Thiourea Based Fluorous Organocatalyst

  • Yi-Bo Huang
  • Wen-Bin Yi
  • Chun Cai
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 308)


This review deals with general and significant development of the fluorous organocatalysts based on thiourea. The applications of fluorous technology are briefly discussed. The implementations of thiourea based catalysts in organic synthesis are focused on in the chapter.


Fluorous organocatalyst Fluorous technology Thiourea 


  1. 1.
    Houk KN, List B (2004) Asymmetric organocatalysis. Acc Chem Res 37:487CrossRefGoogle Scholar
  2. 2.
    List B (2007) Introduction: organocatalysis. Chem Rev 107:5413CrossRefGoogle Scholar
  3. 3.
    Seayad J, List B (2005) Asymmetric organocatalysis. Org Biomol Chem 3:719CrossRefGoogle Scholar
  4. 4.
    Dalko PI, Moisan L (2001) Enantioselective organocatalysis. Angew Chem Int Ed Engl 40:3726CrossRefGoogle Scholar
  5. 5.
    Dalko PI, Moisan L (2004) In the golden age of organocatalysis. Angew Chem Int Ed Engl 43:5138CrossRefGoogle Scholar
  6. 6.
    Notz W, Tanaka F, Barbas CF (2004) Enamine-based organocatalysis with proline and diamines: the development of direct catalytic asymmetric Aldol, Mannich, Michael, and Diels-Alder reactions. Acc Chem Res 37:580CrossRefGoogle Scholar
  7. 7.
    Chen YG, Tian SK, Deng L (2000) A highly enantioselective catalytic desymmetrization of cyclic anhydrides with modified cinchona alkaloids. J Am Chem Soc 122:9542CrossRefGoogle Scholar
  8. 8.
    Jarvo ER, Miller SJ (2002) Amino acids and peptides as asymmetric organocatalysts. Tetrahedron 58:2481CrossRefGoogle Scholar
  9. 9.
    Yamada YMA, Ikegami S (2000) Efficient Baylis–Hillman reactions promoted by mild cooperative catalysts and their application to catalytic asymmetric synthesis. Tetrahedron Lett 41:2165CrossRefGoogle Scholar
  10. 10.
    Schreiner PR (2003) Metal-free organocatalysis through explicit hydrogen bonding interactions. Chem Soc Rev 32:289CrossRefGoogle Scholar
  11. 11.
    Zhang W, Curran DP (2006) Synthetic applications of fluorous solid-phase extraction (F-SPE). Tetrahedron 62:11837CrossRefGoogle Scholar
  12. 12.
    Etter MC (1990) Encoding and decoding hydrogen-bond patterns of organic compounds. Acc Chem Res 23:120CrossRefGoogle Scholar
  13. 13.
    Etter MC, Panunto TW (1988) 1,3-Bis(m-nitrophenyl)urea: an exceptionally good complexing agent for proton acceptors. J Am Chem Soc 110:5896CrossRefGoogle Scholar
  14. 14.
    Curran DP, Kuo LH (1994) Structure-based analysis and optimization of a highly enantioselective catalyst for the Strecker reaction. J Org Chem 59:3259CrossRefGoogle Scholar
  15. 15.
    Curran DP, Kuo LH (1995) Acceleration of a dipolar Claisen rearrangement by hydrogen bonding to a soluble diaryl-urea. Tetrahedron Lett 36:6647Google Scholar
  16. 16.
    Sigman MS, Jacobsen EN (1998) Schiff base catalysts for the asymmetric Strecker reaction identified and optimized from parallel synthetic libraries. J Am Chem Soc 120:4901CrossRefGoogle Scholar
  17. 17.
    Sigman MS, Vachal P, Jacobsen EN (2000) Angew Chem Int Ed Engl 112:1336CrossRefGoogle Scholar
  18. 18.
    Vachal P, Jacobsen EN (2002) Structure-based analysis and optimization of a highly enantioselective catalyst for the Strecker reaction. J Am Chem Soc 124:10012CrossRefGoogle Scholar
  19. 19.
    Wenzel AG, Jacobsen EN (2002) Asymmetric catalytic Mannich reactions catalyzed by urea derivatives: enantioselective synthesis of β-aryl-β-amino acids. J Am Chem Soc 124:12964CrossRefGoogle Scholar
  20. 20.
    Okino T, Hoashi Y, Takemoto Y (2003) Enantioselective Michael reaction of malonates to nitroolefins catalyzed by bifunctional organocatalysts. J Am Chem Soc 125:12672CrossRefGoogle Scholar
  21. 21.
