Charge Transport in Organic Semiconductors

  • Heinz Bässler
  • Anna Köhler
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 312)


Modern optoelectronic devices, such as light-emitting diodes, field-effect transistors and organic solar cells require well controlled motion of charges for their efficient operation. The understanding of the processes that determine charge transport is therefore of paramount importance for designing materials with improved structure-property relationships. Before discussing different regimes of charge transport in organic semiconductors, we present a brief introduction into the conceptual framework in which we interpret the relevant photophysical processes. That is, we compare a molecular picture of electronic excitations against the Su-Schrieffer-Heeger semiconductor band model. After a brief description of experimental techniques needed to measure charge mobilities, we then elaborate on the parameters controlling charge transport in technologically relevant materials. Thus, we consider the influences of electronic coupling between molecular units, disorder, polaronic effects and space charge. A particular focus is given to the recent progress made in understanding charge transport on short time scales and short length scales. The mechanism for charge injection is briefly addressed towards the end of this chapter.


Charge carrier mobility Charge transport Organic semiconductors Molecular model Gaussian disorder model SSH model Organic optoelectronics 


  1. 1.
    Borsenberger PM, Weiss DS (1998) Organic photoreceptors for xerography. Marcel Dekker, New YorkGoogle Scholar
  2. 2.
    Friend RH, Gymer RW, Holmes AB, Burroughes JH, Marks RN, Taliani C, Bradley DDC, Dos Santos DA, Bredas JL, Logdlund M, Salaneck WR (1999) Electroluminescence in conjugated polymers. Nature 397:121Google Scholar
  3. 3.
    Forrest SR (2004) The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428:911Google Scholar
  4. 4.
    All Articles in (2007) Special issue on organic electronics and optoelectronics. Chem Rev 107:923Google Scholar
  5. 5.
    Müllen K, Scherf U (2006) Organic light emitting devices: synthesis, properties and applications. Wiley-VCH, WeinheimGoogle Scholar
  6. 6.
    Yersin H (2007) Highly efficient OLEDs with phosphorescent materials. Wiley-VCH, WeinheimGoogle Scholar
  7. 7.
    Hertel D, Bässler H (2008) Photoconduction in amorphous organic solids. Chemphyschem 9:666Google Scholar
  8. 8.
    Chang EK, Rohlfing M, Louie SG (2000) Excitons and optical properties of alpha-quartz. Phys Rev Lett 85:2613Google Scholar
  9. 9.
    Kador L (1991) Stochastic-theory of inhomogeneous spectroscopic line-shapes reinvestigated. J Chem Phys 95:5574Google Scholar
  10. 10.
    Coropceanu V, Cornil J, da Silva DA, Olivier Y, Silbey R, Bredas JL (2007) Charge transport in organic semiconductors. Chem Rev 107:926Google Scholar
  11. 11.
    Warta W, Stehle R, Karl N (1985) Ultrapure, high mobility organic photoconductors. Appl Phys A 36:163Google Scholar
  12. 12.
    Karl N (2000) In: Madelung O, Schulz M, Weiss H (eds) Semiconductors (Landolt-Boernstein (New Series), Group III). Springer, Heidelberg, p 106Google Scholar
  13. 13.
    Karl N (2001) In: Farchioni R, Grosso G (eds) Organic electronic materials. Springer-Verlag, BerlinGoogle Scholar
  14. 14.
    Schwoerer M, Wolf HC (2007) Organic molecular solids. Wiley-VCH, WeinheimGoogle Scholar
  15. 15.
    Schott M (2006) In: Lanzani G (ed) Photophysics of molecular materials: from single molecules to single crystals. Wiley-VCH, Weinheim, p 49Google Scholar
  16. 16.
    Collini E, Scholes RD (2009) Coherent intrachain energy migration in a conjugated polymer at room temperature. Science 323:369Google Scholar
  17. 17.
    Barford W, Trembath D (2009) Exciton localization in polymers with static disorder. Phys Rev B 80:165418Google Scholar
  18. 18.
    Hoffmann ST, Bässler H, Köhler A (2010) What determines inhomogeneous broadening of electronic transitions in conjugated polymers. J Phys Chem B 114:17037Google Scholar
  19. 19.
    Bässler H (1985) In: Bloor D, Chance RR (eds) Polydiacetylenes. Martinus Nijhof, Dordrecht, The Netherlands, p 135Google Scholar
  20. 20.
    Blum T, Bässler H (1988) Reinvestigation of generation and transport of charge-carriers in crystalline polydiacetylenes. Chem Phys 123:431Google Scholar
  21. 21.
    Su WP, Schrieffer JR, Heeger AJ (1979) Solitons in polyacetylene. Phys Rev Lett 42:1698Google Scholar
  22. 22.
    Heeger AJ, Kivelson S, Schrieffer JR, Su WP (1988) Solitons in conducting polymers. Rev Mod Phys 60:781Google Scholar
  23. 23.
    Fesser K, Bishop AR, Campbell DK (1983) Optical-absorption from polarons in a model of polyacetylene. Phys Rev B 27:4804Google Scholar
  24. 24.
    Sariciftci NS (1997) Primary photoexcitations in conjugated polymers: molecular exciton versus semiconductor band model. Word Scientific, SingaporeGoogle Scholar
  25. 25.
    Longuet-Higgins HC, Salem L (1959) The alternation of bond lengths in long conjugated chain molecules. Proc Royal Soc London A 251:172Google Scholar
  26. 26.
    Salaneck WR, Staftström S, Bredas J-L (1996) Conjugated polymer surfaces and interfaces. Electronic and chemical structure of interfaces for polymer light emitting devices. Cambridge University Press, CambridgeGoogle Scholar
  27. 27.
