Activity-Based Protein Profiling for Natural Product Target Discovery

  • Joanna Krysiak
  • Rolf BreinbauerEmail author
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 324)


Natural products represent an important treasure box of biologically active molecules, from which many drug candidates have been sourced. The identification of the target proteins addressed by these natural products is a foremost goal for which new techniques are required. Activity-based protein profiling (ABPP), exploiting protein-reactive functional groups present in many natural products, offers unseen opportunities in this respect. This review article describes the current status of this field. Many examples are given for the annotation of biological target proteins of natural products containing epoxides, lactones, lactams, Michael acceptors, and other electrophilic groups. In addition, the development of probe molecules identified from biomimetic natural product libraries is discussed.


Activity-based protein profiling Chemical biology Molecular probes Natural products Target profiling 



Activity-based protein profiling


Autosomal dominant polycystic kidney disease


Alkylguanine DNA alkyltransferase




Adenosine triphosphate




Biology-oriented synthesis


Boron-dipyrromethane fluorescent dye




Deoxyribonucleic acid


Diversity-oriented synthesis


Fatty acid synthase


Food and Drug Administration


Glutamyl transpeptidase


Heat shock protein


Human umbilical venous endothelial cells


Half maximal inhibitory concentration




Maxtrix-assisted laser desorption ionization


Minimal inhibitory concentration


Methicillin-resistant Staphylococcus aureus


Mass spectrometry


Nuclear export sequence


Polyacrylamide gel electrophoresis


Penicillin binding protein


Phosphoinositoide 3-kinase related kinase


Protein phosphatase


Ribonucleic acid


Svedberg unit


Sodium dodecylsulfate




Tetramethyl-5(6)-carboxyrhodamine dye






Uridine diphosphate


Uridine monophosphate



R.B. thanks the Austrian Science Fund (FWF) for a PhD scholarship for J.K. (Doktoratskolleg “Molecular Enzymology” W901-B05), and the PLACEBO (Platform for Chemical Biology)-project as part of the Austrian Genome Project GEN-AU funded by the Forschungsförderungsgesellschaft und Bundesministerium für Wissenschaft und Forschung for research funding.


