Multistate and Phase Change Selection in Constitutional Multivalent Systems

  • Mihail BarboiuEmail author
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 322)


Molecular architectures and materials can be constitutionally self-sorted in the presence of different biomolecular targets or external physical stimuli or chemical effectors, thus responding to an external selection pressure. The high selectivity and specificity of different bioreceptors or self-correlated internal interactions may be used to describe the complex constitutional behaviors through multistate component selection from a dynamic library. The self-selection may result in the dynamic amplification of self-optimized architectures during the phase change process. The sol–gel resolution of dynamic molecular/supramolecular libraries leads to higher self-organized constitutional hybrid materials, in which organic (supramolecular)/inorganic domains are reversibily connected.


Carbonic anhydrase Dynamic constitutional chemistry Dynamic interactive systems Hybrid materials 



Carbonic anhydrases


Constitutional dynamic chemistry


Dynamic combinatorial chemistry


Dynamic combinatorial library(ies)



This work was financed as part of the Marie Curie Research Training Network – “DYNAMIC” (MRTN-CT-2005-019561), a EURYI scheme award. ( and ANR 2010 BLAN 717 2.


  1. 1.
    Lehn J-M (2007) From supramolecular chemistry towards constitutional dynamic chemistry and adaptative chemistry. Chem Soc Rev 36:151–160CrossRefGoogle Scholar
  2. 2.
    Lehn J-M (2002) Toward complex matter: supramolecular chemistry and self-organization. Proc Natl Acad Sci USA 99:4763–4768CrossRefGoogle Scholar
  3. 3.
    Barboiu M, Lehn JM (2002) Dynamic chemical devices: modulation of contraction/extension molecular motion by coupled-ion binding/pH change-induced structural switching. Proc Natl Acad Sci USA 99:5201–5206CrossRefGoogle Scholar
  4. 4.
    Lehn J-M (1999) Dynamic combinatorial chemistry and virtual combinatorial libraries. Chem Eur J 5:2455–2463CrossRefGoogle Scholar
  5. 5.
    Ramstrom O, Lehn J-M (2002) Drug discovery by dynamic combinatorial libraries. Nat Rev Drug Discov 1:26–36CrossRefGoogle Scholar
  6. 6.
    Corbett PT, Leclaire J, Vial L, West KR, Wietor J-L, Sanders JKM, Otto S (2006) Dynamic combinatorial chemistry. Chem Rev 106:3652–3711CrossRefGoogle Scholar
  7. 7.
    Coussins GRL, Poulsen S-A, Sanders JKM (2000) Molecular evolution: dynamiuc combinatorial libraries, autocatalytic networks and the guest for molecular function. Curr Opin Chem Biol 4:270–279CrossRefGoogle Scholar
  8. 8.
    Tarkanyi G, Jude H, Palinkas G, Stang PJ (2005) Dynamic NMR study of the hindered Pt-NBipyridine rotation in metal directed self-assembled macrocycles. Org Lett 7:4971–4973CrossRefGoogle Scholar
  9. 9.
    Saur I, Scopelliti R, Severin K (2006) Utilisation of the self sorting processes to generate dynamic combinatorial libraries with new network topologies. Chem Eur J 12:1058–1066CrossRefGoogle Scholar
  10. 10.
    Giuseppone N, Schmitt J-L, Schwartz E, Lehn J-M (2005) Transaminations under scandium triflate catalysis. Independent and constitutionally coupled reactions. J Am Chem Soc 127:5528–5539CrossRefGoogle Scholar
  11. 11.
    Nguyen R, Allouche L, Eric Buhler E, Giuseppone N (2009) Dynamic combinatorial evolution within self-replicating supramolecular assemblies. Angew Chem Int Ed 48:1093–1096CrossRefGoogle Scholar
  12. 12.
    Xu S, Giuseppone N (2008) Self-duplicating amplification in a dynamic combinatorial library. J Am Chem Soc 130:1826–1827CrossRefGoogle Scholar
  13. 13.