    Weiser G (1992) Stark-effect of one-dimensional Wannier excitons in polydiacetylene single-crystals. Phys Rev B 45:14076Google Scholar
  28. 28.
    Van der Horst JW, Bobbert PA, Michels MAJ, Bässler H (2001) Calculation of excitonic properties of conjugated polymers using the Bethe–Salpeter equation. J Chem Phys 114:6950Google Scholar
  29. 29.
    Albrecht U, Bässler H (1995) Efficiency of charge recombination in organic light-emitting-diodes. Chem Phys 199:207Google Scholar
  30. 30.
    Kohler BE, Woehl JC (1995) A simple-model for conjugation lengths in long polyene chains. J Chem Phys 103:6253Google Scholar
  31. 31.
    Romanovskii YV, Gerhard A, Schweitzer B, Personov RI, Bässler H (1999) Delayed luminescence of the ladder-type methyl-poly(para-phenylene). Chem Phys 249:29Google Scholar
  32. 32.
    Monkman AP, Burrows HD, Hamblett I, Navaratnam S, Scherf U, Schmitt C (2000) The triplet state of the ladder-type methyl-poly(p-phenylene) as seen by pulse radiolysis-energy transfer. Chem Phys Lett 327:111Google Scholar
  33. 33.
    Hertel D, Setayesh S, Nothofer HG, Scherf U, Müllen K, Bässler H (2001) Phosphorescence in conjugated poly(para-phenylene)-derivatives. Adv Mater 13:65Google Scholar
  34. 34.
    Köhler A, Wilson JS, Friend RH, Al-Suti MK, Khan MS, Gerhard A, Bässler H (2002) The singlet-triplet energy gap in organic and Pt-containing phenylene ethynylene polymers and monomers. J Chem Phys 116:9457Google Scholar
  35. 35.
    Köhler A, Beljonne D (2004) The singlet-triplet exchange energy in conjugated polymers. Adv Funct Mater 14:11Google Scholar
  36. 36.
    Hertel D, Bässler H, Scherf U, Hörhold HH (1999) Charge carrier transport in conjugated polymers. J Chem Phys 110:9214Google Scholar
  37. 37.
    Deussen M, Bässler H (1993) Anion and cation absorption-spectra of conjugated oligomers and polymer. Synth Met 54:49Google Scholar
  38. 38.
    Bäuerle P, Segelbacher U, Maier A, Mehring M (1993) Electronic-structure of monomeric and dimeric cation radicals in end-capped oligothiophenes. J Am Chem Soc 115:10217Google Scholar
  39. 39.
    Nöll G, Lambert C, Lynch M, Porsch M, Daub J (2008) Electronic structure and properties of poly- and oligoazulenes. J Phys Chem C 112:2156Google Scholar
  40. 40.
    Osterholm A, Petr A, Kvarnstrm C, Ivaska A, Dunsch L (2008) The nature of the charge carriers in polyazulene as studied by in situ electron spin resonance?UV?visible?near-infrared spectroscopy. J Phys Chem B 112:14149Google Scholar
  41. 41.
    van Haare JAEH, Havinga EE, van Dongen JLJ, Janssen RAJ, Cornil J, Bredas JL (1998) Redox states of long oligothiophenes: two polarons on a single chain. Chem Eur J 4:1509Google Scholar
  42. 42.
    Kadashchuk A, Arkhipov VI, Kim C-H, Shinar J, Lee D-W, Hong Y-R, Jin J-I, Heremans P, Bässler H (2007) Localized trions in conjugated polymers. Phys Rev B 76:235205Google Scholar
  43. 43.
    Furukawa Y (1996) Electronic absorption and vibrational spectroscopies of conjugated conducting polymers. J Phys Chem 100:15644Google Scholar
  44. 44.
    Sakamoto A, Nakamura O, Tasumi M (2008) Picosecond time-resolved polarized infrared spectroscopic study of photoexcited states and their dynamics in oriented poly(p-phenylenevinylene). J Phys Chem B 112:16437Google Scholar
  45. 45.
    Pope M, Swenberg CE (1999) Electronic processes in organic crystals and polymers. Oxford University Press, OxfordGoogle Scholar
  46. 46.
    Arkhipov VI, Fishchuk II, Kadashchuk A, Bässler H (2007) In: Hadziioannou G, Malliaras GG (eds) Semiconducting polymers: chemistry, physics, engineering, vol 1. Wiley-VCH, WeinheimGoogle Scholar
  47. 47.
    Borsenberger PM, Pautmeier L, Bässler H (1991) Hole transport in bis(4-N, N-diethylamino-2-methylphenyl)-4-methylphenylmethane. J Chem Phys 95:1258Google Scholar
  48. 48.
    Markham JPJ, Anthopoulos TD, Samuel IDW, Richards GJ, Burn PL, Im C, Bässler H (2002) Nondispersive hole transport in a spin-coated dendrimer film measured by the charge-generation-layer time-of-flight method. Appl Phys Lett 81:3266Google Scholar
  49. 49.
    Gambino S, Samuel IDW, Barcena H, Burn PL (2008) Electric field and temperature dependence of the hole mobility in a bis-fluorene cored dendrimer. Org Electron 9:220Google Scholar
  50. 50.
    Klenkler RA, Xu G, Aziz H, Popovic ZD (2006) Charge-carrier mobility in an organic semiconductor thin film measured by photoinduced electroluminescence. Appl Phys Lett 88:242101Google Scholar
  51. 51.
    Bange S, Kuksov A, Neher D (2007) Sensing electron transport in a blue-emitting copolymer by transient electroluminescence. Appl Phys Lett 91:143516Google Scholar
  52. 52.
