Fullerenes, Carbon Nanotubes, and Graphene for Molecular Electronics

  • Julio R. Pinzón
  • Adrián Villalta-Cerdas
  • Luis Echegoyen
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 312)


With the constant growing complexity of electronic devices, the top-down approach used with silicon based technology is facing both technological and physical challenges. Carbon based nanomaterials are good candidates to be used in the construction of electronic circuitry using a bottom-up approach, because they have semiconductor properties and dimensions within the required physical limit to establish electrical connections. The unique electronic properties of fullerenes for example, have allowed the construction of molecular rectifiers and transistors that can operate with more than two logical states. Carbon nanotubes have shown their potential to be used in the construction of molecular wires and FET transistors that can operate in the THz frequency range. On the other hand, graphene is not only the most promising material for replacing ITO in the construction of transparent electrodes but it has also shown quantum Hall effect and conductance properties that depend on the edges or chemical doping. The purpose of this review is to present recent developments on the utilization carbon nanomaterials in molecular electronics.


Bottom-up Carbon nanomaterials Molecular conductance Molecular electronics Unimolecular electronic devices 


  1. 1.
    Green JR, Korkin A, Labanowski J (2003) Nano and giga: challenges in microelectronics. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Avouris P, Chen Z, Perebeinos V (2007) Carbon-based electronics. Nat Nanotechnol 2:605–615Google Scholar
  3. 3.
    Theis TN, Solomon PM (2010) It’s time to reinvent the transistor! Science 327:1600–1601Google Scholar
  4. 4.
    Lu W, Lieber CM (2007) Nanoelectronics from the bottom up. Nat Mater 6:841–850Google Scholar
  5. 5.
    Xu B, Tao NJ (2003) Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301:1221–1223Google Scholar
  6. 6.
    Xu BQ, Xiao XY, Yang X et al (2005) Large gate modulation in the current of a room temperature single molecule transistor. J Am Chem Soc 127:2386–2387Google Scholar
  7. 7.
    Akasaka T, Fred W, Nagase S (2010) Chemistry of nanocarbons. Wiley, Hoboken, NJGoogle Scholar
  8. 8.
    Sablon K (2008) Nanoelectrodes for molecular devices: a controllable fabrication. Nanoscale Res Lett 3:268–270Google Scholar
  9. 9.
    Venkataraman L, Klare JE, Nuckolls C et al (2006) Dependence of single-molecule junction conductance on molecular conformation. Nature 442:904–907Google Scholar
  10. 10.
    Kroto HW, Heath JR, O’Brien SC et al (1985) C60: buckminsterfullerene. Nature 318:162–163Google Scholar
  11. 11.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature (London) 354:56–58Google Scholar
  12. 12.
    Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605Google Scholar
  13. 13.
    Bethune DS, Kiang CH, de Vries MS et al (1993) Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature (London) 363:605–607Google Scholar
  14. 14.
    Iijima S (1980) Direct observation of the tetrahedral bonding in graphitized carbon black by high resolution electron microscopy. J Cryst Growth 50:675–683Google Scholar
  15. 15.
    Iijima S (1987) The 60-carbon cluster has been revealed. J Phys Chem 91:3466–3467Google Scholar
  16. 16.
    Ugarte D (1992) Curling and closure of graphitic networks under electron-beam irradiation. Nature 359:707–709Google Scholar
  17. 17.
    Kuznetsov VL, Chuvilin AL, Butenko YV et al (1994) Onion-like carbon from ultra-disperse diamond. Chem Phys Lett 222:343–348Google Scholar
  18. 18.
    Sano N, Wang H, Chhowalla M et al (2001) Synthesis of carbon ‘onions’ in water. Nature 414:506–507Google Scholar
  19. 19.
    Liu W, Meng QS (2009) An effective method of increasing production rate of onion-like fullerenes. J Phys Conf Ser 188:012035Google Scholar
  20. 20.
    Alexandrou I, Wang H, Sano N et al (2004) Structure of carbon onions and nanotubes formed by arc in liquids. J Chem Phys 120:1055–1058Google Scholar
  21. 21.
    Iijima S, Yudasaka M, Yamada R et al (1999) Nano-aggregates of single-walled graphitic carbon nano-horns. Chem Phys Lett 309:165–170Google Scholar
  22. 22.
    Heath JR, O’Brien SC, Zhang Q et al (1985) Lanthanum complexes of spheroidal carbon shells. J Am Chem Soc 107:7779–7780Google Scholar
  23. 23.
    Chai Y, Guo T, Jin C et al (1991) Fullerenes with metals inside. J Phys Chem 95:7564–7568Google Scholar
  24. 24.
    Dunsch L, Yang S (2007) Metal nitride cluster fullerenes: their current state and future prospects. Small 3:1298–1320Google Scholar
  25. 25.
    Chaur MN, Melin F, Ortiz AL et al (2009) Chemical, electrochemical, and structural properties of endohedral metallofullerenes. Angew Chem Int Ed 48:7514–7538Google Scholar
  26. 26.
    Stevenson S, Mackey MA, Stuart MA et al (2008) A distorted tetrahedral metal oxide cluster inside an icosahedral carbon cage. synthesis, isolation, and structural characterization of Sc4(?3-O)2@Ih-C80. J Am Chem Soc 130:11844–11845Google Scholar
  27. 27.
    Wang T, Chen N, Xiang J et al (2009) Russian-doll-type metal carbide endofullerene: synthesis, isolation, and characterization of Sc4C2@C80. J Am Chem Soc 131:16646–16647Google Scholar
  28. 28.
    Chen N, Chaur MN, Moore C et al (2010) Synthesis of a new endohedral fullerene family, Sc2S@C2n (n?=?40–50) by the introduction of SO2. Chem Commun 46:4818–4820Google Scholar
  29. 29.
    Dunsch L, Yang S, Zhang L et al (2010) Metal sulfide in a C(82) fullerene cage: a new form of endohedral clusterfullerenes. J Am Chem Soc 132:5413–5421Google Scholar
  30. 30.
    Kratschmer W, Lamb LD, Fostiropoulos K et al (1990) Solid C60: a new form of carbon. Nature 347:354–358Google Scholar
  31. 31.
    Krätschmer W, Fostiropoulos K, Huffman DR (1990) The infrared and ultraviolet absorption spectra of laboratory-produced carbon dust: evidence for the presence of the C60 molecule. Chem Phys Lett 170:167–170Google Scholar
  32. 32.
    Haufler RE, Conceicao J, Chibante LPF et al (1990) Efficient production of C60 (buckminsterfullerene), C60H36, and the solvated buckide ion. J Phys Chem 94:8634–8636Google Scholar
  33. 33.
    Taylor R, Hare JP, Abdul-Sada AK et al (1990) Isolation, separation and characterization of the fullerenes C60 and C70: the third form of carbon. J Chem Soc Chem Commun 20:1423–1425Google Scholar
  34. 34.