    Sreenivasachary N, Lehn JM (2005) Gelation-driven component selection in the generation of constitutional dynamic hydrogels based on guanine-quartet formation. Proc Natl Acad Sci USA 102:5938–5943CrossRefGoogle Scholar
  14. 14.
    Setnicka V, Urbanova M, Volka K, Nampally S, Lehn J-M (2006) Investigations of guanosine-quartet assemblies by vibrational and electronic circular dichroism spectroscopy, a novel approach for studying supramolecular entities. Chem Eur J 12:8735–8743CrossRefGoogle Scholar
  15. 15.
    Baxter PNW, Lehn J-M, Rissanen K (1997) Generation of an equilibrating collection of circular inorganic copper(I) architectures and solid-state isolation of the dicopper helicate component. Chem Commun 1323–1324Google Scholar
  16. 16.
    Baxter PNW, Lehn J-M, Kneisel BO, Fenske D (1997) Self-assembly of a symmetric tetracopper box-grid with guest trapping in the solid state. Chem Commun 2231–2232Google Scholar
  17. 17.
    Legrand YM, van der Lee A, Masquelez N, Rabu P, Barboiu M (2007) Temperature induced single crystal-to-single crystal transformations and structure directed effects on magnetic properties. Inorg Chem 46:9083–9089CrossRefGoogle Scholar
  18. 18.
    Barboiu M, Dumitru F, Legrand Y-M, Petit E, van der Lee A (2009) Self-sorting of equilibrating metallosupramolecular DCLs via constitutional crystallization. Chem Commun 2192–2194Google Scholar
  19. 19.
    Legrand YM, Dumitru F, van der Lee A, Barboiu M (2009) Constitutional chirality – a driving force for self-sorting homochiral single-crystals from achiral components. Chem Commun 2667–2669Google Scholar
  20. 20.
    Legrand YM, van der Lee A, Barboiu M (2007) Self-optimizing charge transfer energy phenomena in metallosupramolecular complexes by dynamic constitutional self-sorting. Inorg Chem 46:9540–9547CrossRefGoogle Scholar
  21. 21.
    Barboiu M, Petit E, van der Lee A, Vaughan G (2006) Constitutional self-selection of [2×2] homonuclear grids from a dynamic combinatorial library. Inorg Chem 45:484–486CrossRefGoogle Scholar
  22. 22.
    Dumitru F, Petit E, van der Lee A, Barboiu M (2005) Homoduplex and heteroduplex complexes resulted from terpyridine-type ligands and Zn2+ metal ions. Eur J Inorg Chem 21:4255–4262CrossRefGoogle Scholar
  23. 23.
    Barboiu M, Cerneaux S, van der Lee A, Vaughan G (2004) Ion-driven ATP pump by self-organized hybrid membrane materials. J Am Chem Soc 126:3545–3550CrossRefGoogle Scholar
  24. 24.
    Cazacu A, Tong C, van der Lee A, Fyles TM, Barboiu M (2006) Columnar self-assembled ureido crown ethers: an example of ion-channel organization in lipid bilayers. J Am Chem Soc 128:9541–9548CrossRefGoogle Scholar
  25. 25.
    Arnal-Hérault C, Barboiu M, Pasc A, Michau M, Perriat P, van der Lee A (2007) Constitutional self-organization of adenine-uracil-derived hybrid materials. Chem Eur J 13:6792–6800CrossRefGoogle Scholar
  26. 26.
    Arnal-Herault C, Banu A, Barboiu M, Michau M, van der Lee A (2007) Amplification and transcription of the dynamic supramolecular chirality of the guanine quadruplex. Angew Chem Int Ed Engl 46:4268–4272CrossRefGoogle Scholar
  27. 27.
    Arnal-Herault C, Pasc A, Michau M, Cot D, Petit E, Barboiu M (2007) Functional G-quartet macroscopic membrane films. Angew Chem Int Ed Engl 46:8409–8413CrossRefGoogle Scholar
  28. 28.
    Michau M, Barboiu M, Caraballo R, Arnal-Herault C, Perriat P, Van Der Lee A, Pasc A (2008) Ion-conduction pathways in self-organised ureidoarene-heteropolysiloxane hybrid membranes. Chem Eur J 14:1776–1783CrossRefGoogle Scholar
  29. 29.