    Juska G, Arlauskas K, Viliunas M, Kocka J (2000) Extraction current transients: new method of study of charge transport in microcrystalline silicon. Phys Rev Lett 84:4946Google Scholar
  53. 53.
    Bange S, Schubert M, Neher D (2010) Charge mobility determination by current extraction under linear increasing voltages: case of nonequilibrium charges and field-dependent mobilities. Phys Rev B 81:035209Google Scholar
  54. 54.
    Bässler H (1993) Charge transport in disordered organic photoconductors – a Monte-Carlo simulation study. Phys Status Solidi B 175:15Google Scholar
  55. 55.
    Miller A, Abrahams E (1960) Impurity conduction at low concentrations. Phys Rev 120:745Google Scholar
  56. 56.
    Arkhipov VI, Emelianova EV, Adriaenssens GJ (2001) Effective transport energy versus the energy of most probable jumps in disordered hopping systems. Phys Rev B 6412:125125Google Scholar
  57. 57.
    Pautmeier L, Richert R, Bässler H (1991) Anomalous time-independent diffusion of charge-carriers in a random potential under a bias field. Phil Mag B 63:587Google Scholar
  58. 58.
    Richert R, Pautmeier L, Bässler H (1989) Diffusion and drift of charge-carriers in a random potential – deviation from Einstein law. Phys Rev Lett 63:547Google Scholar
  59. 59.
    Roichman Y, Tessler N (2002) Generalized Einstein relation for disordered semiconductors – implications for device performance. Appl Phys Lett 80:1948Google Scholar
  60. 60.
    Tal O, Epstein I, Snir O, Roichman Y, Ganot Y, Chan CK, Kahn A, Tessler N, Rosenwaks Y (2008) Measurements of the Einstein relation in doped and undoped molecular thin films. Phys Rev B 77:201201Google Scholar
  61. 61.
    Tessler N, Preezant Y, Rappaport N, Roichman Y (2009) Charge transport in disordered organic materials and its relevance to thin-film devices: a tutorial review. Adv Mater 21:2741Google Scholar
  62. 62.
    Borsenberger PM, Pautmeier LT, Bässler H (1993) Scaling behavior of nondispersive charge-transport in disordered molecular-solids. Phys Rev B 48:3066Google Scholar
  63. 63.
    Fishchuk II, Kadashchuk A, Bässler H, Abkowitz M (2004) Low-field charge-carrier hopping transport in energetically and positionally disordered organic materials. Phys Rev B 70:245212Google Scholar
  64. 64.
    Movaghar B, Grünewald M, Ries B, Bässler H, Wurtz D (1986) Diffusion and relaxation of energy in disordered organic and inorganic materials. Phys Rev B 33:5545Google Scholar
  65. 65.
    Gartstein YN, Conwell EM (1994) High-field hopping mobility of polarons in disordered molecular-solids – a Monte-Carlo study. Chem Phys Lett 217:41Google Scholar
  66. 66.
    Dunlap DH, Parris PE, Kenkre VM (1996) Charge-dipole model for the universal field dependence of mobilities in molecularly doped polymers. Phys Rev Lett 77:542Google Scholar
  67. 67.
    Cordes H, Baranovskii SD, Kohary K, Thomas P, Yamasaki S, Hensel F, Wendorff JH (2001) One-dimensional hopping transport in disordered organic solids. I. Analytic calculations. Phys Rev B 63:094201Google Scholar
  68. 68.
    Hirao A, Nishizawa H, Sugiuchi M (1995) Diffusion and drift of charge carriers in molecularly doped polymers. Phys Rev Lett 75:1787Google Scholar
  69. 69.
    Schein LB, Glatz D, Scott JC (1990) Observation of the transition from adiabatic to nonadiabatic small polaron hopping in a molecularly doped polymer. Phys Rev Lett 65:472Google Scholar
  70. 70.
    Fishchuk II, Kadashchuk A, Bässler H, Nespurek S (2003) Nondispersive polaron transport in disordered organic solids. Phys Rev B 67:224303Google Scholar
  71. 71.
    Parris PE, Kenkre VM, Dunlap DH (2001) Nature of charge carriers in disordered molecular solids: are polarons compatible with observations? Phys Rev Lett 87:126601Google Scholar
  72. 72.
    Schein LB, Tyutnev A (2008) The contribution of energetic disorder to charge transport in molecularly doped polymers. J Phys Chem C 112:7295Google Scholar
  73. 73.
    Borsenberger PM, Bässler H (1991) Concerning the role of dipolar disorder on charge transport in molecularly doped polymers. J Chem Phys 95:5327Google Scholar
  74. 74.
    Scher H, Montroll EW (1975) Anomalous transit-time dispersion in amorphous solids. Phys Rev B 12:2455Google Scholar
  75. 75.
    Arkhipov VI, Iovu MS, Rudenko AI, Shutov SD (1979) Analysis of the dispersive charge transport in vitreous 0.55 As2S3-0.45 Sb2S3. Physica Status Solidi (a) 54:67Google Scholar
  76. 76.
    Martens HCF, Blom PWM, Schoo HFM (2000) Comparative study of hole transport in poly(p-phenylene vinylene) derivatives. Phys Rev B 61:7489Google Scholar
  77. 77.
    Young RH (1994) Trap-free space-charge-limited current – analytical solution for an arbitrary mobility law. Phil Mag Lett 70:331Google Scholar
  78. 78.
    Abkowitz M, Pai DM (1986) Comparison of the drift mobility measured under transient and steady-state conditions in a prototypical hopping system. Phil Mag B 53:193Google Scholar
  79. 79.