    Okino T, Hoashi Y, Furukawa T, Xu X, Takemoto Y (2005) Enantio- and diastereoselective Michael reaction of 1,3-dicarbonyl compounds to nitroolefins catalyzed by a bifunctional thiourea. J Am Chem Soc 127:119CrossRefGoogle Scholar
  22. 22.
    Yamaoka T, Miyabe H, Takemoto Y (2007) Catalytic enantioselective Petasis-type reaction of quinolines catalyzed by a newly designed thiourea catalyst. J Am Chem Soc 129:6686CrossRefGoogle Scholar
  23. 23.
    Inokuma T, Hoashi Y, Takemoto Y (2006) Thiourea-catalyzed asymmetric Michael addition of activated methylene compounds to α, β-unsaturated imides: dual activation of imide by intra- and intermolecular hydrogen bonding. J Am Chem Soc 128:9413CrossRefGoogle Scholar
  24. 24.
    Miyabe H, Takemoto Y (2008) Discovery and application of asymmetric reaction by multi-functional thioureas. Bull Chem Soc Jpn 81:785CrossRefGoogle Scholar
  25. 25.
    Cao C, Ye M, Sun X, Tang Y (2006) Pyrrolidine-thiourea as a bifunctional organocatalyst: highly enantioselective Michael addition of cyclohexanone to nitroolefins. Org Lett 8:2901CrossRefGoogle Scholar
  26. 26.
    Dahlin N, Bφgevig A, Adolfsson H (2004) Adv Synth Catal 346:1101CrossRefGoogle Scholar
  27. 27.
    Wang J, Li H, Yu X, Zu L, Wang W (2005) Chiral binaphthyl-derived amine-thiourea organocatalyst-promoted asymmetric Morita-Baylis-Hillman reaction. Org Lett 7:4293CrossRefGoogle Scholar
  28. 28.
    Wang J, Li H, Duan W, Zu L, Wang W (2005) Organocatalytic asymmetric Michael addition of 2,4-pentandione to nitroolefins. Org Lett 7:4713CrossRefGoogle Scholar
  29. 29.
    McCooey SH, Connon SJ (2005) Urea- and thiourea-substituted cinchona alkaloid derivatives as highly efficient bifunctional organocatalysts for the asymmetric addition of malonate to nitroalkene: inversion of configuration at C9 dramatically improves catalyst performance. Angew Chem Int Ed Engl 44:6367CrossRefGoogle Scholar
  30. 30.
    Vakulya B, Varga S, Csampai A, Soós T (2005) Highly enantioselective conjugate addition of nitromethane to chalcones using bifunctional cinchona organocatalysts. Org Lett 7:1967CrossRefGoogle Scholar
  31. 31.
    Hideto M, Tuchida S, Yamauchi M, Takemoto Y (2006) Reaction of nitroorganic compounds using thiourea catalysts anchored to polymer support. Synthesis 19:3295Google Scholar
  32. 32.
    Mike K, Schreiner P (2007) Generally applicable organocatalytic tetrahydropyranylation of hydroxy functionalities with very low catalyst loading. Synthesis 5:779Google Scholar
  33. 33.
    Lukas W, Cabrele C, Vanejews M, Schreiner PR (2007) γ-Aminoadamantanecarboxylic acids through direct C-H bond amidations. European J Org Chem 9:1474Google Scholar
  34. 34.
    Liu K, Cui H, Nie J, Dong K et al (2007) Highly enantioselective Michael addition of aromatic ketones to nitroolefins promoted by chiral bifunctional primary amine-thiourea catalysts based on saccharides. Org Lett 9:923CrossRefGoogle Scholar
  35. 35.
    Li X, Liu K, Ma H, Nie J et al (2008) Highly enantioselective michael addition of malonates to nitroolefins catalyzed by chiral bifunctional tertiary amine-thioureas based on saccharides. Synlett 20:3242Google Scholar
  36. 36.
    Schreiner PR, Wittkopp A (2002) H-Bonding additives act like Lewis acid catalysts. Org Lett 4:217CrossRefGoogle Scholar
  37. 37.
    Kote M, Schreiner PR (2006) Acid-free, organocatalytic acetalization. Tetrahedron 62:434CrossRefGoogle Scholar
  38. 38.
    Yu MS, Curran DP, Nagashima T (2005) Increasing fluorous partition coefficients by solvent tuning. Org Lett 7:3677CrossRefGoogle Scholar
  39. 39.
    Huang YB, Yi WB, Cai C (2010) An efficient, recoverable fluorous organocatalyst for direct reductive amination of aldehydes. J Fluor Chem 131:879CrossRefGoogle Scholar
  40. 40.