    Barboiu M (2010) Dynamic interactive systems: dynamic selection in hybrid organic-inorganic constitutional networks. Chem Commun (Camb) 46:7466–7476CrossRefGoogle Scholar
  30. 30.
    Mihai S, Cazacu A, Arnal-Herault C, Nasr G, Meffre A, van der Lee A, Barboiu M (2009) Supramolecular self-organization in constitutional hybrid materials. New J Chem 33:2335–2343CrossRefGoogle Scholar
  31. 31.
    Barboiu M, Cazacu A, Michau M, Caraballo R, Arnal-Herault C, Pasc-Banu A (2008) Functional organic- inorganic hybrid membranes. Chem Eng Proc 47:1044–1052CrossRefGoogle Scholar
  32. 32.
    Mihai S Le, Duc Y, Cot D, Barboiu M (2010) Sol–gel selection of hybrid G-quadruplex architectures from dynamic supramolecular guanosine libraries. J Mater Chem 20:9443–9448CrossRefGoogle Scholar
  33. 33.
    Barboiu M, Cazacu A, Mihai S, Legrand Y-M, Nasr G, Le Duc Y, Petit E, van der Lee A (2011) Dynamic constitutional hybrid materials-toward adaptive self-organized devices. Microp Mesop Mat 140:51–57CrossRefGoogle Scholar
  34. 34.
    Barboiu M, Ruben M, Blasen G, Kyritsakas N, Chacko E, Dutta M, Radekovich O, Lenton K, Brook DJR, Lehn J-M (2006) Self-assembly, structure and solution dynamics of tetranuclear Zn2+ hydrazone [2×2] grid-type complexes. Eur J Inorg Chem 784–789Google Scholar
  35. 35.
    Cazacu A, Mihai S, Nasr G, van der Mahon E, Lee A, Meffre A, Barboiu M (2010) Lipophilic polyoxomolybdate nanocapsules in constitutional dynamic hybrid materials. Inorg Chim Acta 363:4214–4219CrossRefGoogle Scholar
  36. 36.
    Barboiu M (2004) Supramolecular polymeric macrocyclic receptors – hybrid carrier vs channel transporters in bulk liquid membranes. J Incl Phenom Macrocycl Chem 49:133–137CrossRefGoogle Scholar
  37. 37.
    Ramström O, Lehn J-M (2000) In situ generation and screening of a dynamic combinatorial carbohydrate library against concanavalin A. Chembiochem 1:41–48CrossRefGoogle Scholar
  38. 38.
    Ramström O, Lohman S, Bunyapaiboonsri T, Lehn J-M (2004) Dynamic combinatorial carbohydrate libraries: probing the binding site of the concanavalin A lectin. Chem Eur J 10:1711–1715CrossRefGoogle Scholar
  39. 39.
    Mahon E, Aastrup T, Barboiu M (2010) Dynamic glycovesicle systems for amplified QCM detection of carbohydrate-lectin multivalent biorecognition. Chem Commun 46:2441–2443CrossRefGoogle Scholar
  40. 40.
    Mahon E, Aastrup T, Barboiu M (2010) Multivalent recognition of lectins by glyconanopaticle systems. Chem Commun 46:5491–5493CrossRefGoogle Scholar
  41. 41.
    Bunyapaiboonsri T, Ramström O, Lohman S, Lehn J-M (2001) Dynamic deconvolution of a preequilibrated dynamic combinatorial library of acetylcholinesterase inhibitors. Chembiochem 2:438–444CrossRefGoogle Scholar
  42. 42.
    Larsson R, Pei Z, Ramström O (2004) Catalytic self-screening of cholinesterase substrates from a dynamic combinatorial thioester library. Angew Chem Int Ed 43:3716–3718CrossRefGoogle Scholar
  43. 43.
    Hochgurtel M, Kroth H, Piecha D, Hofmann MW, Nicolau C, Krause S, Schaaf O, Sonnenmoser G, Eliseev AV (2002) Target-induced formation of neuraminidase inhibitors from in vitro virtual combinatorial libraries. Proc Natl Acad Sci USA 99:3382–3387CrossRefGoogle Scholar
  44. 44.
    Hochgurtel M, Biesinger R, Kroth H, Piecha D, Hofmann MW, Krause S, Schaaf O, Nicolau C, Eliseev AV (2003) Ketones as building blocks for dynamic combinatorial libraries: highly active neuraminidase inhibitors generated via selection pressure of the biological target. J Med Chem 46:356–358CrossRefGoogle Scholar
  45. 45.
    Valade A, Urban D, Beau J-M (2007) Two galactosyltransferases’ selection of different binders from the same uridine-based dynamic combinatorial library. J Comb Chem 9:1–4CrossRefGoogle Scholar