    Young RH (1994) A law of corresponding states for hopping transport in disordered materials. Phil Mag B 69:577Google Scholar
  80. 80.
    Laquai F, Wegner G, Im C, Bässler H, Heun S (2006) Nondispersive hole transport in carbazole- and anthracene-containing polyspirobifluorene copolymers studied by the charge-generation layer time-of-flight technique. J Appl Phys 99:033710Google Scholar
  81. 81.
    Laquai F, Wegner G, Im C, Bässler H, Heun S (2006) Comparative study of hole transport in polyspirobifluorene polymers measured by the charge-generation layer time-of-flight technique. J Appl Phys 99:023712Google Scholar
  82. 82.
    Bao Z, Dodabalapur A, Lovinger AJ (1996) Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl Phys Lett 69:4108Google Scholar
  83. 83.
    Sirringhaus H, Brown PJ, Friend RH, Nielsen MM, Bechgaard K, Langeveld-Voss BMW, Spiering AJH, Janssen RAJ, Meijer EW, Herwig P, de Leeuw DM (1999) Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401:685Google Scholar
  84. 84.
    Brown PJ, Sirringhaus H, Harrison M, Shkunov M, Friend RH (2001) Optical spectroscopy of field-induced charge in self-organized high mobility poly(3-hexylthiophene). Phys Rev B 63:125204Google Scholar
  85. 85.
    Brown PJ, Thomas DS, Köhler A, Wilson JS, Kim J-S, Ramsdale CM, Sirringhaus H, Friend RH (2003) Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene). Phys Rev B 67:064203Google Scholar
  86. 86.
    Khan RUA, Poplavskyy D, Kreouzis T, Bradley DDC (2007) Hole mobility within arylamine-containing polyfluorene copolymers: a time-of-flight transient-photocurrent study. Phys Rev B 75:035215Google Scholar
  87. 87.
    Kreouzis T, Poplavskyy D, Tuladhar SM, Campoy-Quiles M, Nelson J, Campbell AJ, Bradley DDC (2006) Temperature and field dependence of hole mobility in poly(9,9-dioctylfluorene). Phys Rev B 73:235201Google Scholar
  88. 88.
    Scherf U, List EJW (2002) Semiconducting polyfluorenes – towards reliable structure–property relationships. Adv Mater 14:477Google Scholar
  89. 89.
    Khan ALT, Sreearunothai P, Herz LM, Banach MJ, Köhler A (2004) Morphology-dependent energy transfer within polyfluorene thin films. Phys Rev B 69:085201Google Scholar
  90. 90.
    Van Mensfoort SLM, Vulto SIE, Janssen RAJ, Coehoorn R (2008) Hole transport in polyfluorene-based sandwich-type devices: quantitative analysis of the role of energetic disorder. Phys Rev B 78:085208Google Scholar
  91. 91.
    Mozer AJ, Sariciftci NS, Pivrikas A, Österbacka R, Juska G, Brassat L, Bässler H (2005) Charge carrier mobility in regioregular poly(3-hexylthiophene) probed by transient conductivity techniques: a comparative study. Phys Rev B 71:035214Google Scholar
  92. 92.
    Meisel KD, Vocks H, Bobbert PA (2005) Polarons in semiconducting polymers: study within an extended Holstein model. Phys Rev B 71:205206Google Scholar
  93. 93.
    Mohan SR, Joshi MP, Singh MP (2009) Negative electric field dependence of mobility in TPD doped polystyrene. Chem Phys Lett 470:279Google Scholar
  94. 94.
    Tanase C, Wildeman J, Blom PWM, Mena Benito ME, de Leeuw DM, van Breemen AJJM, Herwig PT, Chlon CHT, Sweelssen J, Schoo HFM (2005) Optimization of the charge transport in poly(phenylene vinylene) derivatives by processing and chemical modification. J Appl Phys 97:123703Google Scholar
  95. 95.
    Van Mensfoort SLM, Coehoorn R (2008) Effect of Gaussian disorder on the voltage dependence of the current density in sandwich-type devices based on organic semiconductors. Phys Rev B 78:085207Google Scholar
  96. 96.
    Pasveer WF, Cottaar J, Tanase C, Coehoorn R, Bobbert PA, Blom PWM, de Leeuw DM, Michels MAJ (2005) Unified description of charge-carrier mobilities in disordered semiconducting polymers. Phys Rev Lett 94:206601Google Scholar
  97. 97.
    Arkhipov VI, Heremans P, Emelianova EV, Adriaenssens GJ, Bässler H (2002) Weak-field carrier hopping in disordered organic semiconductors: the effects of deep traps and partly filled density-of-states distribution. J Phys Condens Matter 14:9899Google Scholar
  98. 98.
    Coehoorn R, Pasveer WF, Bobbert PA, Michels MAJ (2005) Charge-carrier concentration dependence of the hopping mobility in organic materials with Gaussian disorder. Phys Rev B 72:155206Google Scholar
  99. 99.
    Coehoorn R (2007) Hopping mobility of charge carriers in disordered organic host-guest systems: dependence on the charge-carrier concentration. Phys Rev B 75:155203Google Scholar
  100. 100.
    Fishchuk II, Arkhipov VI, Kadashchuk A, Heremans P, Bässler H (2007) Analytic model of hopping mobility at large charge carrier concentrations in disordered organic semiconductors: polarons versus bare charge carriers. Phys Rev B 76:045210Google Scholar
  101. 101.
    Arkhipov VI, Emelianova EV, Heremans P, Bässler H (2005) Analytic model of carrier mobility in doped disordered organic semiconductors. Phys Rev B 72:235202Google Scholar
  102. 102.