    Howard JB, McKinnon JT, Makarovsky Y et al (1991) Fullerenes C60 and C70 in flames. Nature (London) 352:139–141Google Scholar
  35. 35.
    McKinnon JT, Bell WL, Barkley RM (1992) Combustion synthesis of fullerenes. Combust Flame 88:102–112Google Scholar
  36. 36.
    Goel A, Hebgen P, Vander Sande JB et al (2002) Combustion synthesis of fullerenes and fullerenic nanostructures. Carbon 40:177–182Google Scholar
  37. 37.
    Takehara H, Fujiwara M, Arikawa M et al (2005) Experimental study of industrial scale fullerene production by combustion synthesis. Carbon 43:311–319Google Scholar
  38. 38.
    Alford JM, Bernal C, Cates M et al (2008) Fullerene production in sooting flames from 1,2,3,4-tetrahydronaphthalene. Carbon 46:1623–1625Google Scholar
  39. 39.
    Murayama H, Tomonoh S, Alford JM et al (2004) Fullerene production in tons and more: from science to industry. Fullerenes, Nanotubes, Carbon Nanostruct 12:1–9Google Scholar
  40. 40.
    Fulcheri L, Schwob Y, Fabry F et al (2000) Fullerene production in a 3-phase AC plasma process. Carbon 38:797–803Google Scholar
  41. 41.
    Song X, Liu Y, Zhu J (2006) The effect of furnace temperature on fullerene yield by a temperature controlled arc discharge. Carbon 44:1584–1586Google Scholar
  42. 42.
    Ahmad B, Riaz M, Ahmad M et al (2008) Synthesis and characterization of higher fullerene (C84) in dc arc discharge using Cu as a catalyst. Mater Lett 62:3367–3369Google Scholar
  43. 43.
    Huczko A, Lange H, Byszewski P et al (1997) Fullerene formation in carbon arc: electrode gap dependence and plasma spectroscopy. J Phys Chem A 101:1267–1269Google Scholar
  44. 44.
    Gonzalez-Aguilar J, Moreno M, Fulcheri L (2007) Carbon nanostructures production by gas-phase plasma processes at atmospheric pressure. J Phys D: Appl Phys 40:2361–2374Google Scholar
  45. 45.
    Kareev IE, Bubnov VP, Fedutin DN (2009) Electric-arc high-capacity reactor for the synthesis of carbon soot with a high content of endohedral metallofullerenes. Tech Phys 54:1695–1698Google Scholar
  46. 46.
    Yamada M, Akasaka T, Nagase S (2010) Endohedral metal atoms in pristine and functionalized fullerene cages Acc Chem Res 43:92–102Google Scholar
  47. 47.
    Tsuchiya T, Akasaka T, Nagase S (2010) New vistas in fullerene endohedrals: functionalization with compounds from main group elements. Pure Appl Chem 82:505–521Google Scholar
  48. 48.
    Dunsch L, Georgi P, Krause M et al (2003) New clusters in endohedral fullerenes: the metalnitrides. Synth Met 135–136:761–762Google Scholar
  49. 49.
    Dunsch L, Krause M, Noack J et al (2004) Endohedral nitride cluster fullerenes. Formation and spectroscopic analysis of L3-xMxN@C2n (0???x???3; N?=?39,40). J Phys Chem Solids 65:309–315Google Scholar
  50. 50.
    Krause M, Ziegs F, Popov AA et al (2007) Entrapped bonded hydrogen in a fullerene: the five-atom cluster Sc3CH in C80. ChemPhysChem 8:537–540Google Scholar
  51. 51.
    Stevenson S, Rice G, Glass T et al (1999) Small-bandgap endohedral metallofullerenes in high yield and purity. Nature 401:55–57Google Scholar
  52. 52.
    Chen N, Klod S, Rapta P et al (2010) Direct Arc-discharge assisted synthesis of C60H2(C3H5N): a cis-1-pyrrolino C60 fullerene hydride with unusual redox properties. Chem Mater 22:2608–2615Google Scholar
  53. 53.
    Haddon RC, Brus LE, Raghavachari K (1986) Electronic structure and bonding in icosahedral carbon cluster (C60). Chem Phys Lett 125:459–464Google Scholar
  54. 54.
    Xie Q, Perez-Cordero E, Echegoyen L (1992) Electrochemical detection of C60 6- and C70 6-: enhanced stability of fullerides in solution. J Am Chem Soc 114:3978–3980Google Scholar
  55. 55.
    Xie Q, Arias F, Echegoyen L (1993) Electrochemically-reversible, single-electron oxidation of C60 and C70. J Am Chem Soc 115:9818–9819Google Scholar
  56. 56.
    Echegoyen L, Echegoyen LE (1998) Electrochemistry of fullerenes and their derivatives. Acc Chem Res 31:593–601Google Scholar
  57. 57.
    Anderson MR, Dorn HC, Stevenson SA et al (1998) The voltammetry of C84 isomers. J Electroanal Chem 444:151–154Google Scholar
  58. 58.
    Chaur MN, Athans AJ, Echegoyen L (2008) Metallic nitride endohedral fullerenes: synthesis and electrochemical properties. Tetrahedron 64:11387–11393Google Scholar
  59. 59.
    Lu X, Slanina Z, Akasaka T et al (2010) Yb@C(2n) (n?=?40, 41, 42): new fullerene allotropes with unexplored electrochemical properties. J Am Chem Soc 132:5896–5905Google Scholar
  60. 60.
    Zhao J, Miao B, Zhao L et al (2004) Electronic transport properties of single C60 molecules and device applications. Int J Nanotechnol 1:157–169Google Scholar
  61. 61.
    Joachim C, Gimzewski JK (1995) Analysis of low-voltage I(V) characteristics of a single C60 molecule. Europhys Lett 30:409–414Google Scholar
  62. 62.
    Joachim C, Gimzewski J, Schlittler R et al (1995) Electronic transparence of a single C60 molecule. Phys Rev Lett 74:2102–2105Google Scholar
  63. 63.
    Néel N, Kröger J, Limot L et al (2007) Controlled contact to a C60 molecule. Phys Rev Lett 98:065502Google Scholar
  64. 64.
    Saffarzadeh A (2008) Electronic transport through a C60 molecular bridge: the role of single and multiple contacts. J Appl Phys 103:083705–083706Google Scholar
  65. 65.
    Mishra S (2005) Quantum transport through a C60-X molecular bridge with the extra atom at the center. Phys Rev B 72:075421Google Scholar
  66. 66.
    Porath D, Levi Y, Tarabiah M et al (1997) Tunneling spectroscopy of isolated C60 molecules in the presence of charging effects. Phys Rev B 56:9829–9833Google Scholar
  67. 67.
    Porath D, Millo O (1997) Single electron tunneling and level spectroscopy of isolated C60 molecules. J Appl Phys 81:2241Google Scholar
  68. 68.
    Amman M, Wilkins R, Ben-Jacob E et al (1991) Analytic solution for the current-voltage characteristic of two mesoscopic tunnel junctions coupled in series. Phys Rev B 43:1146–1149Google Scholar
  69. 69.
