The Use of Residual Dipolar Coupling in Studying Proteins by NMR

  • Kang Chen
  • Nico TjandraEmail author
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 326)


The development of residual dipolar coupling (RDC) in protein NMR spectroscopy, over a decade ago, has become a useful and almost routine tool for accurate protein solution structure determination. RDCs provide orientation information of magnetic dipole–dipole interaction vectors within a common reference frame. Its measurement requires a nonisotropic orientation, through a direct or indirect magnetic field alignment, of the protein in solution. There has been recent progress in the developments of alignment methods to allow the measurement of RDC and of methods to analyze the resulting data. In this chapter we briefly go through the mathematical expressions for the RDC and common descriptions of the alignment tensor, which may be represented using either Saupe order or the principal order matrix. Then we review the latest developments in alignment media. In particular we looked at the lipid-compatible media that allow the measurement of RDCs for membrane proteins. Other methods including conservative surface residue mutation have been invented to obtain up to five orthogonal alignment tensors that provide a potential for de novo structure and dynamics study using RDCs exclusively. We then discuss approximations assumed in RDC interpretations and different views on dynamics uncovered from the RDC method. In addition to routine usage of RDCs in refining a single structure, novel applications such as ensemble refinement against RDCs have been implemented to represent protein structure and dynamics in solution. The RDC application also extends to the study of protein–substrate interaction as well as to solving quaternary structure of oligomer in equilibrium with a monomer, opening an avenue for RDCs in high-order protein structure determination.


RDC Alignment medium Ensemble Dynamics Oligomer 



We thank Nils-Alexander Lakomek for helpful discussion. This work was supported by the Intramural Research Program of the NIH, National Heart, Lung, and Blood Institute.


  1. 1.
    Wüthrich K (1989) Determination of 3-dimensional protein structures in solution by nuclear-magnetic-resonance – an overview. Methods Enzymol 177:125–131CrossRefGoogle Scholar
  2. 2.
    Bax A (1989) Two-dimensional NMR and protein-structure. Annu Rev Biochem 58:223–256CrossRefGoogle Scholar
  3. 3.
    Clore GM, Gronenborn AM (1994) Multidimensional heteronuclear nuclear-magnetic-resonance of proteins. Nucl Magn Reson Pt C 239:349–363Google Scholar
  4. 4.
    Clore GM, Tang C, Iwahara J (2007) Elucidating transient macromolecular interactions using paramagnetic relaxation enhancement. Curr Opin Struct Biol 17(5):603–616CrossRefGoogle Scholar
  5. 5.
    Tolman JR et al (1995) Nuclear magnetic dipole interactions in field-oriented proteins – information for structure determination in solution. Proc Natl Acad Sci USA 92(20):9279–9283CrossRefGoogle Scholar
  6. 6.
    Tjandra N, Grzesiek S, Bax A (1996) Magnetic field dependence of nitrogen-proton J splittings in 15N-enriched human ubiquitin resulting from relaxation interference and residual dipolar coupling. J Am Chem Soc 118(26):6264–6272CrossRefGoogle Scholar
  7. 7.
    Tjandra N, Bax A (1997) Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278(5340):1111–1114CrossRefGoogle Scholar
  8. 8.
    Schwieters CD et al (2010) Solution structure of the 128 kDa enzyme I dimer from Escherichia coli and its 146 kDa complex with HPr using residual dipolar couplings and small- and wide-angle X-ray scattering. J Am Chem Soc 132(37):13026–13045CrossRefGoogle Scholar
  9. 9.
    Saupe A (1968) Recent results in field of liquid crystals. Angew Chem Int Ed 7(2):97CrossRefGoogle Scholar
  10. 10.
    Losonczi JA et al (1999) Order matrix analysis of residual dipolar couplings using singular value decomposition. J Magn Reson 138(2):334–342CrossRefGoogle Scholar
  11. 11.
    Bax A, Kontaxis G, Tjandra N (2001) Dipolar couplings in macromolecular structure determination. Nucl Magn Reson Biol Macromol B 339:127–174Google Scholar
  12. 12.
    Bax A et al (1994) Measurement of homonuclear and heteronuclear J-couplings from quantitative J-correlation. Nucl Magn Reson C 239:79–105CrossRefGoogle Scholar
  13. 13.