  1. 1.
    Breinbauer R, Vetter IR, Waldmann H (2002) From protein domains to drug candidates - Natural products as guiding principles in the design and synthesis of compound libraries. Angew Chem Int Ed 41:2879–2890Google Scholar
  2. 2.
    Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477CrossRefGoogle Scholar
  3. 3.
    Clemons PA, Bodycombe NE, Carrinski HA, Wilson JA, Shamji AF, Wagner BK, Koehler AN, Schreiber SL (2010) Small molecules of different origins have distinct distributions of structural complexity that correlate with protein-binding profiles. Proc Natl Acad Sci USA 107:18787–18792CrossRefGoogle Scholar
  4. 4.
    Carlson EE (2010) Natural products as chemical probes. ACS Chem Biol 5:639–653CrossRefGoogle Scholar
  5. 5.
    Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4:682–690CrossRefGoogle Scholar
  6. 6.
    Wong CC, Cheng KW, He Y-Y, Chen F (2008) Unraveling the molecular targets of natural products: Insights from genomic and proteomic analyses. Proteomics Clin Appl 2:338–354CrossRefGoogle Scholar
  7. 7.
    Cheng KW, Wong CC, Wang M, He Q-Y, Chen F (2010) Identification and characterization of molecular targets of natural products by mass spectrometry. Mass Spectrom Rev 29:126–155Google Scholar
  8. 8.
    Dixon N, Wong LS, Geerlings TH, Micklefield J (2007) Cellular targets of natural products. Nat Prod Rep 24:1288–1310CrossRefGoogle Scholar
  9. 9.
    Farha MA, Brown ED (2010) Chemical probes of Escherichia coli uncovered through chemical-chemical interaction profiling with compounds of known biological activity. Chem Biol 17:852–862CrossRefGoogle Scholar
  10. 10.
    Sato S-I, Murata A, Shirakawa T, Uesugi M (2010) Biochemical target isolation for novices: affinity-based strategies. Chem Biol 17:616–623CrossRefGoogle Scholar
  11. 11.
    Wang G, Shang L, Burgett AWG, Harran PG, Wang X (2007) Diazonamide toxins reveal an unexpected function for ornithine d-amino transferase in mitotic cell division. Proc Natl Acad Sci USA 104:2068–2073CrossRefGoogle Scholar
  12. 12.
    Harding MW, Galat A, Uehling DE, Schreiber SL (1989) A receptor for the immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerise. Nature 341:758–760CrossRefGoogle Scholar
  13. 13.
    Taunton J, Hassig CA, Schreiber SL (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272:408–411CrossRefGoogle Scholar
  14. 14.
    Sato S-i, Murata A, Orihara T, Shirakawa T, Suenaga K, Kigoshi H, Uesugi M (2011) Marine natural product aurilide activates the OPA1-mediated apoptosis by binding to prohibitin. Chem Biol 18:131–139CrossRefGoogle Scholar
  15. 15.
    Leslie BJ, Hergenrother PJ (2008) Identification of the cellular targets of bioactive small organic molecules using affinity reagents. Chem Soc Rev 37:1347–1360CrossRefGoogle Scholar
  16. 16.
    Rix U, Superti-Furga G (2009) Target profiling of small molecules by chemical proteomics. Nat Chem Biol 5:616–624CrossRefGoogle Scholar
  17. 17.
    Sadaghiani AM, Verhelst SHL, Bogyo M (2007) Tagging and detection strategies for activity-based proteomics. Curr Opin Chem Biol 11:20–28CrossRefGoogle Scholar
  18. 18.
    Evans MJ, Cravatt BF (2006) Mechanism-based profiling of enzyme families. Chem Rev 106:3279–3301CrossRefGoogle Scholar
  19. 19.
    Drahl C, Cravatt BF, Sorensen EJ (2005) Protein-reactive natural products. Angew Chem Int Ed 44:5788–5809CrossRefGoogle Scholar
  20. 20.
    Koch MA, Schuffenhauer A, Scheck M, Wetzel S, Casaulta M, Odermatt A, Ertl P, Waldmann H (2005) Charting biologically relevant chemical space: a structural classification of natural products (SCONP). Proc Natl Acad Sci USA 102:17272–17277CrossRefGoogle Scholar
  21. 21.
    Wilson RM, Danishefsky SJ (2006) Small molecule natural products in the discovery of therapeutic agents: the synthesis connection. J Org Chem 71:8329–8351CrossRefGoogle Scholar