    Allemand PM, Koch A, Wudl F et al (1991) Two different fullerenes have the same cyclic voltammetry. J Am Chem Soc 113:1050–1051Google Scholar
  70. 70.
    Imahori H, Tkachenko NV, Vehmanen V et al (2001) An extremely small reorganization energy of electron transfer in porphyrin?fullerene dyad. J Phys Chem A 105:1750–1756Google Scholar
  71. 71.
    Marcus RA (1956) The theory of oxidation-reduction reactions involving electron transfer. I J Chem Phys 24:966–978Google Scholar
  72. 72.
    Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta Rev Bioenerg 811:265–322Google Scholar
  73. 73.
    Marcus RA (1993) Electron transfer reactions in chemistry: theory and experiment (Nobel lecture). Angew Chem Int Ed 32:1111–1121Google Scholar
  74. 74.
    Guldi DM, Illescas BM, Atienza CM et al (2009) Fullerene for organic electronics. Chem Soc Rev 38:1587–1597Google Scholar
  75. 75.
    Imahori H, Yamada H, Guldi DM et al (2002) Comparison of reorganization energies for intra- and intermolecular electron transfer. Angew Chem Int Ed 41:2344–2347Google Scholar
  76. 76.
    Schuster DI, Li K, Guldi DM et al (2007) Azobenzene-linked porphyrin-fullerene dyads. J Am Chem Soc 129:15973–15982Google Scholar
  77. 77.
    Imahori H, Guldi DM, Tamaki K et al (2001) Charge separation in a novel artificial photosynthetic reaction center lives 380 ms. J Am Chem Soc 123:6617–6628Google Scholar
  78. 78.
    Guldi DM, Imahori H, Tamaki K et al (2004) A molecular tetrad allowing efficient energy storage for 1.6 s at 163 K. J Phys Chem A 108:541–548Google Scholar
  79. 79.
    Ito O, Yamanaka K (2009) Roles of molecular wires between fullerenes and electron donors in photoinduced electron transfer. Bull Chem Soc Jpn 82:316–332Google Scholar
  80. 80.
    De la Torre G, Giacalone F, Segura JL et al (2005) Electronic communication through pi-conjugated wires in covalently linked porphyrin/C60 ensembles. Chem Eur J 11:1267–1280Google Scholar
  81. 81.
    Ikemoto J, Takimiya K, Aso Y et al (2002) Porphyrin?oligothiophene?fullerene triads as an efficient intramolecular electron-transfer system. Org Lett 4:309–311Google Scholar
  82. 82.
    Guldi DM, Giacalone F, de la Torre G et al (2005) Topological effects of a rigid chiral spacer on the electronic interactions in donor-acceptor ensembles. Chem Eur J 11:7199–7210Google Scholar
  83. 83.
    Oike T, Kurata T, Takimiya K et al (2005) Polyether-bridged sexithiophene as a complexation-gated molecular wire for intramolecular photoinduced electron transfer. J Am Chem Soc 127:15372–15373Google Scholar
  84. 84.
    D’Souza F, Maligaspe E, Ohkubo K et al (2009) Photosynthetic reaction center mimicry: low reorganization energy driven charge stabilization in self-assembled cofacial zinc phthalocyanine dimer-fullerene conjugate. J Am Chem Soc 131:8787–8797Google Scholar
  85. 85.
    Megiatto JD, Schuster DI, Abwandner S et al (2010) [2]Catenanes decorated with porphyrin and [60]fullerene groups: design, convergent synthesis, and photoinduced processes. J Am Chem Soc 132:3847–3861Google Scholar
  86. 86.
    Takai A, Chkounda M, Eggenspiller A et al (2010) Efficient photoinduced electron transfer in a porphyrin tripod-fullerene supramolecular complex via pi-pi interactions in nonpolar media. J Am Chem Soc 132:4477–4489Google Scholar
  87. 87.
    De la Escosura A, Martinez-Diaz MV, Guldi DM et al (2006) Stabilization of charge-separated states in phthalocyanine-fullerene ensembles through supramolecular donor-acceptor interactions. J Am Chem Soc 128:4112–4118Google Scholar
  88. 88.
    Metzger RM (2006) Unimolecular rectifiers and what lies ahead. Colloids Surf A 284–285:2–10Google Scholar
  89. 89.
    Metzger RM (2006) Unimolecular rectifiers: methods and challenges. Anal Chim Acta 568:146–155Google Scholar
  90. 90.
    Aviram A, Ratner MA (1974) Molecular rectifiers. Chem Phys Lett 29:277–283Google Scholar
  91. 91.
    Viani L, dos Santos MC (2006) Comparative study of lower fullerenes doped with boron and nitrogen. Solid State Commun 138:498–501Google Scholar
  92. 92.
    Xie R, Bryant GW, Zhao J et al (2003) Tailorable acceptor C60-nBn and donor C60-mNm pairs for molecular electronics. Phys Rev Lett 90:206602/1–206602/4Google Scholar
  93. 93.
    Metzger RM (2003) One-molecule-thick devices: rectification of electrical current by three Langmuir-Blodgett monolayers. Synth Met 137:1499–1501Google Scholar
  94. 94.
    Metzger RM, Baldwin JW, Shumate WJ et al (2003) Electrical rectification in a Langmuir-Blodgett monolayer of dimethyanilinoazafullerene sandwiched between gold electrodes. J Phys Chem B 107:1021–1027Google Scholar
  95. 95.
    Wang B, Zhou Y, Ding X et al (2006) Conduction mechanism of Aviram-Ratner rectifiers with single pyridine-s-C60 oligomers. J Phys Chem B 110:24505–24512Google Scholar
  96. 96.
    Gayathri SS, Patnaik A (2006) Electrical rectification from a fullerene[60]-dyad based metal-organic-metal junction. Chem Commun (Cambridge, UK) 1977–1979Google Scholar
  97. 97.
    Matino F, Arima V, Piacenza M et al (2009) Rectification in supramolecular zinc porphyrin/fulleropyrrolidine dyads self-organized on gold(111). Chemphyschem 10:2633–2641Google Scholar
  98. 98.
    Acharya S, Song H, Lee J et al (2009) An amphiphilic C60 penta-addition derivative as a new U-type molecular rectifier. Org Electron 10:85–94Google Scholar
  99. 99.
    Koiry SP, Jha P, Aswal DK et al (2010) Diodes based on bilayers comprising of tetraphenyl porphyrin derivative and fullerene for hybrid nanoelectronics. Chem Phys Lett 485:137–141Google Scholar
  100. 100.
    Joachim C, Gimzewski JK (1997) An electromechanical amplifier using a single molecule. Chem Phys Lett 265:353–357Google Scholar
  101. 101.
    Joachim C, Gimzewski JK, Tang H (1998) Physical principles of the single-C60 transistor effect. Phys Rev B: Condens Matter Mater Phys 58:16407–16417Google Scholar
  102. 102.