    Fishchuk II, Kadashchuk AK, Genoe J, Ullah M, Sitter H, Singh TB, Sariciftci NS, Bässler H (2010) Temperature dependence of the charge carrier mobility in disordered organic semiconductors at large carrier concentrations. Phys Rev B 81:045202Google Scholar
  103. 103.
    Emin D (2008) Generalized adiabatic polaron hopping: Meyer-Neldel compensation and Poole-Frenkel behavior. Phys Rev Lett 100:166602Google Scholar
  104. 104.
    Craciun NI, Wildeman J, Blom PWM (2008) Universal Arrhenius temperature activated charge transport in diodes from disordered organic semiconductors. Phys Rev Lett 100:056601Google Scholar
  105. 105.
    Blakesley JC, Clubb HS, Greenham NC (2010) Temperature-dependent electron and hole transport in disordered semiconducting polymers: analysis of energetic disorder. Phys Rev B 81:045210Google Scholar
  106. 106.
    Agrawal R, Kumar P, Ghosh S, Mahapatro AK (2008) Thickness dependence of space charge limited current and injection limited current in organic molecular semiconductors. Appl Phys Lett 93:073311Google Scholar
  107. 107.
    Walzer K, Maennig B, Pfeiffer M, Leo K (2007) Highly efficient organic devices based on electrically doped transport layers. Chem Rev 107:1233Google Scholar
  108. 108.
    Chiang CK, Fincher CR, Park JYW, Heeger AJ, Shirakawa H, Louis EJ, Gau SC, MacDiarmid AG (1977) Electrical conductivity in doped polyacetylene. Phys Rev Lett 39:1098Google Scholar
  109. 109.
    Heeger AJ (1989) Charge transfer in conducting polymers. Striving toward intrinsic properties. Faraday Discuss Chem Soc 88:203Google Scholar
  110. 110.
    Pfeiffer M, Fritz T, Blochwitz J, Nollau A, Plönnigs B, Beyer A, Leo K (1999) Controlled doping of molecular organic layers: physics and device prospects. Adv Sol State Phys 39:77Google Scholar
  111. 111.
    Gao W, Kahn A (2001) Controlled p-doping of zinc phthalocyanine by coevaporation with tetrafluorotetracyanoquinodimethane: a direct and inverse photoemission study. Appl Phys Lett 79:4040Google Scholar
  112. 112.
    Matsushima T, Adachi C (2008) Enhancing hole transports and generating hole traps by doping organic hole-transport layers with p-type molecules of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane. Thin Solid Films 517:874Google Scholar
  113. 113.
    Lee J-H, Leem D-S, Kim J-J (2010) Effect of host organic semiconductors on electrical doping. Org Electron 11:486Google Scholar
  114. 114.
    Zhang Y, de Boer B, Blom PWM (2009) Controllable molecular doping and charge transport in solution-processed polymer semiconducting layers. Adv Funct Mater 19:1901Google Scholar
  115. 115.
    Maennig B, Pfeiffer M, Nollau A, Zhou X, Leo K, Simon P (2001) Controlled p-type doping of polycrystalline and amorphous organic layers: self-consistent description of conductivity and field-effect mobility by a microscopic percolation model. Phys Rev B 64:195208Google Scholar
  116. 116.
    Kido J, Nagai K, Okamoto Y (1993) Bright organic electroluminescent devices with double-layer cathode. IEEE Trans Electron Devices 40:1342Google Scholar
  117. 117.
    Nollau A, Pfeiffer M, Fritz T, Leo K (2000) Controlled n-type doping of a molecular organic semiconductor: naphthalenetetracarboxylic dianhydride (NTCDA) doped with bis(ethylenedithio)-tetrathiafulvalene (BEDT-TTF). J Appl Phys 87:4340Google Scholar
  118. 118.
    Tanaka S, Kanai K, Kawabe E, Iwahashi T, Nishi T, Ouchi Y, Seki K (2005) Doping effect of tetrathianaphthacene molecule in organic semiconductors on their interfacial electronic structures studied by UV photoemission spectroscopy. Jpn J Appl Phys 44:3760Google Scholar
  119. 119.
    Chan CK, Amy F, Zhang Q, Barlow S, Marder S, Kahn A (2006) N-Type doping of an electron-transport material by controlled gas-phase incorporation of cobaltocene. Chem Phys Lett 431:67Google Scholar
  120. 120.
    Werner AG, Li F, Harada K, Pfeiffer M, Fritz T, Leo K (2003) Pyronin B as a donor for n-type doping of organic thin films. Appl Phys Lett 82:4495Google Scholar
  121. 121.
    Werner A, Li F, Harada K, Pfeiffer M, Fritz T, Leo K, Machill S (2004) n-Type doping of organic thin films using cationic dyes. Adv Funct Mater 14:255Google Scholar
  122. 122.
    Hulea IN, Brom HB, Houtepen AJ, Vanmaekelbergh D, Kelly JJ, Meulenkamp EA (2004) Wide energy-window view on the density of states and hole mobility in poly(p-phenylene vinylene). Phys Rev Lett 93:166601Google Scholar
  123. 123.
    Tanase C, Meijer EJ, Blom PWM, de Leeuw DM (2003) Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes. Phys Rev Lett 91:216601Google Scholar
  124. 124.
    Silver M, Pautmeier L, Bässler H (1989) On the origin of exponential band tails in amorphous-semiconductors. Solid State Commun 72:177Google Scholar
  125. 125.
    Arkhipov VI, Heremans P, Emelianova EV, Bässler H (2005) Effect of doping on the density-of-states distribution and carrier hopping in disordered organic semiconductors. Phys Rev B 71:045214Google Scholar
  126. 126.