  22. 22.
    Böttcher T, Pitscheider M, Sieber SA (2010) Natural products and their biological targets: proteomic and metabolomic labelling strategies. Angew Chem Int Ed 49:2680–2698CrossRefGoogle Scholar
  23. 23.
    Hamada K, Tamai M, Yamagishi M, Ohmura S, Sawada J, Tanaka I (1978) Isolation and characterization of E-64, a new thiol protease inhibitor. Agric Biol Chem 42:523–528CrossRefGoogle Scholar
  24. 24.
    Matsumoto K, Mizoue K, Kitamura K, Tse WC, Huber CP, Ishida T (1999) Structural basis of inhibition of cysteine proteases by E-64 and its derivatives. Biopolymers 51:99–107CrossRefGoogle Scholar
  25. 25.
    Barrett AJ, Kembhavi AA, Brown MA, Kirschke H, Knight CG, Tamai M, Hanada K (1982) L-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L. Biochem J 201:189–198Google Scholar
  26. 26.
    Villadangos JA, Bryant RA, Deussing J, Driessen C, Lennon-Duménil AM, Riese RJ, Roth W, Saftig P, Shi GP, Chapman HA, Peters C, Ploegh HL (1999) Proteases involved in MHC class II antigen presentation. Immunol Rev 172:109–120CrossRefGoogle Scholar
  27. 27.
    Gelb BD, Shi GP, Chapman HA, Desnick RJ (1996) Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 273:1236–1238CrossRefGoogle Scholar
  28. 28.
    Beinfeld MC (1998) Prohormone and proneuropeptide processing. Recent progress and future challenges. Endocrine 8:1–5CrossRefGoogle Scholar
  29. 29.
    Chapman HA, Reese RJ, Shi GP (1997) Emerging roles for cysteine proteases in human biology. Annu Rev Physiol 59:63–88CrossRefGoogle Scholar
  30. 30.
    Iwata Y, Mort JS, Tateishi H, Lee ER (1997) Macrophage cathepsin L, a factor in the erosion of subchondral bone in rheumatoid arthritis. Arthritis Rheum 40:499–509CrossRefGoogle Scholar
  31. 31.
    Yan S, Sameni M, Sloane BF (1998) Cathepsin B and human tumor progression. Biol Chem 379:113–123Google Scholar
  32. 32.
    Nomura T, Katunuma N (2005) Involvement of cathepsins in the invasion, metastasis and proliferation of the cancer cells. J Med Invest 50:1–9CrossRefGoogle Scholar
  33. 33.
    Greenbaum D, Medzihradszky KF, Burlingame AL, Bogyo M (2000) Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem Biol 7:569–581CrossRefGoogle Scholar
  34. 34.
    Greenbaum D, Baruch A, Hayrapetian L, Darula Z, Burlingame A, Medzihradszky KF, Bogyo M (2002) Chemical approaches for functionally probing the proteome. Mol Cell Proteomics 1:60–68CrossRefGoogle Scholar
  35. 35.
    Van der Hoorn RA, Leeuwenburgh MA, Bogyo M, Joosten MH, Peck SC (2004) Activity profiling of papain-like cysteine proteases in plants. Plant Physiol 135:1170–1178CrossRefGoogle Scholar
  36. 36.
    Ahmed SU, Rojo E, Kovaleva V, Venkataraman S, Dombrowski JE, Matsuoka K, Raikhel NV (2000) The plant vacuolar sorting receptor AtELP is involved in transport of NH(2)-terminal propeptide-containing vacuolar proteins in Arabidopsis thaliana. J Cell Biol 149:1335–1344CrossRefGoogle Scholar
  37. 37.
    Hayashi Y, Yamada K, Shimada T, Matsushima R, Nishizawa NK, Nishimura M, Hara-Nishimura I (2001) A proteinase-storing body that prepares for cell death or stresses in the epidermal cells of Arabidopsis. Plant Cell Physiol 42:894–899CrossRefGoogle Scholar
  38. 38.
    Kaschani F, Verhelst SHL, van Swieten PF, Verdoes M, Wong C-S, Wang Z, Kaiser M, Overkleeft HS, Bogyo M, van der Hoorn RAL (2009) Minitags for small molecules: detecting targets of reactive small molecules in living plant tissues using ‘click chemistry’. Plant J 57:373–385CrossRefGoogle Scholar
  39. 39.
    Hang HC, Loureiro J, Spooner E, van der Velden AW, Kim YM, Pollington AM, Maehr R, Starnbach MN, Ploegh HL (2006) Mechanism-based probe for the analysis of cathepsin cysteine proteases in living cells. ACS Chem Biol 1:713–723CrossRefGoogle Scholar