    Park H, Park J, Lim AKL et al (2000) Nanomechanical oscillations in a single-C60 transistor. Nature (London) 407:58–60Google Scholar
  103. 103.
    Park H, Lim AKL, Alivisatos AP et al (1999) Fabrication of metallic electrodes with nanometer separation by electromigration. Appl Phys Lett 75:301Google Scholar
  104. 104.
    Winkelmann CB, Roch N, Wernsdorfer W et al (2009) Superconductivity in a single-C60 transistor. Nat Phys 5:876–879Google Scholar
  105. 105.
    Roch N, Winkelmann CB, Florens S et al (2008) Kondo effect in a C60 single-molecule transistor. Phys Status Solid B 245:1994–1997Google Scholar
  106. 106.
    Mentovich ED, Belgorodsky B, Kalifa I et al (2010) 1-Nanometer-sized active-channel molecular quantum-dot transistor. Adv Mater 22:2182–2186Google Scholar
  107. 107.
    Morita T, Lindsay S (2008) Reduction-induced switching of single-molecule conductance of fullerene derivatives. J Phys Chem B 112:10563–10572Google Scholar
  108. 108.
    Ortiz AL, Rivera DM, Athans AJ et al (2009) Regioselective addition of N-(4-thiocyanatophenyl)pyrrolidine addends to fullerenes. Eur J Org Chem 3396–3403:S3396/1–S3396/25Google Scholar
  109. 109.
    Ortiz AL, Echegoyen L (2010) Unexpected and selective formation of an (e, e, e, e)-tetrakis-[60]fullerene derivative via electrolytic retro-cyclopropanation of a D2h-hexakis-[60]fullerene adduct. J Mater Chem 21:1362–1364Google Scholar
  110. 110.
    Zhang S, Lukoyanova O, Echegoyen L (2006) Synthesis of fullerene adducts with terpyridyl- or pyridylpyrrolidine groups in trans-1 positions. Chem Eur J 12:2846–2853Google Scholar
  111. 111.
    Yu M, Lourie O, Dyer MJ et al (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640Google Scholar
  112. 112.
    Hamada N, Sawada S, Oshiyama A (1992) New one-dimensional conductors: graphitic microtubules. Phys Rev Lett 68:1579–1581Google Scholar
  113. 113.
    Pillai SK, Ray SS, Moodley M (2007) Purification of single-walled carbon nanotubes. J Nanosci Nanotechnol 7:3011–3047Google Scholar
  114. 114.
    Journet C, Maser WK, Bernier P et al (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388:756–758Google Scholar
  115. 115.
    Guo T, Nikolaev P, Thess A et al (1995) Catalytic growth of single-walled manotubes by laser vaporization. Chem Phys Lett 243:49–54Google Scholar
  116. 116.
    Bonard J, Croci M, Conus F et al (2002) Watching carbon nanotubes grow. Appl Phys Lett 81:2836Google Scholar
  117. 117.
    Marchand M, Journet C, Guillot D et al (2009) Growing a carbon nanotube atom by atom: “and yet it does turn”. Nano Lett 9:2961–2966Google Scholar
  118. 118.
    Meyyappan M (2009) A review of plasma enhanced chemical vapour deposition of carbon nanotubes. J Phys D 42:213001Google Scholar
  119. 119.
    Hou S, Chung D, Lin T (2009) Flame synthesis of carbon nanotubes in a rotating counterflow. J Nanosci Nanotechnol 9:4826–4833Google Scholar
  120. 120.
    Sun BM, Liu YC, Ding ZY (2009) Carbon nanotubes preparation using carbon monoxide from the pyrolysis flame. Adv Mater Res 87–88:104–109Google Scholar
  121. 121.
    Zhang L, Zaric S, Tu X et al (2008) Assessment of chemically separated carbon nanotubes for nanoelectronics. J Am Chem Soc 130:2686–2691Google Scholar
  122. 122.
    Pillai SK, Ray SS, Moodley M (2008) Purification of multi-walled carbon nanotubes. J Nanosci Nanotechnol 8:6187–6207Google Scholar
  123. 123.
    Matlhoko L, Pillai SK, Ray SS et al (2008) Purification of laser synthesized SWCNTs by different methods: a comparative study. J Nanosci Nanotechnol 8:6023–6030Google Scholar
  124. 124.
    Matlhoko L, Pillai SK, Moodley M et al (2009) A comparison of purification procedures for multi-walled carbon nanotubes produced by chemical vapor deposition. J Nanosci Nanotechnol 9:5431–5435Google Scholar
  125. 125.
    Hersam MC (2008) Progress towards monodisperse single-walled carbon nanotubes. Nat Nanotechnol 3:387–394Google Scholar
  126. 126.
    Collins PG, Arnold MS, Avouris P (2001) Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292:706–709Google Scholar
  127. 127.
    Krupke R, Hennrich F, Lohneysen H et al (2003) Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301:344–347Google Scholar
  128. 128.
    Arnold MS, Green AA, Hulvat JF et al (2006) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol 1:60–65Google Scholar
  129. 129.
    Wei L, Lee CW, Li L et al (2008) Assessment of (n, m) selectively enriched small diameter single-walled carbon nanotubes by density differentiation from cobalt-incorporated MCM-41 for macroelectronics. Chem Mater 20:7417–7424Google Scholar
  130. 130.
    Zheng M, Jagota A, Strano MS et al (2003) Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302:1545–1548Google Scholar
  131. 131.
    Zheng M, Jagota A, Semke ED et al (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2:338–342Google Scholar
  132. 132.
    Huang X, Mclean RS, Zheng M (2005) High-resolution length sorting and purification of DNA-wrapped carbon nanotubes by size-exclusion chromatography. Anal Chem 77:6225–6228Google Scholar
  133. 133.
    Zheng M, Semke ED (2007) Enrichment of single chirality carbon nanotubes. J Am Chem Soc 129:6084–6085Google Scholar
  134. 134.
    Tu X, Zheng M (2008) A DNA-based approach to the carbon nanotube sorting problem. Nano Res 1:185–194Google Scholar
  135. 135.
    Zhang L, Tu X, Welsher K et al (2009) Optical characterizations and electronic devices of nearly pure (10,5) single-walled carbon nanotubes. J Am Chem Soc 131:2454–2455Google Scholar
  136. 136.
    Paolucci D, Franco MM, Iurlo M et al (2008) Singling out the electrochemistry of individual single-walled carbon nanotubes in solution. J Am Chem Soc 130:7393–7399Google Scholar
  137. 137.
    Kavan L, Rapta P, Dunsch L (2000) In situ Raman and Vis-NIR spectroelectrochemistry at single-walled carbon nanotubes. Chem Phys Lett 328:363–368Google Scholar
  138. 138.
    Kavan L, Rapta P, Dunsch L et al (2001) Electrochemical tuning of electronic structure of single-walled carbon nanotubes: in-situ Raman and Vis-NIR study. J Phys Chem B 105:10764–10771Google Scholar
  139. 139.