    Zhou J, Zhou YC, Zhao JM, Wu CQ, Ding XM, Hou XY (2007) Carrier density dependence of mobility in organic solids: a Monte Carlo simulation. Phys Rev B 75:153201Google Scholar
  127. 127.
    Van der Holst JJM, van Oost FWA, Coehoorn R, Bobbert PA (2009) Electron-hole recombination in disordered organic semiconductors: validity of the Langevin formula. Phys Rev B 80:235202Google Scholar
  128. 128.
    Prigodin VN, Hsu FC, Park JH, Waldmann O, Epstein AJ (2008) Electron-ion interaction in doped conducting polymers. Phys Rev B 78:035203Google Scholar
  129. 129.
    Lee HJ, Lee J, Park S-M (2010) Electrochemistry of conductive polymers. 45. Nanoscale conductivity of PEDOT and PEDOT:PSS composite films studied by current-sensing AFM. J Phys Chem B 114:2660Google Scholar
  130. 130.
    Jung JW, Lee JU, Jo WH (2009) High-efficiency polymer solar cells with water-soluble and self-doped conducting polyaniline graft copolymer as hole transport layer. J Phys Chem C 114:633Google Scholar
  131. 131.
    Banerjee S, Kumar A (2010) Dielectric behavior and charge transport in polyaniline nanofiber reinforced PMMA composites. J Phys Chem Solids 71:381Google Scholar
  132. 132.
    Li D, Huang J, Kaner RB (2009) Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Acc Chem Res 42:135Google Scholar
  133. 133.
    Lee K, Miller EK, Aleshin AN, Menon R, Heeger AJ, Kim JH, Yoon CO, Lee H (1998) Nature of the metallic state in conducting polypyrrole. Adv Mater 10:456Google Scholar
  134. 134.
    Hulea IN, Brom HB, Mukherjee AK, Menon R (2005) Doping, density of states, and conductivity in polypyrrole and poly(p-phenylene vinylene). Phys Rev B 72:054208Google Scholar
  135. 135.
    Mott NF (1969) Conduction in non-crystalline materials. 3. Localized states in a pseudogap and near extremities of conduction and valence bands. Phil Mag 19:835Google Scholar
  136. 136.
    Weiser G, Möller S (2002) Directional dispersion of the optical resonance of ?-?* transitions of alpha-sexithiophene single crystals. Phys Rev B 65:045203Google Scholar
  137. 137.
    Zuilhof H, Barentsen HM, van Dijk M, Sudhölter EJR, Hoofman RJOM, Siebbeles LDA, de Haas MP, Warman JM (2001) In: Nalwa HS (ed) Supramolecular photosensitive and electroactive materials. Elsevier, San DiegoGoogle Scholar
  138. 138.
    Milota F, Sperling J, Szöcs V, Tortschanoff A, Kauffmann HF (2004) Correlation of femtosecond wave packets and fluorescence interference in a conjugated polymer: towards the measurement of site homogeneous dephasing. J Chem Phys 120:9870Google Scholar
  139. 139.
    Dykstra TE, Kovalevskij V, Yang X, Scholes GD (2005) Excited state dynamics of a conformationally disordered conjugated polymer: a comparison of solutions and film. Chem Phys 318:21Google Scholar
  140. 140.
    Gelinck GH, Warman JM (1996) Charge carrier dynamics in pulse-irradiated polyphenylenevinylenes: effects of broken conjugation, temperature, and accumulated dose. J Phys Chem 100:20035Google Scholar
  141. 141.
    Prins P, Candeias LP, van Breemen AJJM, Sweelssen J, Herwig PT, Schoo HFM, Siebbeles LDA (2005) Electron and hole dynamics on isolated chains of a solution-processable poly(thienylenevinylene) derivative in dilute solution. Adv Mater 17:718Google Scholar
  142. 142.
    Huitema HEA, Gelinck GH, van der Putten JBPH, Kuijk KE, Hart CM, Cantatore E, de Leeuw DM (2002) Active-matrix displays driven by solution-processed polymeric transistors. Adv Mater 14:1201Google Scholar
  143. 143.
    Grozema FC, van Duijnen PT, Berlin YA, Ratner MA, Siebbeles LDA (2002) Intramolecular charge transport along isolated chains of conjugated polymers: effect of torsional disorder and polymerization defects. J Phys Chem B 106:7791Google Scholar
  144. 144.
    Warman JM, de Haas MP, Dicker G, Grozema FC, Piris J, Debije MG (2004) Charge mobilities in organic semiconducting materials determined by pulse-radiolysis time-resolved microwave conductivity: ?-bond-conjugated polymers versus ???-stacked discotics. Chem Mater 16:4600Google Scholar
  145. 145.
    Adam D, Schuhmacher P, Simmerer J, Häussling L, Siemensmeyer K, Etzbach KH, Ringsdorf H, Haarer D (1994) Fast photoconduction in the highly ordered columnar phase of a discotic liquid-crystal. Nature 371:141Google Scholar
  146. 146.
    Pingel P, Zen A, Abellon RD, Grozema FC, Siebbeles LDA, Neher D (2010) Temperature-resolved local and macroscopic charge carrier transport in thin P3HT layers. Adv Funct Mater 20:2286Google Scholar
  147. 147.
    Joshi S, Grigorian S, Pietsch U, Pingel P, Zen A, Neher D, Scherf U (2008) Thickness dependence of the crystalline structure and hole mobility in thin films of low molecular weight poly(3-hexylthiophene). Macromolecules 41:6800Google Scholar
  148. 148.
