Advertisement

Dynamic Combinatorial Self-Replicating Systems

Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 322)

Abstract

Thanks to their intrinsic network topologies, dynamic combinatorial libraries (DCLs) represent new tools for investigating fundamental aspects related to self-organization and adaptation processes. Very recently the first examples integrating self-replication features within DCLs have pushed even further the idea of implementing dynamic combinatorial chemistry (DCC) towards minimal systems capable of self-construction and/or evolution. Indeed, feedback loop processes – in particular in the form of autocatalytic reactions – are keystones to build dynamic supersystems which could possibly approach the roots of “Darwinian” evolvability at mesoscale. This topic of current interest also shows significant potentialities beyond its fundamental character, because truly smart and autonomous materials for the future will have to respond to changes of their environment by selecting and by exponentially amplifying their fittest constituents.

Keywords

Chemical evolution Dynamic combinatorial chemistry Self-replication Systems chemistry 

Notes

Acknowledgments

We wish to thank the European Research Council (ERC StG n° 257099), the Agence Nationale de la Recherche (ANR-09-BLAN-034-02), the CNRS, the icFRC, and the University of Strasbourg. We also acknowledge ESF-COST action on Systems Chemistry (CM0703).

References

  1. 1.
    Lehn J-M (1999) Dynamic combinatorial chemistry and virtual combinatorial libraries. Chem Eur J 5:2455–2463CrossRefGoogle Scholar
  2. 2.
    Corbett PT, Leclaire J, Vial L, West KR, Wietor J-L, Sanders JKM, Otto S (2006) Dynamic combinatorial chemistry. Chem Rev 106:3652–3711CrossRefGoogle Scholar
  3. 3.
    Lehn J-M (2002) Toward self-organization and complex matter. Science 295:2400–2403CrossRefGoogle Scholar
  4. 4.
    Lehn J-M (2002) Toward complex matter: supramolecular chemistry and self-organization. Proc Nat Acad Sci USA 99:4763–4768CrossRefGoogle Scholar
  5. 5.
    Ludlow RF, Otto S (2010) The impact of the size of dynamic combinatorial libraries on the detectability of molecular recognition induced amplification. J Am Chem Soc 132:5984–5986CrossRefGoogle Scholar
  6. 6.
    Ramström O, Lehn J-M (2002) Drug discovery by dynamic combinatorial libraries. Nat Rev Drug Discov 1:26–36CrossRefGoogle Scholar
  7. 7.
    Gareiss PC, Sobczak K, McNaughton BR, Palde PB, Thornton CA, Miller BL (2008) Dynamic combinatorial selection of molecules capable of inhibiting the (CUG) repeat RNA-MBNL1 interaction in vitro: discovery of lead compounds targeting myotonic dystrophy (DM1). J Am Chem Soc 130:16254–16261CrossRefGoogle Scholar
  8. 8.
    Herrmann A (2009) Dynamic mixtures and combinatorial libraries: imines as probes for molecular evolution at the interface between chemistry and biology. Org Biomol Chem 7:3195–3204CrossRefGoogle Scholar
  9. 9.
    Brisig B, Sanders JKM, Otto S (2003) Selection and amplification of a catalyst from a dynamic combinatorial library. Angew Chem Int Ed 42:1270–1273CrossRefGoogle Scholar
  10. 10.
    Gasparini G, Dal Molin M, Prins LJ (2010) Dynamic approaches towards catalyst discovery. Eur J Org Chem 2429–2440Google Scholar
  11. 11.
    Hasenknopf B, Lehn J-M, Kneisel BO, Baum G, Fenske D (1996) Self-assembly of a circular double helicate. Angew Chem Int Ed 35:1838–1840CrossRefGoogle Scholar
  12. 12.
    Severin K (2004) The advantage of being virtual Target-induced adaptation and selection in dynamic combinatorial libraries. Chem Eur J 10:2565–2580CrossRefGoogle Scholar
  13. 13.
    Legrand Y-M, Van Der Lee A, Barboiu M (2007) Self-optimizing charge-transfer energy phenomena in metallosupramolecular complexes by dynamic constitutional self-sorting. Inorg Chem 46:9540–9547CrossRefGoogle Scholar