  40. 40.
    Hanada M, Sugawara K, Kaneta K, Toda S, Nishiyama Y, Tomita K, Yamamoto H, Konishi M, Oki T (1992) Epoxomicin, a new antitumor agent of microbial origin. J Antibiot 45:1746–1752Google Scholar
  41. 41.
    Meng L, Mohan R, Kwok BHB, Elofsson M, Sin N, Crews CM (1999) Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc Natl Acad Sci USA 96:10403–10408CrossRefGoogle Scholar
  42. 42.
    Sin N, Kim K, Elofsson M, Meng L, Auth H, Crews CM (1999) Total synthesis of the potent proteasome inhibitor epoxomicin: a useful tool for understanding proteasome biology. Bioorg Med Chem Lett 9:2283–2288CrossRefGoogle Scholar
  43. 43.
    Clerc J, Florea BI, Kraus M, Groll M, Huber R, Bachmann AS, Dudler R, Driessen C, Overkleeft HS, Kaiser M (2009) Syringolin A selectively labels the 20 S proteasome in murine EL4 and wild-type and bortezomib adapted leukaemic cell lines. ChemBioChem 10:2638–2643CrossRefGoogle Scholar
  44. 44.
    Kolodziejek I, Misas-Villamil JC, Kaschani F, Clerc J, Gu C, Krahn D, Niessen S, Verdoes M, Willems LI, Overkleeft HS, Kaiser M, van der Hoorn RAL (2011) Proteasome activity imaging and profiling characterizes bacterial effector syringolin A. Plant Physiol 155:477–489CrossRefGoogle Scholar
  45. 45.
    Florea BI, Verdoes M, Li N, van der Linden WA, Geurink PP, van den Elst H, Hofmann T, de Ru A, van Veelen PA, Tanaka K, Sasaki K, Murata S, den Dulk H, Brouwer J, Ossendorp FA, Kisselev AF, Overkleeft HS (2010) Activity-Based Profiling Reveals Reactivity of the Murine Thymoproteasome-Specific Subunit β5t. Chem Biol 17:795–801CrossRefGoogle Scholar
  46. 46.
    Murata S, Sasaki K, Kishimoto T, Niwa S, Hayashi H, Takahama Y, Tanaka K (2007) Regulation of CD8+ T cell development by thymus-specific proteasomes. Science 316:1349–1353CrossRefGoogle Scholar
  47. 47.
    Murata S, Takahama Y, Tanaka K (2008) Thymoproteasome: probable role in generating positively selecting peptides. Curr Opin Immunol 20:192–196CrossRefGoogle Scholar
  48. 48.
    Leuenroth SJ, Okuhara D, Shotwell JD, Markowitz GS, Yu Z, Somlo S, Crews CM (2007) Triptolide is a traditional Chinese medicine-derived inhibitor of polycystic kidney disease. Proc Natl Acad Sci USA 104:4389–4394CrossRefGoogle Scholar
  49. 49.
    McCallum C, Kwon S, Leavitt P, Shen D-M, Liu W, Gurnett A (2007) Triptolide binds covalently to a 90 kDa nuclear protein. Role of epoxides in binding and activity. Immunobiology 313:549–556CrossRefGoogle Scholar
  50. 50.
    Titov DV, Gilman B, He Q-L, Bhat S, Low W-K, Dang Y, Smeaton M, Demain AL, Miller PS, Kugel JF, Goodrich JA, Liu JO (2011) XPB, a subunit of TFIIH, is a target of the natural product triptolide. Nat Chem Biol 7:182–188CrossRefGoogle Scholar
  51. 51.
    Sin N, Meng L, Wang MQW, Wen JJ, Bornmann WG, Crews CM (1997) The anti-angiogenic agent fumagillin covalently binds and inhibits the methionine aminopeptidase, MetAP-2. Proc Natl Acad Sci USA 94:6099–6103CrossRefGoogle Scholar
  52. 52.
    Evans MJ, Saghatelian A, Sorensen EJ, Cravatt BJ (2005) Target discovery in small-molecule cell-based screens by in situ proteome reactivity profiling. Nat Biotechnol 10:1303–1307CrossRefGoogle Scholar
  53. 53.
    Wyman MP, Bulgarelli-Leva G, Zvelebil MJ, Pirola L, Vanhaesebroeck B, Waterfield MD, Panayotou G (1996) Wortmannin inactivates phosphoinositide 3-kinase by covalent modification of Lys-802, a residue involved in the phosphate transfer reaction. Mol Cell Biol 16:1722–1733Google Scholar
  54. 54.
    Yee M-C, Fas CF, Stohlmeyer MM, Wandless TJ, Cimprich KA (2005) A cell-permeable, activity base probe for protein and lipid kinases. J Biol Chem 280:29053–29059CrossRefGoogle Scholar
  55. 55.