    Melle-Franco M, Marcaccio M, Paolucci D et al (2004) Cyclic voltammetry and bulk electronic properties of soluble carbon nanotubes. J Am Chem Soc 126:1646–1647Google Scholar
  140. 140.
    Guldi DM, Marcaccio M, Paolucci D et al (2003) Single-wall carbon nanotube-ferrocene nanohybrids: observing intramolecular electron transfer in functionalized SWNTs. Angew Chem Int Ed 42:4206–4209Google Scholar
  141. 141.
    Zheng M, Diner BA (2004) Solution redox chemistry of carbon nanotubes. J Am Chem Soc 126:15490–15494Google Scholar
  142. 142.
    Pénicaud A, Poulin P, Derré A et al (2005) Spontaneous dissolution of a single-wall carbon nanotube salt. J Am Chem Soc 127:8–9Google Scholar
  143. 143.
    Wang Z, Pedrosa H, Krauss T et al (2007) Reply. Phys Rev Lett 98:019702Google Scholar
  144. 144.
    Dukovic G, Wang F, Song D et al (2005) Structural dependence of excitonic optical transitions and band-gap energies in carbon nanotubes. Nano Lett 5:2314–2318Google Scholar
  145. 145.
    Saito R, Fujita M, Dresselhaus G et al (1992) Electronic structure of chiral graphene tubules. Appl Phys Lett 60:2204Google Scholar
  146. 146.
    Perello DJ, Chulim S, Chae SJ et al (2010) Anomalous Schottky barriers and contact band-to-band tunneling in carbon nanotube transistors. ACS Nano 4:3103–3108Google Scholar
  147. 147.
    Tans SJ, Devoret MH, Dai H et al (1997) Individual single-wall carbon nanotubes as quantum wires. Nature 386:474–477Google Scholar
  148. 148.
    Zhong Z, Gabor NM, Sharping JE et al (2008) Terahertz time-domain measurement of ballistic electron resonance in a single-walled carbon nanotube. Nat Nanotechnol 3:201–205Google Scholar
  149. 149.
    Yao Z, Kane C, Dekker C (2000) High-field electrical transport in single-wall carbon nanotubes. Phys Rev Lett 84:2941–2944Google Scholar
  150. 150.
    Frank S, Poncharal P, Wang ZL et al (1998) Carbon nanotube quantum resistors. Science 280:1744–1746Google Scholar
  151. 151.
    Bachtold A, Hadley P, Nakanishi T et al (2001) Logic circuits with carbon nanotube transistors. Science 294:1317–1320Google Scholar
  152. 152.
    Javey A, Guo J, Paulsson M et al (2004) High-field quasiballistic transport in short carbon nanotubes. Phys Rev Lett 92:106804Google Scholar
  153. 153.
    Guo X, Nuckolls C (2009) Functional single-molecule devices based on SWNTs as point contacts. J Mater Chem 19:5470–5473Google Scholar
  154. 154.
    Bruque NA, Ashraf MK, Beran GJO et al (2009) Conductance of a conjugated molecule with carbon nanotube contacts. Phys Rev B Condens Matter Mater Phys 80:155455/1–155455/13Google Scholar
  155. 155.
    Shen X, Sun L, Benassi E et al (2010) Spin filter effect of manganese phthalocyanine contacted with single-walled carbon nanotube electrodes. J Chem Phys 132:054703/1–054703/6Google Scholar
  156. 156.
    Feldman AK, Steigerwald ML, Guo X et al (2008) Molecular electronic devices based on single-walled carbon nanotube electrodes. Acc Chem Res 41:1731–1741Google Scholar
  157. 157.
    Guo X, Small JP, Klare JE et al (2006) Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules. Science 311:356–359Google Scholar
  158. 158.
    Whalley AC, Steigerwald ML, Guo X et al (2007) Reversible switching in molecular electronic devices. J Am Chem Soc 129:12590–12591Google Scholar
  159. 159.
    Wilson NR, Macpherson JV (2009) Carbon nanotube tips for atomic force microscopy. Nat Nanotechnol 4:483–491Google Scholar
  160. 160.
    Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393:49–52Google Scholar
  161. 161.
    Derycke V, Martel R, Appenzeller J et al (2001) Carbon nanotube inter- and intramolecular logic gates. Nano Lett 1:453–456Google Scholar
  162. 162.
    Javey A, Tu R, Farmer DB et al (2005) High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. Nano Lett 5:345–348Google Scholar
  163. 163.
    Kim SM, Jang JH, Kim KK et al (2009) Reduction-controlled viologen in bisolvent as an environmentally stable n-type dopant for carbon nanotubes. J Am Chem Soc 131:327–331Google Scholar
  164. 164.
    Klinke C, Chen J, Afzali A et al (2005) Charge transfer induced polarity switching in carbon nanotube transistors. Nano Lett 5:555–558Google Scholar
  165. 165.
    Zhang Z, Liang X, Wang S et al (2007) Doping-free fabrication of carbon nanotube based ballistic CMOS devices and circuits. Nano Lett 7:3603–3607Google Scholar
  166. 166.
    Ding L, Wang S, Zhang Z et al (2009) Y-contacted high-performance n-type single-walled carbon nanotube field-effect transistors: scaling and comparison with Sc-contacted devices. Nano Lett 9:4209–4214Google Scholar
  167. 167.
    Martel R, Derycke V, Lavoie C et al (2001) Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys Rev Lett 87:256805Google Scholar
  168. 168.
    Xu G, Liu F, Han S et al (2008) Low-frequency noise in top-gated ambipolar carbon nanotube field effect transistors. Appl Phys Lett 92:223114Google Scholar
  169. 169.
    Yu WJ, Kim UJ, Kang BR et al (2009) Adaptive logic circuits with doping-free ambipolar carbon nanotube transistors. Nano Lett 9:1401–1405Google Scholar
  170. 170.
    Bandaru PR, Daraio C, Jin S et al (2005) Novel electrical switching behaviour and logic in carbon nanotube Y-junctions. Nat Mater 4:663–666Google Scholar
  171. 171.
    Kim D, Huang J, Rao BK et al (2006) Pseudo Y-junction single-walled carbon nanotube based ambipolar transistor operating at room temperature. IEEE Trans Nanotechnol 5:731–736Google Scholar
  172. 172.
    Rosenblatt S, Yaish Y, Park J et al (2002) High performance electrolyte gated carbon nanotube transistors. Nano Lett 2:869–872Google Scholar
  173. 173.
    Allen B, Kichambare P, Star A (2007) Carbon nanotube field-effect-transistor-based biosensors. Adv Mater 19:1439–1451Google Scholar
  174. 174.
    Katsura T, Yamamoto Y, Maehashi K et al (2008) High-performance carbon nanotube field-effect transistors with local electrolyte gates. Jpn J Appl Phys 47:2060–2063Google Scholar
  175. 175.
