Dynamic Nanoplatforms in Biosensor and Membrane Constitutional Systems

  • Eugene Mahon
  • Teodor Aastrup
  • Mihail BarboiuEmail author
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 322)


Molecular recognition in biological systems occurs mainly at interfacial environments such as membrane surfaces, enzyme active sites, or the interior of the DNA double helix. At the cell membrane surface, carbohydrate–protein recognition principles apply to a range of specific non-covalent interactions including immune response, cell proliferation, adhesion and death, cell–cell interaction and communication. Protein–protein recognition meanwhile accounts for signalling processes and ion channel structure. In this chapter we aim to describe such constitutional dynamic interfaces for biosensing and membrane transport applications. Constitutionally adaptive interfaces may mimic the recognition capabilities intrinsic to natural recognition processes. We present some recent examples of 2D and 3D constructed sensors and membranes of this type and describe their sensing and transport capabilities.


Bilayers Biosensor Constitutional dynamic chemistry Dynamic interfaces Nanoparticles Quartz crystal microgravimetry Surface plasmon resonance 


Con A

Concanavalin A






Hybrid bilayer membrane


Molecularly imprinted polymer




Quartz crystal microbalance


Self assembled monolayer


Surface Enhanced Raman Spectroscopy


Surface plasmon resonance



This work was financed as part of the Marie Curie Research Training Network- “DYNAMIC” (MRTN-CT-2005-019561) and of a EURYI scheme award. See


  1. 1.
    Lehn JM (2007) From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem Soc Rev 36:151–160Google Scholar
  2. 2.
    Thevenot DR, Toth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification. Anal Lett 34:635–659Google Scholar
  3. 3.
    Rapp BE, Gruhl FJ, Lange K (2010) Biosensors with label-free detection designed for diagnostic applications. Anal Bioanal Chem 398:2403–2412Google Scholar
  4. 4.
    Vereb G, Szollosi J, Matko J, Nagy P, Farkas T, Vigh L, Matyus L, Waldmann TA, Damjanovich S (2003) Dynamic, yet structured: the cell membrane three decades after the Singer-Nicolson model. Proc Natl Acad Sci U S A 100:8053–8058Google Scholar
  5. 5.
    Lehn JM (1990) Perspectives in supramolecular chemistry – from molecular recognition towards molecular information-processing and self-organization. Angew Chem Int Ed 29:1304–1319Google Scholar
  6. 6.
    Lehn J-M (1999) Dynamic combinatorial chemistry and virtual combinatorial libraries. Chem Eur J 5:2455–2463Google Scholar
  7. 7.
    Menger FM (1991) Groups of organic-molecules that operate collectively. Angew Chem Int Ed Engl 30:1086–1099Google Scholar
  8. 8.
    Barboiu M (2010) Dynamic interactive systems: dynamic selection in hybrid organic-inorganic constitutional networks. Chem Commun (Camb) 46:7466–7476Google Scholar
  9. 9.
    Christian DA, Tian AW, Ellenbroek WG, Levental I, Rajagopal K, Janmey PA, Liu AJ, Baumgart T, Discher DE (2009) Spotted vesicles, striped micelles and Janus assemblies induced by ligand binding. Nat Mater 8:843–849Google Scholar
  10. 10.
    Walde P (2006) Surfactant assemblies and their various possible roles for the origin(s) of life. Orig Life Evol Biosph 36:109–150Google Scholar
  11. 11.
    Nguyen R, Allouche L, Buhler E, Giuseppone N (2009) Dynamic combinatorial evolution within self-replicating supramolecular assemblies. Angew Chem Int Ed Engl 48:1093–1096Google Scholar
  12. 12.
    Giusepponne N, Lehn J-M (2006) Protonic and temperature modulation of constituent expression by component selection in a dynamic combinatorial library of imines. Chem Eur J 12:1715–1722Google Scholar
  13. 13.
    Mihai S, Cazacu A, Arnal-Herault C, Nasr G, Meffre A, van der Lee A, Barboiu M (2009) Supramolecular self-organization in constitutional hybrid materials. New J Chem 33:2335–2343Google Scholar
  14. 14.
    Ariga K, Ji QM, Hill JP, Kawazoe N, Chen GP (2009) Supramolecular approaches to biological therapy. Expert Opin Biol Ther 9:307–320Google Scholar
  15. 15.
