Multiscale Approaches and Perspectives to Modeling Aqueous Electrolytes and Polyelectrolytes

  • Luigi Delle SiteEmail author
  • Christian HolmEmail author
  • Nico F. A. van der VegtEmail author
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 307)


We review recent work on scale-bridging modeling approaches applied to aqueous electrolytes and polyelectrolytes, connecting the local quantum chemical details to classical statistical and thermodynamics properties. We discuss solvation and pairing of ions in water, ways to include solvent degrees of freedom in effective ion–ion interactions, and coarse-grained simulations of polyelectrolytes including dielectric boundary effects.


Molecular Simulation Quantum Atomistic Coarse-Grained Methods 



The authors acknowledge fruitful collaborations with Dmytro Antypov, Juan J. Cerda, Dominik Fritz, Berk Hess, Stefan Kesselheim, Vagelis Harmandaris, Kurt Kremer, Hanjo Limbach, Christine Peter, Baofu Qiao, Marcello Sega, Sandeep Tyagi, and Alessandra Villa. Funding from a Volkswagen grant, the SFB 625 TP:C5, DFG grant Ho/1108-17, and DFG Clusters of Excellence 259 and 581 is gratefully acknowledged.


  1. 1.
    Lu G, Tadmor EB, Kaxiras E (2006) Phys Rev B 73:024108CrossRefGoogle Scholar
  2. 2.
    Rottler J, Barsky S, Robbins MO (2002) Phys Rev Lett 89:148304CrossRefGoogle Scholar
  3. 3.
    Csanyi G, Albaret T, Payne MC, Vita AD (2004) Phys Rev Lett 93:175503CrossRefGoogle Scholar
  4. 4.
    Delle Site L, Abrams CF, Alavi A, Kremer K (2002) Phys Rev Lett 89:156103CrossRefGoogle Scholar
  5. 5.
    Delle Site L, Leon S, Kremer K (2004) J Am Chem Soc 126:2944CrossRefGoogle Scholar
  6. 6.
    Schravendijk P, van der Vegt N, Delle Site L, Kremer K (2005) ChemPhysChem 6:1866CrossRefGoogle Scholar
  7. 7.
    Ghiringhelli LM, Hess B, van der Vegt NFA, Delle Site L (2008) J Am Chem Soc 130:13460CrossRefGoogle Scholar
  8. 8.
    Schravendijk P, Ghiringhelli LM, Delle Site L, van der Vegt NFA (2007) J Phys Chem C 111:2631CrossRefGoogle Scholar
  9. 9.
    Praprotnik M, Delle Site L, Kremer K (2005) J Chem Phys 123:224106CrossRefGoogle Scholar
  10. 10.
    Ensing B, Nielsen SO, Moore PB, Klein ML, Parrinello M (2007) J Chem Theory Comput 3:1100CrossRefGoogle Scholar
  11. 11.
    Heyden A, Truhlar DG (2008) J Chem Theory Comput 4:217CrossRefGoogle Scholar
  12. 12.
    Frausto da Silva JJR, Williams RJP (1976) Nature 263:237CrossRefGoogle Scholar
  13. 13.
    Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics. Wiley, New YorkGoogle Scholar
  14. 14.
    Blaney DL, McCord TB (1995) J Geophys Res 100:14433CrossRefGoogle Scholar
  15. 15.
    Wersin P, Curti E, Appelo CAJ (2004) Appl Clay Sci 26:249CrossRefGoogle Scholar
  16. 16.
    Mickiewicz RA, Mayes AM, Knaack D (2002) J Biomed Mat Res 61:581CrossRefGoogle Scholar
  17. 17.
    Adams CS, Mansfield K, Perlot RL, Shapiro IM (2001) J Bio Chem 276:20316CrossRefGoogle Scholar
  18. 18.
    Südhof TC (2002) J Bio Chem 277:7629CrossRefGoogle Scholar
  19. 19.
    Suzuki K, Sorimachi H (1998) FEBS Lett 1–4:433Google Scholar
  20. 20.
    Omta AW, Kropman MF, Woutersen S, Bakker HJ (2003) Science 301:347CrossRefGoogle Scholar
  21. 21.
    Kropman MF, Bakker HJ (2004) J Am Chem Soc 126:9135CrossRefGoogle Scholar
  22. 22.
    Lightstone FC, Schwegler E, Hood RQ, Gygi F, Galli G (2001) Chem Phys Lett 343:549CrossRefGoogle Scholar
  23. 23.
    Bakó I, Hutter J, Pálinkás G (2002) J Chem Phys 117:9838CrossRefGoogle Scholar
  24. 24.