    Liu S, Shen Q, Cao Y et al (2010) Chemical functionalization of single-walled carbon nanotube field-effect transistors as switches and sensors. Coord Chem Rev 254:1101–1116Google Scholar
  176. 176.
    Zhao Y, Hu L, Grüner G et al (2008) A tunable photosensor. J Am Chem Soc 130:16996–17003Google Scholar
  177. 177.
    Huang SC, Artyukhin AB, Misra N et al (2010) Carbon nanotube transistor controlled by a biological ion pump gate. Nano Lett 10:1812–1816Google Scholar
  178. 178.
    Javey A, Guo J, Wang Q et al (2003) Ballistic carbon nanotube field-effect transistors. Nature 424:654–657Google Scholar
  179. 179.
    Li S, Yu Z, Yen S et al (2004) Carbon nanotube transistor operation at 2.6 GHz. Nano Lett 4:753–756Google Scholar
  180. 180.
    Dürkop T, Getty SA, Cobas E et al (2004) Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett 4:35–39Google Scholar
  181. 181.
    Martin-Fernandez I, Sansa M, Esplandiu MJ et al (2010) Massive manufacture and characterization of single-walled carbon nanotube field effect transistors. Microelectron Eng 87:1554–1556Google Scholar
  182. 182.
    Li D, Müller MB, Gilje S et al (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105Google Scholar
  183. 183.
    Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669Google Scholar
  184. 184.
    Chen JH, Jang C, Xiao S et al (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol 3:206–209Google Scholar
  185. 185.
    Lemme MC (2009) Current status of graphene transistors. Solid State Phenomena 156–158:499–509Google Scholar
  186. 186.
    Novoselov KS, McCann E, Morozov SV et al (2006) Unconventional quantum Hall effect and Berry’s phase of 2pi in bilayer graphene. Nat Phys 2:177–180Google Scholar
  187. 187.
    Ozyilmaz B, Jarillo-Herrero P, Efetov D et al (2007) Electronic transport and quantum hall effect in bipolar graphene p-n-p junctions. Phys Rev Lett 99:166804Google Scholar
  188. 188.
    Dubois SM, Zanolli Z, Declerck X et al (2009) Electronic properties and quantum transport in Graphene-based nanostructures. Eur Phys J B 72:1–24Google Scholar
  189. 189.
    Shibata N, Nomura K (2009) Fractional quantum Hall effects of graphene and its bilayer. J Phys Soc Jpn 78:104708/1–104708/7Google Scholar
  190. 190.
    Darancet P, Wipf N, Berger C et al (2008) Quenching of the quantum Hall effect in multilayered epitaxial graphene: the role of undoped planes. Phys Rev Lett 101:116806Google Scholar
  191. 191.
    Abanin DA, Novoselov KS, Zeitler U et al (2007) Dissipative quantum hall effect in graphene near the Dirac point. Phys Rev Lett 98:196806Google Scholar
  192. 192.
    Novoselov KS, Jiang Z, Zhang Y et al (2007) Room-temperature quantum hall effect in graphene. Science 315:1379Google Scholar
  193. 193.
    Kang YS, Seelaboyina R, Lahiri I et al (2010) Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci 35:52–71Google Scholar
  194. 194.
    Mohiuddin TMG, Zhukov AA, Elias DC et al (2009) Transverse spin transport in graphene. Int J Mod Phys B 23:2641–2646Google Scholar
  195. 195.
    Ponomarenko LA, Yang R, Mohiuddin TM et al (2009) Effect of a high-k environment on charge carrier mobility in graphene. Phys Rev Lett 102:206603/1–206603/4Google Scholar
  196. 196.
    Bolotin KI, Sikes KJ, Hone J et al (2008) Temperature-dependent transport in suspended graphene. Phys Rev Lett 101:096802/1–096802/4Google Scholar
  197. 197.
    Nair RR, Blake P, Grigorenko AN et al (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308Google Scholar
  198. 198.
    Blake P (2008) Graphene-based liquid crystal device. Nano Lett 8:1704–1708Google Scholar
  199. 199.
    Booth TJ, Blake P, Nair RR et al (2008) Macroscopic graphene membranes and their extraordinary stiffness. Nano Lett 8:2442–2446Google Scholar
  200. 200.
    Wu J, Pisula W, Mullen K (2007) Graphenes as potential material for electronics. Chem Rev 107:718–747Google Scholar
  201. 201.
    Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145Google Scholar
  202. 202.
    Castro Neto AH, Guinea F, Peres NMR et al (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162Google Scholar
  203. 203.
    Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534Google Scholar
  204. 204.
    Rao CNR, Biswas K, Subrahmanyam KS et al (2009) Graphene, the new nanocarbon. J Mater Chem 19:2457Google Scholar
  205. 205.
    Eda G, Lin Y, Miller S et al (2008) Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl Phys Lett 92:233305/1–233305/3Google Scholar
  206. 206.
    Novoselov KS, Jiang D, Schedin F et al (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102:10451–10453Google Scholar
  207. 207.
    Gass MH, Bangert U, Bleloch AL et al (2008) Free-standing graphene at atomic resolution. Nat Nanotechnol 3:676–681Google Scholar
  208. 208.
    Huc V, Bendiab N, Rosman N et al (2008) Large and flat graphene flakes produced by epoxy bonding and reverse exfoliation of highly oriented pyrolytic graphite. Nanotechnology 19:455601Google Scholar
  209. 209.
    Shukla A, Kumar R, Mazher J et al (2009) Graphene made easy: high quality, large-area samples. Solid State Commun 149:718–721Google Scholar
  210. 210.
    Mermin N (1968) Crystalline order in two dimensions. Phys Rev 176:250–254Google Scholar
  211. 211.
    Meyer JC, Geim AK, Katsnelson MI et al (2007) The structure of suspended graphene sheets. Nature 446:60–63Google Scholar
  212. 212.
    Stolyarova E, Rim KT, Ryu S et al (2007) High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. Proc Natl Acad Sci USA 104:9209–9212Google Scholar
  213. 213.
    Sakhaeepour A (2009) Elastic properties of single-layered graphene sheet. Solid State Commun 149:91–95Google Scholar
  214. 214.
    Lee C, Wei X, Kysar JW et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388Google Scholar
  215. 215.
    Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907Google Scholar
  216. 216.
    Borysiuk J, Bozek R, Strupinski W et al (2010) Graphene growth on C and Si-face of 4 H-SiC – TEM and AFM studies. Mater Sci Forum 645–648:577–580Google Scholar
  217. 217.
    Berger C, Song Z, Li X et al (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191–1196Google Scholar
  218. 218.
    Morozov SV, Novoselov KS, Katsnelson MI et al (2008) Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett 100:016602/1–016602/4Google Scholar
  219. 219.
    Yong V, Tour JM (2010) Theoretical efficiency of nanostructured graphene-based photovoltaics. Small 6:313–318Google Scholar
  220. 220.
    Kim KS, Zhao Y, Jang H et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710Google Scholar
  221. 221.