    Luca C, Barboiu M, Supuran CT (1991) Stability constant of complex inhibitors and their mechanism of action. Rev Roum Chim 36(9–10):1169–1173Google Scholar
  16. 16.
    Barboiu M, Supuran CT, Menabuoni L, Scozzafava A, Mincione F, Briganti F, Mincione G (1999) Carbonic anhydrase inhibitors, synthesis of topically effective intraocular pressure lowering agents derived from 5-(aminoalkyl-carboxamido)-1,3,4-thiadiazole-2-sulfonamide. J Enz Inhib 15:23–46Google Scholar
  17. 17.
    Curie J, Curie P (1880) An oscillating quartz crystal mass detector. Comp Rend 91:294–297Google Scholar
  18. 18.
    Sauerbrey G (1959) Verwendung Von Schwingquarzen Zur Wagung Dunner Schichten Und Zur Mikrowagung. Zeitschrift Fur Physik 155:206–222Google Scholar
  19. 19.
    Nomura T, Okuhara M (1982) Frequency-shifts of piezoelectric quartz crystals immersed in organic liquids. Anal Chim Acta 142:281–284Google Scholar
  20. 20.
    Kanazawa KK, Gordon JG (1985) Frequency of a quartz microbalance in contact with liquid. Anal Chem 57:1770–1771Google Scholar
  21. 21.
    Voinova MV, Jonson M, Kasemo B (2002) 'Missing mass' effect in biosensor's QCM applications. Biosens Bioelectron 17:835–841Google Scholar
  22. 22.
    Beck R, Pittermann U, Weil KG (1992) Influence of the surface microstructure on the coupling between a quartz oscillator. J Electrochem Soc 139:453–461Google Scholar
  23. 23.
    Martin SJ, Frye GC, Ricco AJ, Senturia SD (1993) Effect of surface-roughness on the response of thickness-shear mode resonators. Anal Chem 65:2910–2922Google Scholar
  24. 24.
    Cooper MA, Singleton VT (2007) A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions. J Mol Recognit 20:154–184Google Scholar
  25. 25.
    Miura Y, Sasao Y, Dohi H, Nishida Y, Kobayashi K (2002) Self-assembled monolayers of globotriaosylceramide (Gb3) mimics: surface-specific affinity with shiga toxins. Anal Biochem 310:27–35Google Scholar
  26. 26.
    Zhang Y, Telyatnikov V, Sathe M, Zeng XQ, Wang PG (2003) Studying the interaction of alpha-Gal carbohydrate antigen and proteins by quartz-crystal microbalance. J Am Chem Soc 125:9292–9293Google Scholar
  27. 27.
    Zhang Y, Luo SZ, Tang YJ, Yu L, Hou KY, Cheng JP, Zeng XQ, Wang PG (2006) Carbohydrate-protein interactions by "clicked" carbohydrate self-assembled monolayers. Anal Chem 78:2001–2008Google Scholar
  28. 28.
    Shen Z (2007) Nonlabeled quartz crystal microbalance biosensor for bacterial detection using carbohydrate and lectin recognitions. Anal Chem 79:2312–2319Google Scholar
  29. 29.
    Fawcett NC, Evans JA, Chien LC, Flowers N (1988) Nucleic-acid hybridization detected by piezoelectric resonance. Anal Lett 21:1099–1114Google Scholar
  30. 30.
    Zhou XC, Huang LQ, Li SFY (2001) Microgravimetric DNA sensor based on quartz crystal microbalance: comparison of oligonucleotide immobilization methods and the application in genetic diagnosis. Biosens Bioelectron 16:85–95Google Scholar
  31. 31.
    Mannelli F, Minunni A, Tombelli S, Wang RH, Spiriti MM, Mascini M (2005) Direct immobilisation of DNA probes for the development of affinity biosensors. Bioelectrochemistry 66:129–138Google Scholar
  32. 32.
    Hook F, Ray A, Norden B, Kasemo B (2001) Characterization of PNA and DNA immobilization and subsequent hybridization with DNA using acoustic-shear-wave attenuation measurements. Langmuir 17:8305–8312Google Scholar
  33. 33.
    Matsuura K, Tsuchida A, Okahata Y, Akaike T, Kobayashi K (1998) A quartz-crystal microbalance study of adsorption behaviors of artificial glycoconjugate polymers onto chemically modified gold surfaces and their interactions with lectins. Bull Chem Soc Jpn 71:2973–2977Google Scholar
  34. 34.