    Prins P, Grozema FC, Siebbeles LDA (2006) Efficient charge transport along phenylene-vinylene molecular wires. J Phys Chem B 110:14659Google Scholar
  149. 149.
    Prins P, Grozema FC, Schins JM, Savenije TJ, Patil S, Scherf U, Siebbeles LDA (2006) Effect of intermolecular disorder on the intrachain charge transport in ladder-type poly(p-phenylenes). Phys Rev B 73:045204Google Scholar
  150. 150.
    Prins P, Grozema FC, Schins JM, Patil S, Scherf U, Siebbeles LDA (2006) High intrachain hole mobility on molecular wires of ladder-type poly(p-phenylenes). Phys Rev Lett 96:146601Google Scholar
  151. 151.
    Parkinson P, Joyce HJ, Gao Q, Tan HH, Zhang X, Zou J, Jagadish C, Herz LM, Johnston MB (2009) Carrier lifetime and mobility enhancement in nearly defect-free core-shell nanowires measured using time-resolved terahertz spectroscopy. Nano Lett 9:3349Google Scholar
  152. 152.
    Parkinson P, Lloyd-Hughes J, Johnston MB, Herz LM (2008) Efficient generation of charges via below-gap photoexcitation of polymer-fullerene blend films investigated by terahertz spectroscopy. Phys Rev B 78:115321Google Scholar
  153. 153.
    N?mec H, Nienhuys H-K, Perzon E, Zhang F, Inganäs O, Kužel P, Sundström V (2009) Ultrafast conductivity in a low-band-gap polyphenylene and fullerene blend studied by terahertz spectroscopy. Phys Rev B 79:245326Google Scholar
  154. 154.
    Devižis A, Serbenta A, Meerholz K, Hertel D, Gulbinas V (2009) Ultrafast dynamics of carrier mobility in a conjugated polymer probed at molecular and microscopic length scales. Phys Rev Lett 103:027404Google Scholar
  155. 155.
    Warta W, Karl N (1985) Hot holes in naphthalene: high, electric-field-dependent mobilities. Phys Rev B 32:1172Google Scholar
  156. 156.
    Silinsh EA, Capek V (1994) Organic molecular crystals. Interaction, localization and transport properties. American Institute of Physics, New YorkGoogle Scholar
  157. 157.
    Fratini S, Ciuchi S (2009) Bandlike motion and mobility saturation in organic molecular semiconductors. Phys Rev Lett 103:266601Google Scholar
  158. 158.
    Hasegawa T, Takeya J (2009) Organic field-effect transistors using single crystals. Science Tech Adv Mater 10:024314Google Scholar
  159. 159.
    Podzorov V, Menard E, Borissov A, Kiryukhin V, Rogers JA, Gershenson ME (2004) Intrinsic charge transport on the surface of organic semiconductors. Phys Rev Lett 93:086602Google Scholar
  160. 160.
    Zeis R, Besnard C, Siegrist T, Schlockermann C, Chi X, Kloc C (2006) Field effect studies on rubrene and impurities of rubrene. Chem Mater 18:244Google Scholar
  161. 161.
    Wang L, Fine D, Basu D, Dodabalapur A (2007) Electric-field-dependent charge transport in organic thin-film transistors. J Appl Phys 101:054515Google Scholar
  162. 162.
    Jurchescu OD, Baas J, Palstra TTM (2004) Effect of impurities on the mobility of single crystal pentacene. Appl Phys Lett 84:3061Google Scholar
  163. 163.
    Koch N, Vollmer A, Salzmann I, Nickel B, Weiss H, Rabe JP (2006) Evidence for temperature-dependent electron band dispersion in pentacene. Phys Rev Lett 96:156803Google Scholar
  164. 164.
    Minari T, Nemoto T, Isoda S (2006) Temperature and electric-field dependence of the mobility of a single-grain pentacene field-effect transistor. J Appl Phys 99:034506Google Scholar
  165. 165.
    Hamadani BH, Richter CA, Gundlach DJ, Kline RJ, McCulloch I, Heeney M (2007) Influence of source-drain electric field on mobility and charge transport in organic field-effect transistors. J Appl Phys 102:044503Google Scholar
  166. 166.
    Hallam T, Lee M, Zhao N, Nandhakumar I, Kemerink M, Heeney M, McCulloch I, Sirringhaus H (2009) Local charge trapping in conjugated polymers resolved by scanning Kelvin probe microscopy. Phys Rev Lett 103:256803Google Scholar
  167. 167.
    Sakanoue T, Sirringhaus H (2010) Band-like temperature dependence of mobility in a solution-processed organic semiconductor. Nat Mater 9:736Google Scholar
  168. 168.
    Yuen JD, Menon R, Coates NE, Namdas EB, Cho S, Hannahs ST, Moses D, Heeger AJ (2009) Nonlinear transport in semiconducting polymers at high carrier densities. Nat Mater 8:572Google Scholar
  169. 169.
    Wolf U, Arkhipov VI, Bässler H (1999) Current injection from a metal to a disordered hopping system. I. Monte Carlo simulation. Phys Rev B 59:7507Google Scholar
  170. 170.
    Arkhipov VI, Wolf U, Bässler H (1999) Current injection from a metal to a disordered hopping system. II. Comparison between analytic theory and simulation. Phys Rev B 59:7514Google Scholar
  171. 171.
    Gartstein YN, Conwell EM (1995) High-field hopping mobility in molecular systems with spatially correlated energetic disorder. Chem Phys Lett 245:351Google Scholar
  172. 172.
    Akuetey G, Hirsch J (1991) Contact-injected currents in polyvinylcarbazole. Phil Mag B 63:389Google Scholar
  173. 173.