  14. 14.
    Buryak A, Severin K (2005) Dynamic combinatorial libraries of dye complexes as sensors. Angew Chem Int Ed 44:7935–7938CrossRefGoogle Scholar
  15. 15.
    Giuseppone N, Lehn J-M (2004) Constitutional dynamic self-sensing in a zinc(II) polyiminofluorenes system. J Am Chem Soc 126:11448–11449CrossRefGoogle Scholar
  16. 16.
    Giuseppone N, Fuks G, Lehn J-M (2006) Tunable fluorene-based dynamers through constitutional dynamic chemistry. Chem Eur J 12:1723–1735CrossRefGoogle Scholar
  17. 17.
    Sreenivasachary N, Lehn J-M (2005) Gelation-driven component selection in the generation of constitutional dynamic hydrogels based on guanine-quartet formation. Proc Nat Acad Sci USA 102:5938–5943CrossRefGoogle Scholar
  18. 18.
    Giuseppone N, Lehn J-M (2006) Electric-field modulation of component exchange in constitutional dynamic liquid crystals. Angew Chem Int Ed 45:4619–4624CrossRefGoogle Scholar
  19. 19.
    Herrmann A, Giuseppone N, Lehn J-M (2009) Electric-field triggered controlled release of bioacive volatiles from imine-based liquid crystalline phases. Chem Eur J 15:117–124CrossRefGoogle Scholar
  20. 20.
    Cazacu A, Legrand Y-M, Pasc A, Nasr G, Van Der Lee A, Mahon E, Barboiu M (2009) Dynamic hybrid materials for constitutional self-instructed membranes. Proc Nat Acad Sci USA 106:8117–8122CrossRefGoogle Scholar
  21. 21.
    Barboiu M (2010) Dynamic interactive systems: dynamic selection in hybrid organic-inorganic constitutional networks. Chem Commun 46:7466–7476CrossRefGoogle Scholar
  22. 22.
    Tauk L, Schröder AP, Decher G, Giuseppone N (2009) Hierarchical functional gradients of pH-responsive self-assembled monolayers using dynamic covalent chemistry on surfaces. Nat Chem 1:649–656CrossRefGoogle Scholar
  23. 23.
    Lehn J-M (2007) From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem Soc Rev 36:151–160CrossRefGoogle Scholar
  24. 24.
    Oparin A (1924) The origin of life. Pabochii, MoscowGoogle Scholar
  25. 25.
    Sharp PA (1985) On the origin of RNA splicing and introns. Cell 42:397–400CrossRefGoogle Scholar
  26. 26.
    Cech TR (1986) A model for the RNA-catalyzed replication of RNA. Proc Nat Acad Sci USA 83:4360–4363CrossRefGoogle Scholar
  27. 27.
    Paul N, Joyce GF (2002) A self-replicating ligase ribozyme. Proc Nat Acad Sci USA 99:12733–12740CrossRefGoogle Scholar
  28. 28.
    Kuhn H, Waser J (1981) Molecular self-organization and origin of life. Angew Chem 93:495–515CrossRefGoogle Scholar
  29. 29.
    Crick FH (1968) The origin of the genetic code. J Mol Biol 38:367–379CrossRefGoogle Scholar
  30. 30.
    Orgel LE (1968) Evolution for the genetic apparatus. J Mol Biol 38:381–393CrossRefGoogle Scholar
  31. 31.
    Eingen M, Schuster P (1979) The hypercycle: a principle of natural self-organization. Springer, BerlinGoogle Scholar
  32. 32.
    Joyce GF (1989) RNA evolution and the origins of life. Nature 338:217–224CrossRefGoogle Scholar
  33. 33.
    Patzke V, von Kiedrowski G (2007) Self replicating systems. Arkivoc v 293–310Google Scholar
  34. 34.
    Von Kiedrowski G (1986) A self-replicating hexadeoxynucleotide. Angew Chem 98:932–934CrossRefGoogle Scholar
  35. 35.
    Lee DH, Granja JR, Martinez JA, Severin K, Ghadiri MR (1996) A self-replicating peptide. Nature 382:525–528CrossRefGoogle Scholar
  36. 36.
    Luther A, Brandsch R, von Kiedrowski G (1998) Surface-promoted replication and exponential amplification of DNA analogs. Nature 396:245–248CrossRefGoogle Scholar
  37. 37.
    Vidonne A, Philp D (2009) Making molecules make themselves – the chemistry of artificial replicators. Eur J Org Chem 593–610Google Scholar
  38. 38.