    Liu Y, Shreder KR, Gai W, Corral S, Ferris DK, Rosenblum JS (2005) Wortmannin, a widely used phosphoinositide 3-kinase inhibitor, also potently inhibits mammalian Polo-like kinase. Chem Biol 12:99–107CrossRefGoogle Scholar
  56. 56.
    MacKintosh RW, Dalby KN, Campbell DG, Cohen PTW, Cohen P, MacKintosh C (1995) The cyanobacterial toxin microcystin binds covalently to cysteine-273 on protein phosphatase 1. FEBS Lett 371:236–240CrossRefGoogle Scholar
  57. 57.
    Runnegar M, Berndt N, Kong S-M, Lee EYC, Zhang L (1995) In vivo and in vitro binding of microcystin to protein phosphatase 1 and 2A. Biochem Biophys Res Commun 216:162–169CrossRefGoogle Scholar
  58. 58.
    Shreder KR, Liu Y, Nomanhboy T, Fuller SR, Wong MS, Gai WZ, Wu J, Leventhal PS, Lill JR, Corral S (2004) Design and synthesis of AX7574: a microcystin-derived, fluorescent probe for serine/threonine phosphatases. Bioconjug Chem 15:790–798CrossRefGoogle Scholar
  59. 59.
    Kwok BHB, Koh B, Ndubuisi MI, Elofsson M, Crews CM (2001) The anti-inflammatory natural product parthonlide from the medicinal herb ferverfew directly binds to and inhibits IκB kinase. Chem Biol 8:759–766CrossRefGoogle Scholar
  60. 60.
    Kunzmann MH, Straub I, Böttcher T, Sieber SA (2011) Protein reactivity of natural product-derived γ-butyrolactones. Biochemistry 50:910–916CrossRefGoogle Scholar
  61. 61.
    Teruya T, Simizu S, Kanoh N, Osada H (2005) Phoslactomycin targets cysteine-269 of the protein phosphatise 2A catalytic subunit in cells. FEBS Lett 579:2463–2468CrossRefGoogle Scholar
  62. 62.
    Kanoh N, Takayama H, Honda K, Moriya T, Teruya T, Simizu S, Osada H, Iwabuchi Y (2010) Cleavable linker for photo-cross-linked small-molecule affinity matrix. Bioconjug Chem 21:182–186CrossRefGoogle Scholar
  63. 63.
    Usui T, Watanabe H, Nakayama H, Tada Y, Kanoh N, Kondoh M, Asao T, Takio K, Watanabe H, Nishikawa K, Kitahara T, Osada H (2004) The anticancer natural product pironetin selectively targets Lys352 of α-tubulin. Chem Biol 11:799–806CrossRefGoogle Scholar
  64. 64.
    Kudo N, Wolff B, Sekimoto T, Schreiner EP, Yoneda Y, Yanagida M, Horinouchi S, Yoshida M (1998) Leptoymcin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp Cell Res 242:540–547CrossRefGoogle Scholar
  65. 65.
    Kudo N, Matsumori N, Taoka H, Fujiwara D, Schreiner EP, Wolff B, Yoshida M, Horinouchi S (1999) Leptomycin B inactivates CRM17exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc Natl Acad Sci USA 96:9112–9117CrossRefGoogle Scholar
  66. 66.
    Vanderwal CD, Vosburg DA, Weiler S, Sorensen EJ (2003) An enantioselective synthesis of FR182877 provides a chemical rationalization of its structure and affords multigram quantities of its direct precursor. J Am Chem Soc 125:5393–5407CrossRefGoogle Scholar
  67. 67.
    Adam GC, Vanderwal CD, Sorensen EJ, Cravatt BF (2003) (−)-FR182877 is a potent and selective inhibitor of carboxylesterase-1. Angew Chem Int Ed 42:5480–5484CrossRefGoogle Scholar
  68. 68.
    Buey RM, Calvo E, Barasoain I, Pineda O, Edler MC, Matesanz R, Cerezo G, Vanderwal CD, Day BW, Sorensen EJ, Lopez JA, Andreu JM, Hamel E, Diaz JF (2007) Cyclostreptin binds covalently to microtubule pores and lumenal taxoid binding sites. Nat Chem Biol 3:117–125CrossRefGoogle Scholar
  69. 69.
    Wäspi U, Blanc D, Winkler T, Ruedi P, Dudler R (1998) Syringolin, a novel peptide elicitor from Pseudomonas syringae pv. syringae that induces resistance to Pyricularia oryzae in rice. Mol Plant Microbe Interact 11:727–733CrossRefGoogle Scholar
  70. 70.
    Groll M, Schellenberg B, Bachmann AS, Archer CR, Huber R, Powell TK, Lindow S, Kaiser M, Dudler R (2008) A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism. Nature 452:755–758CrossRefGoogle Scholar
  71. 71.