    Prestegard JH, Al-Hashimi HM, Tolman JR (2000) NMR structures of biomolecules using field oriented media and residual dipolar couplings. Quart Rev Biophys 33(4):371–424CrossRefGoogle Scholar
  14. 14.
    Prestegard JH et al (2005) Determination of protein backbone structures from residual dipolar couplings. Nucl Magn Reson Biol Macromol C 394:175CrossRefGoogle Scholar
  15. 15.
    Tolman JR, Ruan K (2006) NMR residual dipolar couplings as probes of biomolecular dynamics. Chem Rev 106(5):1720–1736CrossRefGoogle Scholar
  16. 16.
    Bax A, Tjandra N (1997) High-resolution heteronuclear NMR of human ubiquitin in an aqueous liquid crystalline medium. J Biomol NMR 10(3):289–292CrossRefGoogle Scholar
  17. 17.
    Ottiger M, Bax A (1998) Characterization of magnetically oriented phospholipid micelles for measurement of dipolar couplings in macromolecules. J Biomol NMR 12(3):361–372CrossRefGoogle Scholar
  18. 18.
    Hansen MR, Mueller L, Pardi A (1998) Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nat Struct Biol 5(12):1065–1074CrossRefGoogle Scholar
  19. 19.
    Clore GM, Starich MR, Gronenborn AM (1998) Measurement of residual dipolar couplings of macromolecules aligned in the nematic phase of a colloidal suspension of rod-shaped viruses. J Am Chem Soc 120(40):10571–10572CrossRefGoogle Scholar
  20. 20.
    Sass HJ et al (2000) Solution NMR of proteins within polyacrylamide gels: diffusional properties and residual alignment by mechanical stress or embedding of oriented purple membranes. J Biomol NMR 18(4):303–309CrossRefGoogle Scholar
  21. 21.
    Chou JJ et al (2001) A simple apparatus for generating stretched polyacrylamide gels, yielding uniform alignment of proteins and detergent micelles. J Biomol NMR 21(4):377–382CrossRefGoogle Scholar
  22. 22.
    Tycko R, Blanco FJ, Ishii Y (2000) Alignment of biopolymers in strained gels: a new way to create detectable dipole-dipole couplings in high-resolution biomolecular NMR. J Am Chem Soc 122(38):9340–9341CrossRefGoogle Scholar
  23. 23.
    Ruckert M, Otting G (2000) Alignment of biological macromolecules in novel nonionic liquid crystalline media for NMR experiments. J Am Chem Soc 122(32):7793–7797CrossRefGoogle Scholar
  24. 24.
    Losonczi JA, Prestegard JH (1998) Improved dilute bicelle solutions for high-resolution NMR of biological macromolecules. J Biomol NMR 12(3):447–451CrossRefGoogle Scholar
  25. 25.
    Wang H et al (1998) A liquid crystalline medium for measuring residual dipolar couplings over a wide range of temperatures. J Biomol NMR 12(3):443–446CrossRefGoogle Scholar
  26. 26.
    Cierpicki T, Bushweller JH (2004) Charged gels as orienting media for measurement of residual dipolar couplings in soluble and integral membrane proteins. J Am Chem Soc 126(49):16259–16266CrossRefGoogle Scholar
  27. 27.
    Douglas SM, Chou JJ, Shih WM (2007) DNA-nanotube-induced alignment of membrane proteins for NMR structure determination. Proc Natl Acad Sci USA 104(16):6644–6648CrossRefGoogle Scholar
  28. 28.
    Lorieau J, Yao LS, Bax A (2008) Liquid crystalline phase of G-tetrad DNA for NMR study of detergent-solubilized proteins. J Am Chem Soc 130(24):7536CrossRefGoogle Scholar
  29. 29.
    Ma JH, Goldberg GI, Tjandra N (2008) Weak alignment of biomacromolecules in collagen gels: an alternative way to yield residual dipolar couplings for NMR measurements. J Am Chem Soc 130(48):16148CrossRefGoogle Scholar
  30. 30.
    Yao LS, Bax A (2007) Modulating protein alignment in a liquid-crystalline medium through conservative mutagenesis. J Am Chem Soc 129(37):11326Google Scholar
  31. 31.
    Ruan K, Tolman JR (2005) Composite alignment media for the measurement of independent sets of NMR residual dipolar couplings. J Am Chem Soc 127(43):15032–15033CrossRefGoogle Scholar
  32. 32.