    Pei YX, Yu H, Pei ZC, Theurer M, Ammer C, Andre S, Gabius HJ, Yan MD, Ramstrom O (2007) Photoderivatized polymer thin films at quartz crystal microbalance surfaces: sensors for carbohydrate-protein interactions. Anal Chem 79:6897–6902Google Scholar
  35. 35.
    Huang MC, Shen ZH, Zhang YL, Zeng XQ, Wang PG (2007) Alkanethiol containing glycopolymers: a tool for the detection of lectin binding. Bioorg Med Chem Lett 17:5379–5383Google Scholar
  36. 36.
    Cui RJ, Huang HP, Yin ZZ, Gao D, Zhu JJ (2008) Horseradish peroxidase-functionalized gold nanoparticle label for amplified immunoanalysis based on gold nanoparticles/carbon nanotubes hybrids modified biosensor. Biosens Bioelectron 23:1666–1673Google Scholar
  37. 37.
    Hildebrand A, Schaedlich A, Rothe U, Neubert RHH (2002) Sensing specific adhesion of liposomal and micellar systems with attached carbohydrate recognition structures at lectin surfaces. J Colloid Interface Sci 249:274–281Google Scholar
  38. 38.
    Avila M, Zougagh M, Escarpa A, Rios A (2008) Molecularly imprinted polymers for selective piezoelectric sensing of small molecules. Trac-Trends Anal Chem 27:54–65Google Scholar
  39. 39.
    Kim NH, Baek TJ, Park HG, Seong GH (2007) Highly sensitive biomolecule detection on a quartz crystal microbalance using gold nanoparticles as signal amplification probes. Anal Sci 23:177–181Google Scholar
  40. 40.
    Nie LB, Yang Y, Li S, He NY (2007) Enhanced DNA detection based on the amplification of gold nanoparticles using quartz crystal microbalance. Nanotechnology 18:305501–305505Google Scholar
  41. 41.
    Mahon E, Aastrup T, Barboiu M (2010) Multivalent recognition of lectins by glyconanoparticle systems. Chem Commun (Camb) 46:5491–5493Google Scholar
  42. 42.
    Paul S, Vadgama P, Ray AK (2009) Surface plasmon resonance imaging for biosensing. IET Nanobiotechnol 3:71–80Google Scholar
  43. 43.
    Stenberg E, Persson B, Roos H, Urbaniczky C (1991) Quantitative-determination of surface concentration of protein with surface-plasmon resonance using radiolabeled proteins. J Colloid Interface Sci 143:513–526Google Scholar
  44. 44.
    Su X, Wu Y-J, Knoll W (2005) Comparison of surface plasmon resonance spectroscopy and quartz crystal microbalance techniques for studying DNA assembly and hybridization. Biosens Bioelectron 21:719–726Google Scholar
  45. 45.
    Boujday S, Méthivier C, Beccard B, Pradier C-M (2009) Innovative surface characterization techniques applied to immunosensor elaboration and test: comparing the efficiency of Fourier transform-surface plasmon resonance, quartz crystal microbalance with dissipation measurements, and polarization modulation-reflection absorption infrared spectroscopy. Anal Biochem 387:194–201Google Scholar
  46. 46.
    Zhang GZ, Wu C (2009) Quartz crystal microbalance studies on conformational change of polymer chains at interface. Macromol Rapid Commun 30:328–335Google Scholar
  47. 47.
    Scarano S, Mascini M, Turner APF, Minunni M (2010) Surface plasmon resonance imaging for affinity-based biosensors. Biosens Bioelectron 25:957–966Google Scholar
  48. 48.
    Mitchell J (2010) Small molecule immunosensing using surface plasmon resonance. Sensors 10:7323–7346Google Scholar
  49. 49.
    Manera MG, Spadavecchia J, Taurino A, Rella R (2010) Colloidal Au-enhanced surface plasmon resonance imaging: application in a DNA hybridization process. J Opt 12:8Google Scholar
  50. 50.
    Wang JL, Munir A, Zhou HS (2009) Au NPs-aptamer conjugates as a powerful competitive reagent for ultrasensitive detection of small molecules by surface plasmon resonance spectroscopy. Talanta 79:72–76Google Scholar
  51. 51.