    Dieckmann A, Beniken S, Lorenz CD, Doltsinis NL, Von Kiedrowski G (2011) Elucidating the origin of diastereoselectivity in a self-replicating system: selfishness versus altruism. Chem Eur J 17:468–480CrossRefGoogle Scholar
  39. 39.
    Sievers D, von Kiedrowski G (1994) Self-replication of complementary nucleotide-based oligomers. Nature 369:221–224CrossRefGoogle Scholar
  40. 40.
    Szathmary E, Gladkih I (1989) Sub-exponential growth and coexistence of non-enzymatically replicating templates. J Theor Biol 138:55–58CrossRefGoogle Scholar
  41. 41.
    Issac R, Chmielewski J (2002) Approaching exponential growth with a self-replicating peptide. J Am Chem Soc 124:6808–6809CrossRefGoogle Scholar
  42. 42.
    Xu S, Giuseppone N (2008) Self-duplicating amplification in a dynamic combinatorial library. J Am Chem Soc 130:1826–1827CrossRefGoogle Scholar
  43. 43.
    Tjivikua T, Ballester P, Rebek J Jr (1990) Self-replicating system. J Am Chem Soc 112:1249–1250CrossRefGoogle Scholar
  44. 44.
    Reinhoudt DN, Rudkevich DM, de Jong F (1996) Kinetic analysis of the Rebek self-replicating system: is there a controversy? J Am Chem Soc 118:6880–6889CrossRefGoogle Scholar
  45. 45.
    Sadownik JW, Philp D (2008) A simple synthetic replicator amplifies itself from a dynamic reagent pool. Angew Chem Int Ed 47:9965–9970CrossRefGoogle Scholar
  46. 46.
    Nguyen R, Allouche L, Buhler E, Giuseppone N (2009) Dynamic combinatorial evolution within self-replicating supramolecular assemblies. Angew Chem Int Ed 48:1093–1096CrossRefGoogle Scholar
  47. 47.
    Bachmann PA, Walde P, Luisi PL, Lang J (1991) Self-replicating micelles: aqueous micelles and enzymatically driven reactions in reverse micelles. J Am Chem Soc 113:8204–8209CrossRefGoogle Scholar
  48. 48.
    Zepik HH, Blöchliger E, Luisi PL (2001) A chemical model for homeostasis. Angew Chem Int Ed 40:199–202CrossRefGoogle Scholar
  49. 49.
    Bachmann PA, Luisi PL, Lang J (1992) Autocatalytic self-replicating micelles as models for prebiotic structures. Nature 357:57–59CrossRefGoogle Scholar
  50. 50.
    Szostak JW, Bartel DP, Luisi PL (2001) Synthesizing life. Nature 409:387–390CrossRefGoogle Scholar
  51. 51.
    Varela FG, Maturana HR, Uribe R (1974) Autopoiesis: the organization of living systems, its characterization and a model. Biosystems 5:187–196CrossRefGoogle Scholar
  52. 52.
    Menger FM (1991) Aggregate organic molecules with collective properties. Angew Chem Int Ed Engl 30:1086–1099CrossRefGoogle Scholar
  53. 53.
    Mann S (2008) Life as a nanoscale phenomenon. Angew Chem Int Ed 47:5306–5320CrossRefGoogle Scholar
  54. 54.
    Giuseppone N, Schmitt J-L, Allouche L, Lehn J-M (2008) DOSY NMR experiments as a tool for the analysis of constitutional and motional dynamic processes: implementation for the driven evolution of dynamic combinatorial libraries of helical strands. Angew Chem Int Ed 47:2235–2239CrossRefGoogle Scholar
  55. 55.
    Carnall JMA, Waudby CA, Belenguer AM, Stuart MCA, Peyralans JJ-P, Otto S (2010) Mechanosensitive self-replication driven by self-organization. Science 327:1502–1506CrossRefGoogle Scholar
  56. 56.
    Peyralans JJ-P, Otto S (2009) Recent highlights in systems chemistry. Curr Opin Chem Biol 13:705–713CrossRefGoogle Scholar
  57. 57.
    Del Amo V, Philp D (2010) Integrating replication-based selection strategies in dynamic covalent systems. Chem Eur J 16:13304–13318CrossRefGoogle Scholar
  58. 58.
    Hunt RAR, Otto S (2011) Dynamic combinatorial libraries: new opportunities in systems chemistry. Chem Commun 47:847–858CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin-Heidelberg 2011

Authors and Affiliations

  1. 1.SAMS research group – icFRCUniversity of Strasbourg – Institut Charles Sadron, CNRSStrasbourg cedex 2France

Personalised recommendations