    Burton RA, Tjandra N (2006) Determination of the residue-specific 15N CSA tensor principal components using multiple alignment media. J Biomol NMR 35(4):249–259CrossRefGoogle Scholar
  33. 33.
    Liu YZ, Prestegard JH (2010) A device for the measurement of residual chemical shift anisotropy and residual dipolar coupling in soluble and membrane-associated proteins. J Biomol NMR 47(4):249–258CrossRefGoogle Scholar
  34. 34.
    Ishii Y, Markus MA, Tycko R (2001) Controlling residual dipolar couplings in high-resolution NMR of proteins by strain induced alignment in a gel. J Biomol NMR 21(2):141–151CrossRefGoogle Scholar
  35. 35.
    Meier S, Haussinger D, Grzesiek S (2002) Charged acrylamide copolymer gels as media for weak alignment. J Biomol NMR 24(4):351–356CrossRefGoogle Scholar
  36. 36.
    Lorieau JL, Louis JM, Bax A (2010) The complete influenza hemagglutinin fusion domain adopts a tight helical hairpin arrangement at the lipid:water interface. Proc Natl Acad Sci USA 107(25):11341–11346CrossRefGoogle Scholar
  37. 37.
    Bella J et al (1994) Crystal-structure and molecular-structure of a collagen-like peptide at 1.9-Angstrom resolution. Science 266(5182):75–81Google Scholar
  38. 38.
    Saffarian S et al (2004) Interstitial collagenase is a Brownian ratchet driven by proteolysis of collagen. Science 306(5693):108–111CrossRefGoogle Scholar
  39. 39.
    Ruan K, Briggman KB, Tolman JR (2008) De novo determination of internuclear vector orientations from residual dipolar couplings measured in three independent alignment media. J Biomol NMR 41(2):61–76CrossRefGoogle Scholar
  40. 40.
    Zweckstetter M, Hummer G, Bax A (2004) Prediction of charge-induced molecular alignment of biomolecules dissolved in dilute liquid-crystalline phases. Biophys J 86(6):3444–3460CrossRefGoogle Scholar
  41. 41.
    Yao L et al (2008) Simultaneous NMR study of protein structure and dynamics using conservative mutagenesis. J Phys Chem B 112(19):6045–6056CrossRefGoogle Scholar
  42. 42.
    Sanders CR et al (1994) Magnetically-oriented phospholipid micelles as a tool for the study of membrane-associated molecules. Prog Nucl Magn Reson Spectrosc 26:421–444CrossRefGoogle Scholar
  43. 43.
    Lipsitz RS, Tjandra N (2003) 15N chemical shift anisotropy in protein structure refinement and comparison with NH residual dipolar couplings. J Magn Reson 164(1):171–176CrossRefGoogle Scholar
  44. 44.
    Tjandra N, Suzuki M, Chang SL (2007) Refinement of protein structure against non-redundant carbonyl 13C NMR relaxation. J Biomol NMR 38(3):243–253CrossRefGoogle Scholar
  45. 45.
    Burton RA, Tjandra N (2007) Residue-specific 13C′ CSA tensor principal components for ubiquitin: correlation between tensor components and hydrogen bonding. J Am Chem Soc 129(5):1321–1326CrossRefGoogle Scholar
  46. 46.
    Kurita J et al (2003) Measurement of 15N chemical shift anisotropy in a protein dissolved in a dilute liquid crystalline medium with the application of magic angle sample spinning. J Magn Reson 163(1):163–173CrossRefGoogle Scholar
  47. 47.
    Yao LS et al (2010) Site-specific backbone amide 15N chemical shift anisotropy tensors in a small protein from liquid crystal and cross-correlated relaxation measurements. J Am Chem Soc 132(12):4295–4309CrossRefGoogle Scholar
  48. 48.
    Boisbouvier J, Delaglio F, Bax A (2003) Direct observation of dipolar couplings between distant protons in weekly aligned nucleic acids. Proc Natl Acad Sci USA 100(20):11333–11338CrossRefGoogle Scholar
  49. 49.
    Yao LS et al (2008) NMR determination of amide N-H equilibrium bond length from concerted dipolar coupling measurements. J Am Chem Soc 130(49):16518CrossRefGoogle Scholar
  50. 50.
    Ottiger M, Bax A (1998) Determination of relative N-HN N-C′, Cα-C′, and Cα-Hα effective bond lengths in a protein by NMR in a dilute liquid crystalline phase. J Am Chem Soc 120(47):12334–12341CrossRefGoogle Scholar
  51. 51.