  46. 46.
    Gerber-Lemaire S, Popowycz F, Rodriguez-Garcia E, Asenjo ATC, Robina I, Vogel P (2002) An efficient combinatorial method for the discovery of glycosidase inhibitors. Chembiochem 3:466–470CrossRefGoogle Scholar
  47. 47.
    Whitney AM, Ladame S, Balasubramanian S (2004) Templated ligand assembly by using G-quadruplex DNA and dynamic covalent chemistry. Angew Chem Int Ed 43:1143–1146CrossRefGoogle Scholar
  48. 48.
    Tsujita S, Tanada M, Kataoka T, Sasaki S (2007) Equilibrium shift by target DNA substrates for determination of DNA binding ligands. Bioorg Med Chem Lett 17:68–72CrossRefGoogle Scholar
  49. 49.
    Huc I, Lehn J-M (1997) Virtual combinatorial libraries: dynamic generation of molecular and supramolecular diversity by self-assembly. Proc Natl Acad Sci USA 94:2106–2110CrossRefGoogle Scholar
  50. 50.
    Nguyen R, Huc I (2001) Using and enzyme’s active site to template inhibitors. Angew Chem Int Ed 40:1774–1776CrossRefGoogle Scholar
  51. 51.
    Poulsen S-A, Bornaghi LF (2006) Fragment-based drug discovery of carbonic anhydrase II inhibitors by dynamic combinatorial chemistry utilizing cross metathesis. Bioorg Med Chem 14:3275–3284CrossRefGoogle Scholar
  52. 52.
    Poulsen S-A (2006) Direct screening of a dynamic combinatorial library using mass spectrometry. J Am Soc Mass Spectrom 17:1074–1080CrossRefGoogle Scholar
  53. 53.
    Poulsen S-A, Davis RA, Keys TG (2006) Screening natural product-based combinatorial library using FTICR mass spectrometry. Bioorg Med Chem 14:510–515CrossRefGoogle Scholar
  54. 54.
    Wilson SR, Czarnik AW (eds) (1997) Combinatorial chemistry-synthesis and applications. Wiley, New YorkGoogle Scholar
  55. 55.
    Supuran CT (2008) Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 7:168–181CrossRefGoogle Scholar
  56. 56.
    Supuran CT, Scozzafava A, Conway J (eds) (2004) Carbonic anhydrase – its inhibitors and activators. CRC Press, Boca Raton, pp 1–376, and references cited thereinGoogle Scholar
  57. 57.
    Supuran CT, Winum J-Y (2009) Selectivity issues in the design of CA inhibitors. In: Supuran CT, Winum J-Y (eds) Drug design of zinc-enzyme inhibitors: functional, structural, and disease applications. Wiley, HobokenCrossRefGoogle Scholar
  58. 58.
    De Simone G (2009) X-Ray crystallography of CA inhibitors and its importance in drug design. In: Supuran CT, Winum J-Y (eds) Drug design of zinc-enzyme inhibitors: functional, structural, and disease applications. Wiley, HobokenGoogle Scholar
  59. 59.
    Luca C, Barboiu M, Supuran CT (1991) Stability constant of complex inhibitors and their mechanism of action. Rev Roum Chim 36(9–10):1169–1173Google Scholar
  60. 60.
    Winum J-Y, Scozzafava A, Montero J-L, Supuran C-T (2008) Design of zinc binding functions for carbonic anhydrase inhibitors. Curr Pharm Des 14:615–621CrossRefGoogle Scholar
  61. 61.
    Supuran CT, Scozzafava A, Casini A (2003) Carbonic anhydrase inhibitors. Med Res Rev 23:146–189CrossRefGoogle Scholar
  62. 62.
    Barboiu M, Supuran CT, Menabuoni L, Scozzafava A, Mincione F, Briganti F, Mincione G (1999) Carbonic anhydrase inhibitors, synthesis of topically effective intraocular pressure lowering agents derived from 5-(aminoalkyl-carboxamido)-1,3,4-thiadiazole-2-sulfonamide. J Enz Inhib 15:23–46Google Scholar
  63. 63.
    Supuran CT, Barboiu M, Luca C, Pop E, Dinculescu A (1996) Carbonic anhydrase activators. Part 14. Syntheses of positively charged derivatives of 2-amino-5-(2-aminoethyl) and 2-amino-5-(2-aminopropyl)-1,3,4 thiadiazole and their interaction with isozyme II. Eur J Med Chem 31:597–606CrossRefGoogle Scholar