    Lyon LA, Musick MD, Natan MJ (1998) Colloidal Au-enhanced surface plasmon resonance immunosensing. Anal Chem 70:5177–5183Google Scholar
  52. 52.
    Fang SP, Lee HJ, Wark AW, Corn RM (2006) Attomole microarray detection of MicroRNAs by nanoparticle-amplified SPR imaging measurements of surface polyadenylation reactions. J Am Chem Soc 128:14044–14046Google Scholar
  53. 53.
    Sim HR, Wark AW, Lee HJ (2010) Attomolar detection of protein biomarkers using biofunctionalized gold nanorods with surface plasmon resonance. Analyst 135:2528–2532Google Scholar
  54. 54.
    Kim S, Lee J, Lee SJ, Lee HJ (2010) Ultra-sensitive detection of IgE using biofunctionalized nanoparticle-enhanced SPR. Talanta 81:1755–1759Google Scholar
  55. 55.
    Grieshaber D, MacKenzie R, Voros J, Reimhult E (2008) Electrochemical biosensors – sensor principles and architectures. Sensors 8:1400–1458Google Scholar
  56. 56.
    Knoll W, Koper I, Naumann R, Sinner EK (2008) Tethered bimolecular lipid membranes – a novel model membrane platform. Electrochim Acta 53:6680–6689Google Scholar
  57. 57.
    Briand E, Zach M, Svedhem S, Kasemo B, Petronis S (2010) Combined QCM-D and EIS study of supported lipid bilayer formation and interaction with pore-forming peptides. Analyst 135:343–350Google Scholar
  58. 58.
    Lindholm-Sethson B, Nystrom J, Malmsten M, Ringstad L, Nelson A, Geladi P (2010) Electrochemical impedance spectroscopy in label-free biosensor applications: multivariate data analysis for an objective interpretation. Anal Bioanal Chem 398:2341–2349Google Scholar
  59. 59.
    Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–52Google Scholar
  60. 60.
    Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081Google Scholar
  61. 61.
    Shipway AN, Lahav M, Gabai R, Willner I (2000) Investigations into the electrostatically induced aggregation of Au nanoparticles. Langmuir 16:8789–8795Google Scholar
  62. 62.
    Gerardy JM, Ausloos M (1983) Absorption-spectrum of clusters of spheres from the general-solution of Maxwells equations.4. Proximity, bulk, surface, and shadow effects (in binary clusters). Phys Rev B 27:6446–6463Google Scholar
  63. 63.
    Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862Google Scholar
  64. 64.
    Schofield CL, Haines AH, Field RA, Russell DA (2006) Silver and gold glyconanoparticles for colorimetric bioassays. Langmuir 22:6707–6711Google Scholar
  65. 65.
    Otsuka H, Akiyama Y, Nagasaki Y, Kataoka K (2001) Quantitative and reversible lectin-induced association of gold nanoparticles modified with alpha-lactosyl-omega-mercapto-poly(ethylene glycol). J Am Chem Soc 123:8226–8230Google Scholar
  66. 66.
    Schofield CL, Field RA, Russell DA (2007) Glyconanoparticles for the colorimetric detection of cholera toxin. Anal Chem 79:1356–1361Google Scholar
  67. 67.
    Zheng M, Davidson F, Huang XY (2003) Ethylene glycol monolayer protected nanoparticles for eliminating nonspecific binding with biological molecules. J Am Chem Soc 125:7790–7791Google Scholar
  68. 68.
    Li HA, Cao ZJ, Zhang YH, Lau CW, Lu JZ (2010) Combination of quantum dot fluorescence with enzyme chemiluminescence for multiplexed detection of lung cancer biomarkers. Anal Meth 2:1236–1242Google Scholar
  69. 69.
    Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446Google Scholar
  70. 70.
    Asefa T, Duncan CT, Sharma KK (2009) Recent advances in nanostructured chemosensors and biosensors. Analyst 134:1980–1990Google Scholar
  71. 71.
    Wang X, Ramstrom O, Yan M (2009) A photochemically initiated chemistry for coupling underivatized carbohydrates to gold nanoparticles. J Mater Chem 19:8944–8949Google Scholar
  72. 72.
    Lin C-C, Yeh Y-C, Yang C-Y, Chen C-L, Chen G-F, Chen C-C, Wu Y-C (2002) Selective binding of mannose-encapsulated gold nanoparticles to type 1 pili in Escherichia coli. J Am Chem Soc 124:3508–3509Google Scholar
  73. 73.