    Berkessel A, Seelig B (2009) A simplified synthesis of Takemoto’s catalyst. Synlett 2113Google Scholar
  41. 41.
    Wang L, Cai C, Curran DP, Zhang W (2010) Enantioselective α-chlorination of aldehydes with recyclable fluorous (S)-pyrrolidine-thiourea bifunctional organocatalyst. Synlett 433Google Scholar
  42. 42.
    Pipko PM (2004) Activation of carbonyls by double hydrogen bonding: an emerging tool in asymmetric catalysis. Angew Chem Int Ed Engl 43:2062CrossRefGoogle Scholar
  43. 43.
    Wittkopp A, Schreiner PR (2003) Metal-free, noncovalent catalysis of Diels–Alder reactions by neutral hydrogen bond donors in organic solvents and in water. Chemistry 9:407CrossRefGoogle Scholar
  44. 44.
    Sohtome Y, Takemura N, Takagi R et al (2008) Thiourea-catalyzed Morita–Baylis–Hillman reaction. Tetrahedron 64:9423CrossRefGoogle Scholar
  45. 45.
    Huang YB, Yi WB, Cai C. An efficient, recoverable fluorous organocatalyst for accelerating the DABCO-promoted Morita-Baylis-Hillman reaction. Chin Chem Lett. doi: 10.1016/j.cclet.2011.03.010
  46. 46.
    Dessole G, Herrera RP, Ricci A (2004) H-Bonding organocatalysed Friedel-Crafts alkylation of aromatic and heteroaromatic systems with nitroolefins. Synlett 2374Google Scholar
  47. 47.
    Dömling A, Ugi I (2000) Multicomponent reactions with isocyanides. Angew Chem Int Ed Engl 39:3168CrossRefGoogle Scholar
  48. 48.
    Ramón DJ, Yus M (2005) Asymmetric multicomponent reactions: the new frontier. Angew Chem Int Ed Engl 44:1602CrossRefGoogle Scholar
  49. 49.
    Pan SC, List B (2007) Catalytic one-pot, three-component acyl-Strecker reaction. Synlett 318Google Scholar
  50. 50.
    Tararov VI, Kadyrov R, Riermeier TH et al (2004) Direct reductive amination versus hydrogenation of intermediates - a comparison. Adv Synth Catal 346:561CrossRefGoogle Scholar
  51. 51.
    Gross T, Seayad AM, Ahmad M, Beller M (2002) Synthesis of primary amines: first homogeneously catalyzed reductive amination with ammonia. Org Lett 4:2055CrossRefGoogle Scholar
  52. 52.
    Miriyala B, Bhattacharyya S, Williamson JS (2004) Tetrahedron 60:1463CrossRefGoogle Scholar
  53. 53.
    Itoh T, Nagata K, Ishikawa H et al (2004) A selective reductive amination of aldehydes by the use of Hantzsch dihydropyridines as reductant. Tetrahedron 60:6649CrossRefGoogle Scholar
  54. 54.
    Weil T, Kotke M, Kleiner CM, Schreiner PR (2008) Cooperative brønsted acid-type organocatalysis: alcoholysis of styrene oxides. Org Lett 10:1513CrossRefGoogle Scholar
  55. 55.
    Halland N, Braunton A, Bachmann S et al (2004) Direct organocatalytic asymmetric α-chlorination of aldehydes. J Am Chem Soc 126:4790CrossRefGoogle Scholar
  56. 56.
    Brochu MP, Brown SP, MacMillan DWC (2004) Direct and enantioselective organocatalytic α-chlorination of aldehydes. J Am Chem Soc 126:4108CrossRefGoogle Scholar
  57. 57.
    Mei Y, Bentley PA, Du J (2009) NCS with thiourea as highly efficient catalysts for acetalization of aldehydes. Tetrahedron Lett 50:4199CrossRefGoogle Scholar
  58. 58.
    Spencer CM, Faulds D (2000) Esomeprazole. Drugs 60:321CrossRefGoogle Scholar
  59. 59.
    Russo A, Lattanzi A (2009) Hydrogen-bonding catalysis: mild and highly chemoselective oxidation of sulfides. Adv Synth Catal 351:521CrossRefGoogle Scholar
  60. 60.
    Mba M, Prins LJ, Licini G (2007) C3-Symmetric Ti(IV) triphenolate amino complexes as sulfoxidation catalysts with aqueous hydrogen peroxide. Org Lett 9:21CrossRefGoogle Scholar
  61. 61.
    Huang YB, Yi WB, Cai C (2011) A recyclable fluorous thiourea organocatalyst for the chemoselective oxidation of sulfides. J Fluorine Chem. doi:10.1016/j.jfluchem.2011.05.026Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Nanjing University of Science and TechnologyNanjingP.R. China

Personalised recommendations