  64. 64.
    Winum J-Y, Rami M, Scozzafava A, Montero J-L, Supuran C (2008) Carbonic anhydrase IX: a new druggable target for the design of antitumor agents. Med Res Rev 28:445–463CrossRefGoogle Scholar
  65. 65.
    Nasr G, Petit E, Supuran CT, Winum JY, Barboiu M (2009) Carbonic anhydrase II-induced selection of inhibitors from a dynamic combinatorial library of Schiff’s bases. Bioorg Med Chem Lett 19:6014–6017CrossRefGoogle Scholar
  66. 66.
    Nasr G, Petit E, Vullo D, Winum JY, Supuran CT, Barboiu M (2009) Carbonic anhydrase-encoded dynamic constitutional libraries: towards the discovery of isozyme-specific inhibitors. J Med Chem 42:4853–4859CrossRefGoogle Scholar
  67. 67.
    Giusepponne N, Lehn J-M (2006) Protonic and temperature modulation of constituent expression by component selection in a dynamic combinatorial library of imines. Chem Eur J 12:1715–1722CrossRefGoogle Scholar
  68. 68.
    Giuseppone N, Lehn JM (2004) Constitutional dynamic self-sensing in a zinc(II)-poly-iminofluorene system. J Am Chem Soc 126:11448–11449CrossRefGoogle Scholar
  69. 69.
    Giuseppone N, Fucks G, Lehn JM (2006) Tunable fluorene-based dynamers through constitutional dynamic chemistry. Chem Eur J 12:1723–1735CrossRefGoogle Scholar
  70. 70.
    Cazacu A, Legrand YM, Pasc A, Nasr G, Van der Lee A, Mahon E, Barboiu M (2009) Dynamic hybrid materials for constitutional self-instructed membranes. Proc Natl Acad Sci USA 106:8117–8122CrossRefGoogle Scholar
  71. 71.
    Themed Issue: Recent progress in hybrid materials science. Chem Soc Rev (2011) issue 40Google Scholar
  72. 72.
    Barboiu M, Hovnanian N, Luca C, Cot L (1999) Functionalized derivatives of benzo-crown-ethers, V. Multiple molecular recognition of zwitterionic phenylalanine. Tetrahedron 55:9221–9232CrossRefGoogle Scholar
  73. 73.
    Barboiu M, Guizard C, Luca C, Albu B, Hovnanian N, Palmeri J (1999) A new alternative to amino acid transport: facilitated transport of L-phenylalanine by hybrid siloxane membrane containing a fixed site macrocyclic complexant. J Memb Sci 161:193–206CrossRefGoogle Scholar
  74. 74.
    Barboiu M, Guizard C, Luca C, Hovnanian N, Palmeri J, Cot L (2000) Facilitated transport of organics of biological interest II. Selective transport of organic acids by macrocyclic fixed site complexant membranes. J Memb Sci 174:277–286CrossRefGoogle Scholar
  75. 75.
    Barboiu M, Guizard C, Hovnanian N, Palmeri J, Reibel C, Luca C, Cot L (2000) Facilitated transport of organics of biological interest I. A new alternative for the amino acids separations by fixed-site crown-ether polysiloxane membranes. J Memb Sci 172:91–103CrossRefGoogle Scholar
  76. 76.
    Barboiu M, Guizard C, Hovnanian N, Cot L (2001) New molecular receptors for organics of biological interest for the facilitated transport in liquid and solid membranes. Sep Purif Technol 25:211–218CrossRefGoogle Scholar
  77. 77.
    Guizard C, Bac A, Barboiu M, Hovnanian N (2001) Hybrid organic-inorganic membranes with specific transport properties. Applications in separation and sensors technologies. Sep Purif Technol 25:167–180CrossRefGoogle Scholar
  78. 78.
    Davis JT, Spada GP (2007) Supramolecular architectures generated by self-assembly of guanosine derivatives. Chem Soc Rev 36:296–313CrossRefGoogle Scholar
  79. 79.
    Davis JT (2004) G-quartets 40 years later: from 5'-GMP to molecular biology and supramolecular chemistry. Angew Chem Int Ed Engl 43:668–698CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Institut Européen des Membranes – ENSCM-UMII-CNRS 5635Montpellier Cedex 5France

Personalised recommendations