    Liebau M, Hildebrand A, Neubert RHH (2001) Bioadhesion of supramolecular structures at supported planar bilayers as studied by the quartz crystal microbalance. Eur Biophys J Biophys Lett 30:42–52Google Scholar
  74. 74.
    Phillips KS, Wilkop T, Wu JJ, Al-Kaysi RO, Cheng Q (2006) Surface plasmon resonance imaging analysis of protein-receptor binding in supported membrane arrays on gold substrates with calcinated silicate films. J Am Chem Soc 128:9590–9591Google Scholar
  75. 75.
    Shi J, Yang T, Cremer PS (2008) Multiplexing ligand-receptor binding measurements by chemically patterning microfluidic channels. Anal Chem 80:6078–6084Google Scholar
  76. 76.
    Conboy JC, McReynolds KD, Gervay-Hague J, Saavedra SS (2002) Quantitative measurements of recombinant HIV surface glycoprotein 120 binding to several glycosphingolipids expressed in planar supported lipid bilayers. J Am Chem Soc 124:968–977Google Scholar
  77. 77.
    Wang JL, Wang F, Chen HJ, Liu XH, Dong SJ (2008) Electrochemical surface plasmon resonance detection of enzymatic reaction in bilayer lipid. Talanta 75:666–670Google Scholar
  78. 78.
    Munro JC, Frank CW (2004) Adsorption of lipid-functionalized poly(ethylene glycol) to gold surfaces as a cushion for polymer-supported lipid bilayers. Langmuir 20:3339–3349Google Scholar
  79. 79.
    Schuster B, Sleytr UB (2009) Composite S-layer lipid structures. J Struct Biol 168:207–216Google Scholar
  80. 80.
    Knoll W, Naumann R, Friedrich M, Robertson JWF, Losche M, Heinrich F, McGillivray DJ, Schuster B, Gufler PC, Pum D, Sleytr UB (2008) Solid supported lipid membranes: new concepts for the biomimetic functionalization of solid surfaces. Biointerphases 3:FA125–FA135Google Scholar
  81. 81.
    Handa H, Gurczynski S, Jackson MP, Mao GZ (2010) Immobilization and molecular :interactions between bacteriophage and lipopolysaccharide bilayers. Langmuir 26:12095–12103Google Scholar
  82. 82.
    Plant AL (1993) Self-assembled phospholipid alkanethiol biomimetic bilayers on gold. Langmuir 9:2764–2767Google Scholar
  83. 83.
    Plant AL, Brigham-Burke M, Petrella EC, Oshannessy DJ (1995) Phospholipid/alkanethiol bilayers for cell-surface receptor studies by surface plasmon resonance. Anal Biochem 226:342–348Google Scholar
  84. 84.
    Hubbard JB, Silin V, Plant AL (1999) Self assembly driven by hydrophobic interactions at alkanethiol monolayers: mechanism of formation of hybrid bilayer membranes. Biophys J 76:A431Google Scholar
  85. 85.
    Kilian KA, Bocking T, Gaus K, King-Lacroix J, Gal M, Gooding JJ (2007) Hybrid lipid bilayers in nanostructured silicon: a biomimetic mesoporous scaffold for optical detection of cholera toxin. Chem Commun (Camb) 1936–1938Google Scholar
  86. 86.
    Mun S, Choi SJ (2009) Optimization of the hybrid bilayer membrane method for immobilization of avidin on quartz crystal microbalance. Biosens Bioelectron 24:2522–2527Google Scholar
  87. 87.
    Favero G, Campanella L, Cavallo S, D'Annibale A, Perrella M, Mattei E, Ferri T (2005) Glutamate receptor incorporated in a mixed hybrid bilayer lipid membrane array, as a sensing element of a biosensor working under flowing conditions. J Am Chem Soc 127:8103–8111Google Scholar
  88. 88.
    Mozsolits H, Wirth HJ, Werkmeister J, Aguilar MI (2001) Analysis of antimicrobial peptide interactions with hybrid bilayer membrane systems using surface plasmon resonance. Biochimica Et Biophysica Acta-Biomembranes 1512:64–76Google Scholar
  89. 89.
    Lee TH, Mozsolits H, Aguilar MI (2001) Measurement of the affinity of melittin for zwitterionic and anionic membranes using immobilized lipid biosensors. J Pept Res 58:464–476Google Scholar
  90. 90.