    Gomez De Arco L, Zhang Y, Schlenker CW et al (2010) Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4:2865–2873Google Scholar
  222. 222.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191Google Scholar
  223. 223.
    Katsnelson MI, Novoselov KS, Geim AK (2006) Chiral tunnelling and the Klein paradox in graphene. Nat Phys 2:620–625Google Scholar
  224. 224.
    Partoens B, Peeters F (2006) From graphene to graphite: electronic structure around the K point. Phys Rev B 74:075404Google Scholar
  225. 225.
    Girit CO, Meyer JC, Erni R et al (2009) Graphene at the edge: stability and dynamics. Science 323:1705–1708Google Scholar
  226. 226.
    Joseph Joly VL, Kiguchi M, Hao Si-Jia et al (2010) Observation of magnetic edge state in graphene nanoribbons. Phys Rev B 81:245428Google Scholar
  227. 227.
    Matte HSSR, Subrahmanyam KS, Rao CNR (2009) Novel magnetic properties of graphene: presence of both ferromagnetic and antiferromagnetic features and other aspects. J Phys Chem C 113:9982–9985Google Scholar
  228. 228.
    Ugeda MM, Brihuega I, Guinea F et al (2010) Missing atom as a source of carbon magnetism. Phys Rev Lett 104:96804Google Scholar
  229. 229.
    Castro EV, Peres NMR, Lopes dos Santos JMB (2008) Localized states at zigzag edges of multilayer graphene and graphite steps. Europhys Lett 84:17001Google Scholar
  230. 230.
    Takai K, Suzuki T, Enoki T et al (2010) Structure and magnetic properties of curved graphene networks and the effects of bromine and potassium adsorption. Phys Rev B 81:205420Google Scholar
  231. 231.
    Enoki T, Takai K (2008) Unconventional electronic and magnetic functions of nanographene-based host-guest systems. Dalton Trans 29:3773–3781Google Scholar
  232. 232.
    Kim WY, Kim KS (2010) Tuning molecular orbitals in molecular electronics and spintronics. Acc Chem Res 43:111–120Google Scholar
  233. 233.
    Enoki T, Kobayashi Y, Fukui K (2007) Electronic structures of graphene edges and nanographene. Int Rev Phys Chem 26:609–645Google Scholar
  234. 234.
    Zhou SY, Gweon GH, Fedorov AV et al (2007) Substrate-induced bandgap opening in epitaxial graphene. Nat Mater 6:770–775Google Scholar
  235. 235.
    Hass J, Varchon F, Millán-Otoya J et al (2008) Why multilayer graphene on 4 H-SiC(0001¯) behaves like a single sheet of graphene. Phys Rev Lett 100:125504Google Scholar
  236. 236.
    Novoselov KS, Geim AK, Morozov SV et al (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200Google Scholar
  237. 237.
    McCann E (2006) Asymmetry gap in the electronic band structure of bilayer graphene. Phys Rev B 74:161403Google Scholar
  238. 238.
    Castro EV, Novoselov KS, Morozov SV et al (2007) Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys Rev Lett 99:216802/1–216802/4Google Scholar
  239. 239.
    Morozov SV, Novoselov KS, Schedin F et al (2005) Two-dimensional electron and hole gases at the surface of graphite. Phys Rev B Condens Matter Mater Phys 72:201401/1–201401/4Google Scholar
  240. 240.
    Wang D, Choi D, Li J et al (2009) Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3:907–914Google Scholar
  241. 241.
    Paek SM, Yoo E, Honma I (2009) Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett 9:72–75Google Scholar
  242. 242.
    Yu A, Roes I, Davies A et al (2010) Ultrathin, transparent, and flexible graphene films for supercapacitor application. Appl Phys Lett 96:253105Google Scholar
  243. 243.
    Vivekchand SRC, Rout CS, Subrahmanyam KS et al (2008) Graphene-based electrochemical supercapacitors. J Chem Sci 120:9–13Google Scholar
  244. 244.
    Wakabayashi K, Harigaya K (2003) Magnetic structure of nano-graphite Möbius ribbon. J Phys Soc Jpn 72:998–1001Google Scholar
  245. 245.
    Harigaya K, Yamashiro A, Shimoi Y et al (2004) Theoretical study on novel electronic properties in nanographite materials. J Phys Chem Solids 65:123–126Google Scholar
  246. 246.
    Harigaya K, Enoki T (2002) Theory on the mechanisms of novel magnetism in stacked nanographite. Mol Cryst Liq Cryst 386:205–209Google Scholar
  247. 247.
    Harigaya K, Kobayashi Y, Kawatsu N et al (2004) Tuning magnetism and novel electronic wave interference patterns in nanographite materials. Physica E Low Dimens Syst Nanostruct 22:708–711Google Scholar
  248. 248.
    Makarova TL (2004) Magnetic properties of carbon structures. Semiconductors 38:615–638Google Scholar
  249. 249.
    Enoki T, Kawatsu N, Shibayama Y et al (2001) Magnetism of nano-graphite and its assembly. Polyhedron 20:1311–1315Google Scholar
  250. 250.
    Wu J, Becerril HA, Bao Z et al (2008) Organic solar cells with solution-processed graphene transparent electrodes. Appl Phys Lett 92:263302/1–263302/3Google Scholar
  251. 251.
    Wang Y, Chen X, Zhong Y et al (2009) Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Appl Phys Lett 95:063302/1–063302/3Google Scholar
  252. 252.
    Kumar A, Zhou C (2010) The race to replace tin-doped indium oxide: which material will win? ACS Nano 4:11–14Google Scholar
  253. 253.
    Matyba P, Yamaguchi H, Eda G et al (2010) Graphene and mobile ions: the key to all-plastic, solution-processed light-emitting devices. ACS Nano 4:637–642Google Scholar
  254. 254.
    Wu J, Agrawal M, Becerril HA et al (2010) Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 4:43–48Google Scholar
  255. 255.
    Tung VC, Chen L, Allen MJ et al (2009) Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett 9:1949–1955Google Scholar
  256. 256.
    Eda G, Chhowalla M (2010) Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv Mater 22:2392–2415Google Scholar
  257. 257.
    Li X, Li C, Zhu H et al (2010) Hybrid thin films of graphene nanowhiskers and amorphous carbon as transparent conductors. Chem Commun 46:3502–3504Google Scholar
  258. 258.
    Wang X, Zhi L, Tsao N et al (2008) Transparent carbon films as electrodes in organic solar cells. Angew Chem Int Ed 47:2990–2992Google Scholar
  259. 259.
    Tang CW, VanSlyke SA (1987) Organic electroluminescent diodes. Appl Phys Lett 51:913Google Scholar
  260. 260.
    Sun T, Wang ZL, Shi ZJ et al (2010) Multilayered graphene used as anode of organic light emitting devices. Appl Phys Lett 96:133301Google Scholar
  261. 261.
    Tongay S, Schumann T, Hebard AF (2009) Graphite based Schottky diodes formed on Si, GaAs, and 4H-SiC substrates. Appl Phys Lett 95:222103Google Scholar
  262. 262.