    Clore GM, Schwieters CD (2004) Amplitudes of protein backbone dynamics and correlated motions in a small alpha/beta protein: correspondence of dipolar coupling and heteronuclear relaxation measurements. Biochemistry 43(33):10678–10691CrossRefGoogle Scholar
  52. 52.
    Clore GM, Schwieters CD (2004) How much backbone motion in ubiquitin is required to account for dipolar coupling data measured in multiple alignment media as assessed by independent cross-validation? J Am Chem Soc 126(9):2923–2938CrossRefGoogle Scholar
  53. 53.
    Bax A, Tjandra N (1997) Are proteins even floppier than we thought? Nat Struct Biol 4(4):254–256CrossRefGoogle Scholar
  54. 54.
    Fredriksson K et al (2004) On the interpretation of residual dipolar couplings as reporters of molecular dynamics. J Am Chem Soc 126(39):12646–12650CrossRefGoogle Scholar
  55. 55.
    Louhivuori M et al (2003) On the origin of residual dipolar couplings from denatured proteins. J Am Chem Soc 125(50):15647–15650CrossRefGoogle Scholar
  56. 56.
    Jha AK et al (2005) Statistical coil model of the unfolded state: resolving the reconciliation problem. Proc Natl Acad Sci USA 102(37):13099–13104CrossRefGoogle Scholar
  57. 57.
    Meier S, Grzesiek S, Blackledge M (2007) Mapping the conformational landscape of urea-denatured ubiquitin using residual dipolar couplings. J Am Chem Soc 129(31):9799–9807CrossRefGoogle Scholar
  58. 58.
    Esteban-Martin S, Fenwick RB, Salvatella X (2010) Refinement of ensembles describing unstructured proteins using NMR residual dipolar couplings. J Am Chem Soc 132(13):4626–4632CrossRefGoogle Scholar
  59. 59.
    Nodet G et al (2009) Quantitative description of backbone conformational sampling of unfolded proteins at amino acid resolution from NMR residual dipolar couplings. J Am Chem Soc 131(49):17908–17918CrossRefGoogle Scholar
  60. 60.
    Zweckstetter M, Bax A (2000) Prediction of sterically induced alignment in a dilute liquid crystalline phase: aid to protein structure determination by NMR. J Am Chem Soc 122(15):3791–3792CrossRefGoogle Scholar
  61. 61.
    Zweckstetter M (2008) NMR: prediction of molecular alignment from structure using the PALES software. Nat Protoc 3(4):679–690CrossRefGoogle Scholar
  62. 62.
    Valafar H, Prestegard JH (2004) REDCAT: a residual dipolar coupling analysis tool. J Magn Reson 167(2):228–241CrossRefGoogle Scholar
  63. 63.
    Cornilescu G et al (1998) Validation of protein structure from anisotropic carbonyl chemical shifts in a dilute liquid crystalline phase. J Am Chem Soc 120(27):6836–6837CrossRefGoogle Scholar
  64. 64.
    Clore GM, Garrett DS (1999) R-factor, free R, and complete cross-validation for dipolar coupling refinement of NMR structures. J Am Chem Soc 121(39):9008–9012CrossRefGoogle Scholar
  65. 65.
    Bax A (2003) Weak alignment offers new NMR opportunities to study protein structure and dynamics. Protein Sci 12(1):1–16CrossRefGoogle Scholar
  66. 66.
    Schwieters CD, Kuszewski JJ, Clore GM (2006) Using Xplor-NIH for NMR molecular structure determination. Prog Nucl Magn Reson Spectrosc 48(1):47–62CrossRefGoogle Scholar
  67. 67.
    Schwieters CD et al (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160(1):65–73CrossRefGoogle Scholar
  68. 68.
    Tjandra N et al (1997) Defining long range order in NMR structure determination from the dependence of heteronuclear relaxation times on rotational diffusion anisotropy. Nat Struct Biol 4(6):443–449CrossRefGoogle Scholar
  69. 69.
    de Alba E, Tjandra N (2004) Residual dipolar couplings in protein structure determination. Methods Mol Biol 278:89–106Google Scholar
  70. 70.
    Lange OF et al (2008) Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 320(5882):1471–1475CrossRefGoogle Scholar
  71. 71.