    Ye Q, Konradi R, Textor M, Reimhult E (2009) Liposomes tethered to omega-functional PEG brushes and induced formation of PEG brush supported planar lipid bilayers. Langmuir 25:13534–13539Google Scholar
  91. 91.
    Sinner E-K, Knoll W (2001) Functional tethered membranes. Curr Opin Chem Biol 5:705–711Google Scholar
  92. 92.
    Naumann R, Schiller SM, Giess F, Grohe B, Hartman KB, Kärcher I, Köper I, Lübben J, Vasilev K, Knoll W (2003) Tethered lipid bilayers on ultraflat gold surfaces. Langmuir 19:5435–5443Google Scholar
  93. 93.
    Shenoy S, Moldovan R, Fitzpatrick J, Vanderah DJ, Deserno M, Losche M (2010) In-plane homogeneity and lipid dynamics in tethered bilayer lipid membranes (tBLMs). Soft Matter 6:1263–1274Google Scholar
  94. 94.
    Wagner ML, Tamm LK (2000) Tethered polymer-supported planar lipid bilayers for reconstitution of integral membrane proteins: Silane-polyethyleneglycol-lipid as a cushion and covalent linker. Biophys J 79:1400–1414Google Scholar
  95. 95.
    Cazacu A, Legrand YM, Pasc A, Nasr G, Van der Lee A, Mahon E, Barboiu M (2009) Dynamic hybrid materials for constitutional self-instructed membranes. Proc Natl Acad Sci U S A 106:8117–8122Google Scholar
  96. 96.
    Vandenbussche S, Diaz D, Fernandez-Alonso MC, Pan WD, Vincent SP, Cuevas G, Canada FJ, Jimenez-Barbero J, Bartik K (2008) Aromatic-carbohydrate interactions: an NMR and computational study of model systems. Chem Eur J 14:7570–7578Google Scholar
  97. 97.
    Taylor JD, Phillips KS, Cheng Q (2007) Microfluidic fabrication of addressable tethered lipid bilayer arrays and optimization using SPR with silane-derivatized nanoglassy substrates. Lab Chip 7:927–930Google Scholar
  98. 98.
    Cornell BA, BraachMaksvytis VLB, King LG, Osman PDJ, Raguse B, Wieczorek L, Pace RJ (1997) A biosensor that uses ion-channel switches. Nature 387:580–583Google Scholar
  99. 99.
    Williams TL, Jenkins ATA (2008) Measurement of the binding of cholera toxin to GM1 gangliosides on solid supported lipid bilayer vesicles and inhibition by europium (III) chloride. J Am Chem Soc 130:6438–6443Google Scholar
  100. 100.
    Mahon E, Aastrup T, Barboiu M (2010) Dynamic glycovesicle systems for amplified QCM detection of carbohydrate-lectin multivalent biorecognition. Chem Commun (Camb) 46:2441–2443Google Scholar
  101. 101.
    Voskuhl J, Stuart MCA, Ravoo BJ (2010) Sugar-decorated sugar vesicles: lectin-carbohydrate recognition at the surface of cyclodextrin vesicles. Chem Eur J 16:2790–2796Google Scholar
  102. 102.
    Mornet S, Lambert O, Duguet E, Brisson A (2005) The formation of supported lipid bilayers on silica nanoparticles revealed by cryoelectron microscopy. Nano Lett 5:281–285Google Scholar
  103. 103.
    Savarala S, Ahmed S, Ilies MA, Wunder SL (2010) Formation and colloidal stability of DMPC supported lipid bilayers on SiO2 nanobeads. Langmuir 26:12081–12088Google Scholar
  104. 104.
    Arnal-Hérault C, Barboiu M, Pasc A, Michau M, Perriat P, van der Lee A (2007) Constitutional self-organization of adenine-uracil-derived hybrid materials. Chem Eur J 13:6792–6800Google Scholar
  105. 105.
    Liu JW, Stace-Naughton A, Jiang XM, Brinker CJ (2009) Porous nanoparticle supported lipid bilayers (protocells) as delivery vehicles. J Am Chem Soc 131:1354–1355Google Scholar
  106. 106.
    Barboiu M (2004) Supramolecular polymeric macrocyclic receptors – hybrid carrier vs. channel transporters in bulk liquid membranes. J Incl Phenom Macrocycl Chem 49:133–137Google Scholar
  107. 107.