    O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740Google Scholar
  263. 263.
    Kim SR, Parvez MK, Chhowalla M (2009) UV-reduction of graphene oxide and its application as an interfacial layer to reduce the back-transport reactions in dye-sensitized solar cells. Chem Phys Lett 483:124–127Google Scholar
  264. 264.
    Péchy P, Renouard T, Zakeeruddin SM et al (2001) Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J Am Chem Soc 123:1613–1624Google Scholar
  265. 265.
    Zhu H, Wei J, Wang K et al (2009) Applications of carbon materials in photovoltaic solar cells. Solar Energy Mater Solar Cells 93:1461–1470Google Scholar
  266. 266.
    Kay A (1996) Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Solar Energy Mater Solar Cells 44:99–117Google Scholar
  267. 267.
    Wang X, Zhi L, Muellen K (2008) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 8:323–327Google Scholar
  268. 268.
    Yang N, Zhai J, Wang D et al (2010) Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano 4:887–894Google Scholar
  269. 269.
    Sun S, Gao L, Liu Y (2010) Enhanced dye-sensitized solar cell using graphene-TiO2 photoanode prepared by heterogeneous coagulation. Appl Phys Lett 96:083113Google Scholar
  270. 270.
    Tang YB, Lee CS, Xu J et al (2010) Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application. ACS Nano 4:3482–3488Google Scholar
  271. 271.
    Thompson BC, Frechet JMJ (2008) Polymer-fullerene composite solar cells. Angew Chem Int Ed 47:58–77Google Scholar
  272. 272.
    Liu Q, Liu Z, Zhang X et al (2009) Polymer photovoltaic cells based on solution-processable graphene and P3HT. Adv Funct Mater 19:894–904Google Scholar
  273. 273.
    Xu Y, Long G, Huang L et al (2010) Polymer photovoltaic devices with transparent graphene electrodes produced by spin-casting. Carbon 48:3308–3311Google Scholar
  274. 274.
    Yin Z, Wu S, Zhou X et al (2010) Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small 6:307–312Google Scholar
  275. 275.
    Guo CX, Yang HB, Sheng ZM et al (2010) Layered graphene/quantum dots for photovoltaic devices. Angew Chem Int Ed 49:3014–3017Google Scholar
  276. 276.
    Liang M, Luo B, Zhi L (2009) Application of graphene and graphene-based materials in clean energy-related devices. Int J Energy Res 33:1161–1170Google Scholar
  277. 277.
    Yin B, Liu Q, Yang L et al (2010) Buffer layer of PEDOT: PSS/graphene composite for polymer solar cells. J Nanosci Nanotechnol 10:1934–1938Google Scholar
  278. 278.
    Liu Z, He D, Wang Y et al (2010) Solution-processable functionalized graphene in donor/acceptor-type organic photovoltaic cells. Solar Energy Mater Solar Cells 94:1196–1200Google Scholar
  279. 279.
    Li SS, Tu KH, Lin CC et al (2010) Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano 4:3169–3174Google Scholar
  280. 280.
    Liu Z, Liu Q, Huang Y et al (2008) Organic photovoltaic devices based on a novel acceptor material: graphene. Adv Mater 20:3924–3930Google Scholar
  281. 281.
    Liu Q, Liu Z, Zhang X et al (2008) Organic photovoltaic cells based on an acceptor of soluble graphene. Appl Phys Lett 92:223303Google Scholar
  282. 282.
    Liu Z, He D, Wang Y et al (2010) Graphene doping of P3HT:PCBM photovoltaic devices. Synth Met 160:1036–1039Google Scholar
  283. 283.
    Echtermeyer TJ, Lemme MC, Bolten J et al (2007) Graphene field-effect devices. Eur Phys J Spec Top 148:19–26Google Scholar
  284. 284.
    Williams JR, Dicarlo L, Marcus CM (2007) Quantum Hall effect in a gate-controlled p-n junction of graphene. Science 317:638–641Google Scholar
  285. 285.
    Lemme MC, Echtermeyer TJ, Baus M et al (2007) A graphene field-effect device. IEEE Electron Device Lett 28:282–284Google Scholar
  286. 286.
    Burghard M, Klauk H, Kern K (2009) Carbon-based field-effect transistors for nanoelectronics. Adv Mater 21:2586–2600Google Scholar
  287. 287.
    Cao Y, Steigerwald ML, Nuckolls C et al (2010) Current trends in shrinking the channel length of organic transistors down to the nanoscale. Adv Mater 22:20–32Google Scholar
  288. 288.
    Martin J, Akerman N, Ulbricht G et al (2008) Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nat Phys 4:144–148Google Scholar
  289. 289.
    Han M, Özyilmaz B, Zhang Y et al (2007) Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98:206805Google Scholar
  290. 290.
    Li X, Wang X, Zhang L et al (2008) Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319:1229–1232Google Scholar
  291. 291.
    Zhao P, Chauhan J, Guo J (2009) Computational study of tunneling transistor based on graphene nanoribbon. Nano Lett 9:684–688Google Scholar
  292. 292.
    Zhang Q, Fang T, Xing H et al (2008) Graphene nanoribbon tunnel transistors. IEEE Electron Device Lett 29:1344–1346Google Scholar
  293. 293.
    Muñoz-Rojas F, Fernández-Rossier J, Brey L et al (2008) Performance limits of graphene-ribbon field-effect transistors. Phys Rev B 77:045301Google Scholar
  294. 294.
    Ryzhii V, Ryzhii M, Satou A et al (2008) Current-voltage characteristics of a graphene-nanoribbon field-effect transistor. J Appl Phys 103:094510Google Scholar
  295. 295.
    Ryzhii V, Ryzhii M, Satou A et al (2009) Device model for graphene bilayer field-effect transistor. J Appl Phys 105:104510Google Scholar
  296. 296.
    Chen Z, Lin Y, Rooks M et al (2007) Graphene nano-ribbon electronics. Physica E Low Dimens Syst Nanostruct 40:228–232Google Scholar
  297. 297.
    Ponomarenko LA, Schedin F, Katsnelson MI et al (2008) Chaotic dirac billiard in graphene quantum dots. Science 320:356–358Google Scholar
  298. 298.
    Zhang Y, Tang TT, Girit C et al (2009) Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459:820–823Google Scholar
  299. 299.
    Kim S, Nah J, Jo I et al (2009) Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric. Appl Phys Lett 94:062107Google Scholar
  300. 300.
    Lin Y, Chiu H, Jenkins KA et al (2010) Dual-gate graphene FETs with $f_{T}$ of 50 GHz. IEEE Electron Device Lett 31:68–70Google Scholar
  301. 301.
    Anonymous (2008) Graphene 2.0. Nat Nanotechnol 3:517Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Julio R. Pinzón
    • 1
  • Adrián Villalta-Cerdas
    • 1
  • Luis Echegoyen
    • 1
  1. 1.Department of ChemistryUniversity of Texas at El PasoEl PasoUSA

Personalised recommendations