    Lightstone FC, Schwegler E, Allesch M, Gygi F, Galli G (2005) Chem Phys Chem 6:1CrossRefGoogle Scholar
  25. 25.
    White JA, Schwegler E, Galli G (2000) J Chem Phys 113:4668CrossRefGoogle Scholar
  26. 26.
    Ikeda T, Boero M, Terakura K (2007) J Chem Phys 126:034501CrossRefGoogle Scholar
  27. 27.
    Jalilihvand F, Spångberg D, Lindqvist-Reis P, Hermansson K, Persson I, Sandström M (2001) J Am Chem Soc 123:431CrossRefGoogle Scholar
  28. 28.
    Varma S, Rempe SB (2006) Biophys Chem 124:192CrossRefGoogle Scholar
  29. 29.
    McLain S, Imberti S, Soper AK, Botti A, Bruni F, Ricci MA (2006) Phys Rev B 74:094201CrossRefGoogle Scholar
  30. 30.
    Krekeler C, Hess B, Delle Site L (2006) J Chem Phys 125:054305CrossRefGoogle Scholar
  31. 31.
    Krekeler C, Delle Site L (2007) J Phys Condens Matter 19:192101CrossRefGoogle Scholar
  32. 32.
    Naor MM, Van Nostrand K, Dellago C (2003) Chem Phys Lett 369:159CrossRefGoogle Scholar
  33. 33.
    Lyubartsev AP, Laasonen K, Laaksonen A (2001) J Chem Phys 114:3120CrossRefGoogle Scholar
  34. 34.
    Ramaniah LM, Bernasconi M, Parrinello M (1999) J Chem Phys 111:1587CrossRefGoogle Scholar
  35. 35.
    Asthagiri D, Pratt LR, Paulaitis ME, Rempe SB (2004) J Am Chem Soc 126:1285CrossRefGoogle Scholar
  36. 36.
    Silvestrelli PL, Parrinello M (1999) Phys Rev Lett 82:3308CrossRefGoogle Scholar
  37. 37.
    Silvestrelli PL, Parrinello M (1999) J Chem Phys 111:3572CrossRefGoogle Scholar
  38. 38.
    Marzari N, Vanderbilt D (1997) Phys Rev B 56:12847CrossRefGoogle Scholar
  39. 39.
    Souza I, Marzari N, Vanderbilt D (1997) Phys Rev B 65:035109CrossRefGoogle Scholar
  40. 40.
    Resta R (1998) Phys Rev Lett 80:1800CrossRefGoogle Scholar
  41. 41.
    Delle Site L, Alavi A, Lynden-Bell RM (1999) Mol Phys 96:1683CrossRefGoogle Scholar
  42. 42.
    Delle Site L (2001) Mol Sim 26:217CrossRefGoogle Scholar
  43. 43.
    Delle Site L (2001) Mol Sim 26:353CrossRefGoogle Scholar
  44. 44.
    Delle Site L, Lynden-Bell RM, Alavi A (2002) J Mol Liq 98:79CrossRefGoogle Scholar
  45. 45.
    Krekeler C, Delle Site L (2008) J Chem Phys 128:134515CrossRefGoogle Scholar
  46. 46.
    Scipioni R, Schmidt DA, Boero M (2009) J Chem Phys 130:024502CrossRefGoogle Scholar
  47. 47.
    Lambeth BP, Junghans C, Kremer K, Clementi C, Delle Site L (2010) J Chem Phys 133:221101Google Scholar
  48. 48.
    Kerisit S, Rosso KM (2009) J Chem Phys 131:114512CrossRefGoogle Scholar
  49. 49.
    Babiaczyk WI, Bonella S, Guidoni L, Ciccotti G (2010) J Phys Chem B 114:15018CrossRefGoogle Scholar
  50. 50.
    Kunz W, Lo Nostro P, Ninham BW (2004) The present state of affairs with Hofmeister series. Curr Opin Colloid Interface Sci 9:1–18CrossRefGoogle Scholar
  51. 51.
    Zhang YJ, Cremer PS (2006) Interactions between macromolecules and ions. Curr Opin Chem Biol 10:658–663CrossRefGoogle Scholar
  52. 52.
    Ball P (2008) Water as an active constituent in cell biology. Chem Rev 108:74–108CrossRefGoogle Scholar
  53. 53.
    Kunz W (2010) Specific ion effects. World Scientific, SingaporeGoogle Scholar
  54. 54.
    Zhang YJ, Cremer PS (2010) Chemistry of Hofmeister anions and osmolytes. Annu Rev Phys Chem 61:63–83CrossRefGoogle Scholar
  55. 55.