    Coleman CS, Rocetes JP, Park DJ, Wallick CJ, Warn-Cramer BJ, Michel K, Dudler R, Bachmann AS (2006) Syringolin A, a new plant elicitor from the phytopathogenic bacterium Pseudomonas syringae pv. syringae, inhibits the proliferation of neuroblastoma and ovarian cancer cells and induces apoptosis. Cell Prolif 39:599–609CrossRefGoogle Scholar
  72. 72.
    Nishimura H, Mayama M, Komatsu Y, Kato H, Shimaoka N, Tanaka Y (1964) Showdomycin, a new antibiotic from a streptomyces sp. J Antibiot 17:148–155Google Scholar
  73. 73.
    Roy-Burman S, Roy-Burman P, Visser DW (1968) Showdomycin, a new nucleoside antibiotic. Cancer Res 28:1605–1610Google Scholar
  74. 74.
    Böttcher T, Sieber SA (2010) Showdomycin as a versatile chemical tool for the detection of pathogenesis-associated enzymes in bacteria. J Am Chem Soc 132:6964–6972CrossRefGoogle Scholar
  75. 75.
    Wulff JE, Herzon SB, Siegrist R, Myers AG (2007) Evidence for the rapid conversion of stephacidin B into the electrophilic monomer avrainvillamide in cell culture. J Am Chem Soc 129:4898–4899CrossRefGoogle Scholar
  76. 76.
    Wulff JE, Siegrist R, Myers AG (2007) The natural product avrainvillamide binds to the oncoprotein nucleophosmin. J Am Chem Soc 129:14444–14451CrossRefGoogle Scholar
  77. 77.
    Bargagna-Mohan P, Hamza A, Y-e K, Ho YK, Mor-Vaknin N, Wendschlag N, Liu J, Evans RM, Markovitz DM, Zhan C-G, Kim KB, Mohan R (2007) The tumor inhibitor and antiangiogenic agent withaferin A targets the intermediate filament protein vimentin. Chem Biol 14:623–634CrossRefGoogle Scholar
  78. 78.
    Yokota Y, Bargagna-Mohan P, Ravindranath PP, Kim KB, Mohan R (2006) Development of withaferin A analogs as probes angiogenesis. Bioorg Med Chem Lett 16:2602–2607CrossRefGoogle Scholar
  79. 79.
    Umezawa H, Aoyagi T, Hazato T, Uotani K, Kojima F, Hamada M, Takeuchi T (1978) Esterastin, an inhibitor of esterase, produced by Actinomycetes. J Antibiot 31:639–641Google Scholar
  80. 80.
    Weibel EK, Hadvary P, Hochuli E, Kupfer E, Lengsfeld H (1987) Lipstatin, an inhibitor of pancreatic lipase, produced by Streptomyces toxytricini. I. Producing organism, fermentation, isolation and biological activity. J Antibiot 40:1081–1085Google Scholar
  81. 81.
    Umezawa H, Aoyagi T, Uotani K, Hamada M, Takeuchi T, Takahashi S (1980) Ebelactone, an inhibitor of esterase, produced by actinomycetes. J Antibiot 33:1594–1596Google Scholar
  82. 82.
    Kitahara M, Asano M, Naganawa H, Maeda K, Hamada M, Aoyagi T, Umezawa H, Iitaka Y, Nakamura H (1987) Valilactone, an inhibitor of esterase, produced by actinomycetes. J Antibiot 35:1647–1650Google Scholar
  83. 83.
    Mutoh M, Nakada N, Matsukuma S, Ohshima S, Yoshinari K, Watanabe J, Arisawa M (1994) Panclicins, novel pancreatic lipase inhibitors I. Taxonomy, fermentation, isolation and biological activity. J Antibiot 47:1369–1375Google Scholar
  84. 84.
    Omura S, Tomoda H, Kumagai H, Greenspan MD, Yodkovitz JB, Chen JS, Alberts AW, Martin I, Mochales S, Monaghan RL, Chabala JC, Schwartz RE (1987) Potent inhibitory effect of antibiotic 1233a on cholesterol biosynthesis which specifically blocks 3-hydroxy-3-methylglutaryl coenzyme A synthase. J Antibiot 40:1356–1357Google Scholar
  85. 85.
    Wells JS, Trejo WH, Principe PA, Sykes RB (1984) Obafluorin, a novel β-lactone produced by Pseudomonas fluorescens. Taxonomy, fermentation and biological properties. J Antibiot 37:802–803Google Scholar
  86. 86.
    Barbier P, Schneider F (1987) Syntheses of tetrahydrolipstatin and absolute configuration of tetrahydrolipstatin and lipstatin. Helv Chim Acta 70:196–202CrossRefGoogle Scholar
  87. 87.
    Barbier P, Schneider F, Widmer U (1987) Stereoselective Syntheses of tetrahydrolipstatin and of an analogue, potent pancreatic-lipase inhibitors containing a β-lactone moiety. Helv Chim Acta 70:1412–1418CrossRefGoogle Scholar