    Van Woudenbergh T, Blom PWM, Vissenberg MCJM, Huiberts JN (2001) Temperature dependence of the charge injection in poly-dialkoxy-p-phenylene vinylene. Appl Phys Lett 79:1697Google Scholar
  174. 174.
    Hosseini AR, Wong MH, Shen Y, Malliaras GG (2005) Charge injection in doped organic semiconductors. J Appl Phys 97:023705Google Scholar
  175. 175.
    Burin AL, Ratner MA (2000) Temperature and field dependence of the charge injection from metal electrodes into random organic media. J Chem Phys 113:3941Google Scholar
  176. 176.
    Ishii H, Sugiyama K, Ito E, Seki K (1999) Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv Mater 11:605Google Scholar
  177. 177.
    Koch N, Elschner A, Johnson RL, Rabe JP (2005) Energy level alignment at interfaces with pentacene: metals versus conducting polymers. Appl Surf Sci 244:593Google Scholar
  178. 178.
    Blakesley JC, Greenham NC (2009) Charge transfer at polymer-electrode interfaces: the effect of energetic disorder and thermal injection on band bending and open-circuit voltage. J Appl Phys 106:034507Google Scholar
  179. 179.
    Steyrleuthner R, Schubert M, Jaiser F, Blakesley JC, Chen Z, Facchetti A, Neher D (2010) Bulk electron transport and charge injection in a high mobility n-type semiconducting polymer. Adv Mater 22:2799Google Scholar
  180. 180.
    Davids PS, Campbell IH, Smith DL (1997) Device model for single carrier organic diodes. J Appl Phys 82:6319Google Scholar
  181. 181.
    Wolf U, Barth S, Bässler H (1999) Electrode versus space-charge-limited conduction in organic light-emitting diodes. Appl Phys Lett 75:2035Google Scholar
  182. 182.
    Koo Y-M, Choi S-J, Chu T-Y, Song O-K, Shin W-J, Lee J-Y, Kim JC, Yoon T-H (2008) Ohmic contact probed by dark injection space-charge-limited current measurements. J Appl Phys 104:123707Google Scholar
  183. 183.
    Wang ZB, Helander MG, Greiner MT, Qiu J, Lu ZH (2009) Energy-level alignment and charge injection at metal/C60/organic interfaces. Appl Phys Lett 95:043302Google Scholar
  184. 184.
    Fehse K, Olthof S, Walzer K, Leo K, Johnson RL, Glowatzki H, Broker B, Koch N (2007) Energy level alignment of electrically doped hole transport layers with transparent and conductive indium tin oxide and polymer anodes. J Appl Phys 102:073719Google Scholar
  185. 185.
    Cheng X, Noh Y-Y, Wang J, Tello M, Frisch J, Blum R-P, Vollmer A, Rabe JP, Koch N, Sirringhaus H (2009) Controlling electron and hole charge injection in ambipolar organic field-effect transistors by self-assembled monolayers. Adv Funct Mater 19:2407Google Scholar
  186. 186.
    Wolf U, Bässler H (1999) Enhanced electron injection into light-emitting diodes via interfacial tunneling. Appl Phys Lett 74:3848Google Scholar
  187. 187.
    Abkowitz M, Facci JS, Stolka M (1993) Time-resolved space charge-limited injection in a trap-free glassy polymer. Chem Phys 177:783Google Scholar
  188. 188.
    Fong HH, Papadimitratos A, Hwang J, Kahn A, Malliaras GG (2009) Hole injection in a model fluorene–triarylamine copolymer. Adv Funct Mater 19:304Google Scholar
  189. 189.
    Arkhipov VI, Heremans P, Bässler H (2003) Why is exciton dissociation so efficient at the interface between a conjugated polymer and an electron acceptor? Appl Phys Lett 82:4605Google Scholar
  190. 190.
    Albrecht U, Bässler H (1995) Yield of geminate pair dissociation in an energetically random hopping system. Chem Phys Lett 235:389Google Scholar
  191. 191.
    Emelianova EV, van der Auweraer M, Bässler H (2008) Hopping approach towards exciton dissociation in conjugated polymers. J Chem Phys 128:224709Google Scholar
  192. 192.
    Rubel O, Baranovskii SD, Stolz W, Gebhard F (2008) Exact solution for hopping dissociation of geminate electron-hole pairs in a disordered chain. Phys Rev Lett 100:196602Google Scholar
  193. 193.
    Deibel C, Strobel T, Dyakonov V (2009) Origin of the efficient polaron-pair dissociation in polymer-fullerene blends. Phys Rev Lett 103:036402Google Scholar
  194. 194.
    Bredas JL, Norton JE, Cornil J, Coropceanu V (2009) Molecular understanding of organic solar cells: the challenges. Acc Chem Res 42:1691Google Scholar
  195. 195.
    Marsh RA, Hodgkiss JM, Friend RH (2010) Direct measurement of electric field-assisted charge separation in polymer: fullerene photovoltaic diodes. Adv Mater 22:3672Google Scholar
  196. 196.
    Hodgkiss JM, Campbell AR, Marsh RA, Rao A, Albert-Seifried S, Friend RH (2010) Subnanosecond geminate charge recombination in polymer-polymer photovoltaic devices. Phys Rev Lett 104:177701Google Scholar
  197. 197.
    Schubert M, Yin CH, Castellani M, Bange S, Tam TL, Sellinger A, Horhold HH, Kietzke T, Neher D (2009) Heterojunction topology versus fill factor correlations in novel hybrid small-molecular/polymeric solar cells. J Chem Phys 130:094703Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Experimental Physics IIUniversity of BayreuthBayreuthGermany

Personalised recommendations