    Harmandaris VA, Adhikari NP, van der Vegt NFA, Kremer K (2006) Hierarchical modeling of polystyrene: from atomistic to coarse grained simulations. Macromolecules 39:6708–6719CrossRefGoogle Scholar
  56. 56.
    van der Vegt NFA, Peter C, Kremer K (2008) Structure based coarse- and fine-graining in soft matter simulations. Chapter 25 in: Coarse graining of condensed phase and biomolecular systems. Voth GA (ed), Chapman and Hall/CRC Press, Taylor and Francis GroupGoogle Scholar
  57. 57.
    Schwierz N, Horinek D, Netz RR (2010) Reversed anionic Hofmeister series: the interplay of surface charge and surface polarity. Langmuir 26:7370–7379CrossRefGoogle Scholar
  58. 58.
    Holm C, Joanny JF, Kremer K, Netz RR, Reineker P, Seidel C, Vilgis TA, Winkler RG (2004) Polyelectrolyte theory. Adv Polym Sci 166:67–111Google Scholar
  59. 59.
    Lund M, Jungwirth P, Woodward CE (2008) Ion specific protein assembly and hydrophobic surface forces. Phys Rev Lett 100:258105CrossRefGoogle Scholar
  60. 60.
    Rasaiah JC, Friedman HL (1968) Integral equation methods in computation of equilibrium properties of ionic solutions. J Chem Phys 48:2742–2752CrossRefGoogle Scholar
  61. 61.
    Diamond RM (1963) Aqueous solution behavior of large univalent ions - a new type of ion pairing. J Phys Chem 67:2513–2517CrossRefGoogle Scholar
  62. 62.
    Hess B, van der Vegt NFA (2007) Solvent-averaged potentials for alkali-, earth alkali-, and alkylammonium halide aqueous solutions. J Chem Phys 127:234508CrossRefGoogle Scholar
  63. 63.
    Collins KD (1997) Charge density-dependent strength of hydration and biological structure. Biophys J 72:65–76CrossRefGoogle Scholar
  64. 64.
    Collins KD, Neilson GW, Enderby JE (2007) Ions in water: characterizing the forces that control chemical processes and biological structure. Biophys Chem 128:95–104CrossRefGoogle Scholar
  65. 65.
    Fennell CJ, Bizjak A, Vlachy V, Dill KA (2009) Ion pairing in molecular simulations of aqueous alkali halide solutions. J Phys Chem B 113:6782–6791CrossRefGoogle Scholar
  66. 66.
    van Gunsteren WF, Bakowies D et al (2006) Biomolecular modeling: goals, problems, perspectives. Angew Chem Int Ed 45:4064–4092CrossRefGoogle Scholar
  67. 67.
    Hess B, van der Vegt NFA (2006) Hydration thermodynamic properties of amino acid analogues: a systematic comparison of biomolecular force fields and water models. J Phys Chem B 110:17616–17626CrossRefGoogle Scholar
  68. 68.
    Hess B, Holm C, van der Vegt NFA (2006) Osmotic coefficients of NaCl(aq) force fields. J Chem Phys 124:164509CrossRefGoogle Scholar
  69. 69.
    Weerasinghe S, Smith PE (2003) A Kirkwood-Buff derived force field for sodium chloride in water. J Chem Phys 119:11342–11349CrossRefGoogle Scholar
  70. 70.
    Hess B, van der Vegt NFA (2009) Cation specific binding with protein surface charges. Proc Natl Acad Sci USA 106:13296–13300CrossRefGoogle Scholar
  71. 71.
    Fyta M, Kalcher I, Dzubiella J, Vrbka L, Netz RR (2010) Ionic force field optimization based on single-ion and ion-pair solvation properties. J Chem Phys 132:024911CrossRefGoogle Scholar
  72. 72.
    Klasczyk B, Knecht V (2010) Kirkwood-Buff derived force field for alkali chlorides in simple point charge water. J Chem Phys 132:024109CrossRefGoogle Scholar
  73. 73.
    Kalcher I, Dzubiella J (2009) Structure-thermodynamics relation of electrolyte solutions. J Chem Phys 130:134507CrossRefGoogle Scholar
  74. 74.
    Pitzer KS, Mayorga G (1973) Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J Phys Chem 77:2300–2308CrossRefGoogle Scholar
  75. 75.
    Hess B, Holm C, van der Vegt N (2006) Modeling multibody effects in ionic solutions with a concentration dependent dielectric constant. Phys Rev Lett 96:147801CrossRefGoogle Scholar
  76. 76.
    Kirkwood JG, Buff FP (1951) The statistical mechanical theory of solutions 1. J Chem Phys 19:774–777CrossRefGoogle Scholar
  77. 77.