    Clore GM, Schwieters CD (2006) Concordance of residual dipolar couplings, backbone order parameters and crystallographic B-factors for a small alpha/beta protein: a unified picture of high probability, fast atomic motions in proteins. J Mol Biol 355(5):879–886CrossRefGoogle Scholar
  72. 72.
    Lindorff-Larsen K et al (2005) Simultaneous determination of protein structure and dynamics. Nature 433(7022):128–132CrossRefGoogle Scholar
  73. 73.
    Lakomek NA et al (2008) Self-consistent residual dipolar coupling based model-free analysis for the robust determination of nanosecond to microsecond protein dynamics. J Biomol NMR 41(3):139–155CrossRefGoogle Scholar
  74. 74.
    Lakomek NA et al (2006) A thorough dynamic interpretation of residual dipolar couplings in ubiquitin. J Biomol NMR 34(2):101–115CrossRefGoogle Scholar
  75. 75.
    Peti W et al (2002) Model-free analysis of protein backbone motion from residual dipolar couplings. J Am Chem Soc 124(20):5822–5833CrossRefGoogle Scholar
  76. 76.
    Meiler J et al (2001) Model-free approach to the dynamic interpretation of residual dipolar couplings in globular proteins. J Am Chem Soc 123(25):6098–6107CrossRefGoogle Scholar
  77. 77.
    Chang SL, Tjandra N (2005) Temperature dependence of protein backbone motion from carbonyl 13C and amide 15N NMR relaxation. J Magn Reson 174(1):43–53CrossRefGoogle Scholar
  78. 78.
    Liu YZ, Kahn RA, Prestegard JH (2010) Dynamic structure of membrane-anchored ArfċGTP. Nat Struct Mol Biol 17(7):876CrossRefGoogle Scholar
  79. 79.
    Lewis BA et al (1985) Magnetic birefringence studies of dilute purple membrane suspensions. Biophys J 47(2):143–150CrossRefGoogle Scholar
  80. 80.
    Koenig BW et al (1999) NMR measurement of dipolar couplings in proteins aligned by transient binding to purple membrane fragments. J Am Chem Soc 121(6):1385–1386CrossRefGoogle Scholar
  81. 81.
    Koenig BW et al (2002) Structure and orientation of a G protein fragment in the receptor bound state from residual dipolar couplings. J Mol Biol 322(2):441–461CrossRefGoogle Scholar
  82. 82.
    Seidel RD, Zhuang TD, Prestegard JH (2007) Bound-state residual dipolar couplings for rapidly exchanging ligands of His-tagged proteins. J Am Chem Soc 129(15):4834–4839CrossRefGoogle Scholar
  83. 83.
    Wang X et al (2008) RDC-assisted modeling of symmetric protein homo-oligomers. Protein Sci 17(5):899–907CrossRefGoogle Scholar
  84. 84.
    Lee HW et al (2010) Three-dimensional structure of the weakly associated protein homodimer SeR13 using RDCs and paramagnetic surface mapping. Protein Sci 19(9):1673–1685CrossRefGoogle Scholar
  85. 85.
    Al-Hashimi HM, Bolon PJ, Prestegard JH (2000) Molecular symmetry as an aid to geometry determination in ligand protein complexes. J Magn Reson 142(1):153–158CrossRefGoogle Scholar
  86. 86.
    Bewley CA, Clore GM (2000) Determination of the relative orientation of the two halves of the domain-swapped dimer of cyanovirin-N in solution using dipolar couplings and rigid body minimization. J Am Chem Socety 122(25):6009–6016CrossRefGoogle Scholar
  87. 87.
    Bax A, Grishaev A (2005) Weak alignment NMR: a hawk-eyed view of biomolecular structure. Curr Opin Struct Biol 15(5):563–570CrossRefGoogle Scholar
  88. 88.
    Tjandra N (1999) Establishing a degree of order: obtaining high-resolution NMR structures from molecular alignment. Struct Fold Des 7(9):R205–R211CrossRefGoogle Scholar
  89. 89.
    Lipsitz RS, Tjandra N (2004) Residual dipolar couplings in NMR structure analysis. Annu Rev Biophys Biomol Struct 33:387–413CrossRefGoogle Scholar
  90. 90.
    Prestegard JH, Bougault CM, Kishore AI (2004) Residual dipolar couplings in structure determination of biomolecules. Chem Rev 104(8):3519–3540CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Laboratory of Molecular BiophysicsNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaUSA

Personalised recommendations