    Lin SY, Chen CH, Lin MC, Hsu HF (2005) A cooperative effect of bifunctionalized nanoparticles on recognition: sensing alkali ions by crown and carboxylate moieties in aqueous media. Anal Chem 77:4821–4828Google Scholar
  108. 108.
    Imabayashi S, Hobara D, Kakiuchi T (2001) Voltammetric detection of the surface diffusion of adsorbed thiolate molecules in artificially phase-separated binary self-assembled monolayers on a Au(111) surface. Langmuir 17:2560–2563Google Scholar
  109. 109.
    Ionita P, Volkov A, Jeschke G, Chechik V (2008) Lateral diffusion of thiol ligands on the surface of Au nanoparticles: an electron paramagnetic resonance study. Anal Chem 80:95–106Google Scholar
  110. 110.
    Boal AK, Rotello VM (2000) Intra- and intermonolayer hydrogen bonding in amide-functionalized alkanethiol self-assembled monolayers on gold nanoparticles. Langmuir 16:9527–9532Google Scholar
  111. 111.
    Boal AK, Rotello VM (2000) Fabrication and self-optimization of multivalent receptors on nanoparticle scaffolds. J Am Chem Soc 122:734–735Google Scholar
  112. 112.
    Paulini R, Frankamp BL, Rotello VM (2002) Effects of branched ligands on the structure and stability of monolayers on gold nanoparticles. Langmuir 18:2368–2373Google Scholar
  113. 113.
    Duchesne L, Wells G, Fernig DG, Harris SA, Levy R (2008) Supramolecular domains in mixed peptide self-assembled monolayers on gold nanoparticles. ChemBioChem 9:2127–2134Google Scholar
  114. 114.
    Nørgaard K, Weygand MJ, Kjaer K, Brust M, Bjørnholm T (2004) Adaptive chemistry of bifunctional gold nanoparticles at the air/water interface. A synchrotron X-ray study of giant amphiphiles. Faraday Discuss 125:221–233Google Scholar
  115. 115.
    Gentilini C, Franchi P, Mileo E, Polizzi S, Lucarini M, Pasquato L (2009) Formation of patches on 3D SAMs driven by thiols with immiscible chains observed by ESR spectroscopy. Angew Chem Int Ed Engl 48:3060–3064Google Scholar
  116. 116.
    Gentilini C, Pasquato L (2010) Morphology of mixed-monolayers protecting metal nanoparticles. J Mater Chem 20:1403–1412Google Scholar
  117. 117.
    Barboiu M, Cazacu A, Michau M, Caraballo R, Arnal-Herault C, Pasc-Banu A (2008) Functional organic inorganic hybrid membranes. Chem Eng Proc 47:1044–1052Google Scholar
  118. 118.
    Ruff Y, Lehn JM (2008) Glycodynamers: dynamic analogs of arabinofuranoside oligosaccharides. Biopolymers 89:486–496Google Scholar
  119. 119.
    Sreenivasachary N, Hickman DT, Sarazin D, Lehn JM (2006) DyNAs: constitutional dynamic nucleic acid analogues. Chem -Eur J 12:8581–8588Google Scholar
  120. 120.
    Hickman DT, Sreenivasachary N, Lehn JM (2008) Synthesis of components for the generation of constitutional dynamic analogues of nucleic acids. Helv Chim Acta 91:1–20Google Scholar
  121. 121.
    Miyashita N, Kurth DG (2008) Directing supramolecular assemblies on surfaces. J Mater Chem 18:2636–2649Google Scholar
  122. 122.
    Nasr J, Barboiu M, Ono T, Fujii S, Lehn J-M (2008) Dynamic polymer membranes displaying tunable transport properties on constitutional exchange. J Membr Sci 321:8–14Google Scholar
  123. 123.
    Shi ZL, Lin N (2010) Structural and chemical control in assembly of multicomponent metal–organic coordination networks on a surface. J Am Chem Soc 132:10756–10761Google Scholar
  124. 124.
    Camacho C, Matias JC, Cao R, Matos M, Chico B, Hernandez J, Longo MA, Sanroman MA, Villalonga R (2008) Hydrogen peroxide biosensor with a supramolecular layer-by-layer design. Langmuir 24:7654–7657Google Scholar
  125. 125.
