experiment. J Am Chem Soc 111:6452–6454CrossRefGoogle Scholar
  25. 25.
    Cambridge Structural Database, v.5.30, 2009Google Scholar
  26. 26.
    Pantoş GD, Wietor J-L, Sanders JKM (2007) Filling helical nanotubes with C60. Angew Chem Int Ed 46:2238–2240CrossRefGoogle Scholar
  27. 27.
    Wietor J-L, Pantoş GD, Sanders JKM (2008) Templated amplification of an unexpected receptor for C70. Angew Chem Int Ed 47:2689–2692CrossRefGoogle Scholar
  28. 28.
    Harris TK, Turner GJ (2002) Structural basis of perturbed pKa values of catalytic groups in enzyme active sites. IUBMB Life 53:85–98CrossRefGoogle Scholar
  29. 29.
    Stefankiewicz AR, Tamanini E, Pantoş GD, Sanders JKM (2011) Proton-driven switching between receptors for C60 and C70. Angew Chem Int Ed 50:5725–5728CrossRefGoogle Scholar
  30. 30.
    Tamanini E, Ponnuswamy N, Pantoş GD, Sanders JKM (2009) New host–guest chemistry of supramolecular nanotubes. Faraday Discuss 145:205–218CrossRefGoogle Scholar
  31. 31.
    Glasson CRK, Meehan GV, Clegg JK, Lindoy LF, Turner P, Duriska MB, Willis R (2008) A new FeIIquaterpyridyl M4L6 tetrahedron exhibiting selective anion binding. Chem Commun 1190–1192Google Scholar
  32. 32.
    Tamanini E, Pantoş GD, Sanders JKM (2010) Ion pairs and C60: simultaneous guests in supramolecular nanotubes. Chem Eur J 16:81–84CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Nandhini Ponnuswamy
    • 1
  • Artur R. Stefankiewicz
    • 1
  • Jeremy K. M. Sanders
    • 1
  • G. Dan Pantoş
    • 2
  1. 1.Department of ChemistryUniversity of CambridgeCambridgeUK
  2. 2.Department of ChemistryUniversity of BathBathUK

Personalised recommendations