  88. 88.
    Heck AM, Yanovski JA, Calis KA (2000) Orlistat, a new lipase inhibitor for the management of obesity. Pharmacotherapy 20:270–279CrossRefGoogle Scholar
  89. 89.
    Lucas KH, Kaplan-Machlis B (2001) Orlistat – a novel weight loss therapy. Ann Pharmacother 35:314–328CrossRefGoogle Scholar
  90. 90.
    Kridel SJ, Axelrod F, Rozenkrantz N, Smith JW (2004) Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity. Cancer Res 64:2070–2075CrossRefGoogle Scholar
  91. 91.
    Yang P-Y, Liu K, Ngai MH, Lear MJ, Wenk MR, Yao SY (2010) Activity-based proteome profiling of potential cellular targets of orlistat – an FDA approved drug with anti-tumor activities. J Am Chem Soc 132:656–666CrossRefGoogle Scholar
  92. 92.
    Ngai MH, Yang P-Y, Liu K, Shen Y, Wenk MR, Yao SY (2010) Click-based synthesis and proteomic profiling of lipstatin analogues. Chem Commun 46:8335–8337CrossRefGoogle Scholar
  93. 93.
    Yang P-Y, Liu K, Zhang C, Chen GYJ, Shen Y, Ngai MH, Lear MJ, Yao SY (2011) Chemical Modification and Organelle-Specific Localization of Orlistat-Like Natural-Product-Based Probes. Chem Asian J 6:2762–2775Google Scholar
  94. 94.
    Fenteany G, Standaert RF, Lane WS, Choi S, Corey EJ, Schreiber SL (1995) Inhibition of proteasome activites and subunit-specific amino-terminal threonine modification by lactacaystin. Science 268:726–731CrossRefGoogle Scholar
  95. 95.
    Böttcher T, Sieber SA (2008) β-Lactones as privileged structures for the active-site labelling of versatile bacterial enzyme classes. Angew Chem Int Ed 47:4600–4603CrossRefGoogle Scholar
  96. 96.
    Böttcher T, Sieber SA (2008) β-Lactones as specific inhibitors of ClpP attenuate the production of extracellular virulence factors of Staphylococcus aureus. J Am Chem Soc 130:14400–14401CrossRefGoogle Scholar
  97. 97.
    Böttcher T, Sieber SA (2009) Structurally refined β-lactones as potent inhibitors of devastating bacterial virulence factors. ChemBioChem 10:663–666CrossRefGoogle Scholar
  98. 98.
    Böttcher T, Sieber SA (2009) β-lactones decrease the intracellular virulence of Listeria monocytogenes in marcophages. ChemMedChem 4:1260–1263CrossRefGoogle Scholar
  99. 99.
    Wang Z, Gu C, Colby T, Shindo T, Balamurugan R, Waldmann H, Kaiser M, van der Hoorn RAL (2008) β-Lactone probes identify a papain-like peptide ligase in Arabidopsis thaliana. Nat Chem Biol 4:557–563CrossRefGoogle Scholar
  100. 100.
    Preston DA, Wu CYE, Blaszczak LC, Seitz DE, Halligan NG (1990) Biological characterization of a new radioactive labelling reagent for bacterial penicillin-binding proteins. Antimicrob Agents Chemother 34:718–721Google Scholar
  101. 101.
    Zhao G, Meier TI, Kahl SD, Gee KR, Blaszczak LC (1999) BOCILLIN FL, a sensitive and commercially available reagent for detection of penicillin-binding proteins. Antimicrob Agents Chemother 43:1124–1128Google Scholar
  102. 102.
    Staub I, Sieber SA (2008) β-Lactams as selective chemical probes for the in vivo labelling of bacterial enzymes involved in cell wall biosynthesis, antibiotic resistance, and virulence. J Am Chem Soc 130:13400–13409CrossRefGoogle Scholar
  103. 103.
    Staub I, Sieber SA (2009) β-Lactam probes as selective chemical-proteomic tools for the identification and functional characterization of resistance associated enzymes in MRSA. J Am Chem Soc 131:6271–6276CrossRefGoogle Scholar
  104. 104.
    Orth R, Böttcher T, Sieber SA (2010) The biological targets of acivicin inspired 3-chlro- and 3-bromodihydroisoxazole scaffolds. Chem Commun 46:8475–8477CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Institute of Organic ChemistryGraz University of TechnologyGrazAustria

Personalised recommendations