    Oishi M, Hayama T, Akiyama Y, Takae S, Harada A, Yarnasaki Y, Nagatsugi F, Sasaki S, Nagasaki Y, Kataoka K (2005) Supramolecular assemblies for the cytoplasmic delivery of antisense oligodeoxynucleotide: polylon complex (PIC) micelles based on poly(ethylene glycol)-S,S-oligodeoxynucleotide conjugate. Biomacromolecules 6:2449–2454Google Scholar
  126. 126.
    Legrand YM, Dumitru F, van der Lee A, Barboiu M (2009) Constitutional chirality – adriving force for self-sorting homochiral single-crystals from achiral components. Chem Commun 2667–2669Google Scholar
  127. 127.
    Nierengarten JF, Iehl J, Oerthel V, Holler M, Illescas BM, Munoz A, Martin N, Rojo J, Sanchez-Navarro M, Cecioni S, Vidal S, Buffet K, Durka M, Vincent SP (2010) Fullerene sugar balls. Chem Commun 46:3860–3862Google Scholar
  128. 128.
    Durka M, Buffet K, Iehl J, Holler M, Nierengarten JF, Taganna J, Bouckaert J, Vincent SP (2011) The functional valency of dodecamannosylated fullerenes with Escherichia coli FimH –towards novel bacterial antiadesives. Chem Commun 47:1321–1323Google Scholar
  129. 129.
    Compain P, Decroocq CK, Iehl J, Holler M, Hazelard D, Barragan TM, Mellet CO, Nierengarten JF (2010) Glycosidase inhibition with fullerene iminosugar balls: a dramatic multivalent effect. Angew Chem Int Ed 49:5753–5756Google Scholar
  130. 130.
    Barboiu M, Cerneaux S, van der Lee A, Vaughan G (2004) Ion-driven ATP pump by self-organized hybrid membrane materials. J Am Chem Soc 126:3545–3550Google Scholar
  131. 131.
    Barboiu M, Vaughan G, van der Lee A (2003) Self-organized heteroditopic macrocyclic superstructures. Org Lett 5:3073–3076Google Scholar
  132. 132.
    Cazacu A, Tong C, van der Lee A, Fyles TM, Barboiu M (2006) Columnar self-assembled ureido crown ethers: an example of ion-channel organization in lipid bilayers. J Am Chem Soc 128:9541–9548Google Scholar
  133. 133.
    Michau M, Barboiu M, Caraballo R, Arnal-Herault C, Perriat P, Van Der Lee A, Pasc A (2008) Ion-conduction pathways in self-organised ureidoarene-heteropolysiloxane hybrid membranes. Chem -Eur J 14:1776–1783Google Scholar
  134. 134.
    Michau M, Caraballo R, Arnal-Herault C, Barboiu M (2008) Alkali cation-pi aromatic conduction pathways in self-organized hybrid membranes. J Membr Sci 321:22–30Google Scholar
  135. 135.
    Arnal-Herault C, Banu A, Barboiu M, Michau M, van der Lee A (2007) Amplification and transcription of the dynamic supramolecular chirality of the guanine quadruplex. Angew Chem Int Ed Engl 46:4268–4272Google Scholar
  136. 136.
    Arnal-Herault C, Pasc A, Michau M, Cot D, Petit E, Barboiu M (2007) Functional G-quartet macroscopic membrane films. Angew Chem Int Ed Engl 46:8409–8413Google Scholar
  137. 137.
    Davis JT, Spada GP (2007) Supramolecular architectures generated by self-assembly of guanosine derivatives. Chem Soc Rev 36:296–313Google Scholar
  138. 138.
    Davis JT (2004) G-quartets 40 years later: from 5 '-GMP to molecular biology and supramolecular chemistry. Angew Chem Int Ed Engl 43:668–698Google Scholar
  139. 139.
    Ramstrom O, Lehn JM (2002) Drug discovery by dynamic combinatorial libraries. Nat Rev Drug Discov 1:26–36Google Scholar
  140. 140.
    Barboiu M, Lehn JM (2002) Dynamic chemical devices: modulation of contraction/extension molecular motion by coupled-ion binding/pH change-induced structural switching. Proc Natl Acad Sci U S A 99:5201–5206Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Institut Européen des Membranes – ENSCM-UMII-CNRS 5635Montpellier, Cedex 5France
  2. 2.Attana ABStockholmSweden

Personalised recommendations