    Ben-Naim A (2006) Molecular theory of solutions. Oxford University Press, New YorkGoogle Scholar
  78. 78.
    Ganguly P, Schravendijk P, Hess B, van der Vegt NFA (2011) Ion pairing in aqueous electrolyte solutions with biologically relevant anions. J. Phys. Chem. B 115: 3734–3739Google Scholar
  79. 79.
    Voth GA (ed) (2009) Coarse-graining of condensed phase and biomolecular systems. CRC Press, Boca RatonGoogle Scholar
  80. 80.
    Mullinax JW, Noid WGJ (2009) Chem Phys 131:104110Google Scholar
  81. 81.
    Allen EC, Rutledge GCJ (2009) Chem Phys 130:034904Google Scholar
  82. 82.
    Mognetti BM, Virnau P, Yelash L, Paul W, Binder K, Mueller M, Mac-Dowell LGJ (2009) Chem Phys 130:044101Google Scholar
  83. 83.
    Murtola T, Karttunen M, Vattulainen IJ (2009) Chem Phys 131:055101Google Scholar
  84. 84.
    Villa A, Peter C, van der Vegt NFA (2010) Transferability of nonbonded interaction potentials for coarse grained simulations: benzene in water. J Chem Theory Comput 6:2434–2444CrossRefGoogle Scholar
  85. 85.
    Lyubartsev AP, Laaksonen A (1997) Osmotic and activity coefficients from effective potentials for hydrated ions. Phys Rev E 55:5689–5696CrossRefGoogle Scholar
  86. 86.
    Wei J, Li C, van der Vegt NFA, Peter C (2011) Transferability of coarse grained potentials: implicit solvent models for hydrated ions. J Chem Theory Comput, Doi: 10.1021/ct2001396
  87. 87.
    Jungwirth P, Tobias DJ (2006) Specific ion effects at the air/water interface. Chem Rev 106:1259–1281CrossRefGoogle Scholar
  88. 88.
    Smith PE (1999) Computer simulation of cosolvent effects on hydrophobic hydration. J Phys Chem B 103:525–534CrossRefGoogle Scholar
  89. 89.
    Kalra A, Tugcu N, Cramer SM, Garde S (2001) Salting-in and salting-out of hydrophobic solutes in aqueous salt solutions. J Phys Chem B 105:6380–6386CrossRefGoogle Scholar
  90. 90.
    van der Vegt NFA, van Gunsteren WF (2004) Entropic contributions in cosolvent binding to hydrophobic solutes in water. J Phys Chem B 108:1056–1064CrossRefGoogle Scholar
  91. 91.
    van der Vegt NFA, Trzesniak D, Kasumaj B, van Gunsteren WF (2004) Energy-entropy compensation in the transfer of nonpolar solutes from water to cosolvent/water mixtures. ChemPhysChem 5:144–1477CrossRefGoogle Scholar
  92. 92.
    Godawat R, Jamadagni SN, Garde S (2009) Characterizing hydrophobicity of interfaces by using cavity formation, solute binding, and water correlations. Proc Natl Acad Sci USA 106:15119–15124CrossRefGoogle Scholar
  93. 93.
    Jamadagni SN, Godawat R, Garde S (2009) How surface wettability affects the binding, folding, and dynamics of hydrophobic polymers at interfaces. Langmuir 25:13092–13099CrossRefGoogle Scholar
  94. 94.
    Villa A, Peter C, van der Vegt NFA (2009) Self-assembling dipeptides: conformational sampling in solvent-free coarse-grained simulation. Phys Chem Chem Phys 11:2077–2086CrossRefGoogle Scholar
  95. 95.
    Lee ME, van der Vegt NFA (2006) Does urea denature hydrophobic interactions? J Am Chem Soc 128:4948–4949CrossRefGoogle Scholar
  96. 96.
    Wu JZ, Prausnitz JM (2008) Pairwise hydrophobic effect for alkanes in water. Proc Natl Acad Sci USA 105:9512–9515CrossRefGoogle Scholar
  97. 97.
    Harmandaris VA, Reith D, van der Vegt NFA, Kremer K (2007) Comparison between coarse-graining models for polymer systems: two mapping schemes for polystyrene. Macromol Chem Phys 208:2109–2120CrossRefGoogle Scholar
  98. 98.
    Fritz D, Harmandaris VA, Kremer K, van der Vegt NFA (2009) Coarse-grained polymer melts based on isolated atomistic chains: simulation of polystyrene of different tacticities. Macromolecules 42:7579–7588CrossRefGoogle Scholar
  99. 99.
    Fritz D, Herbers CR, Kremer K, van der Vegt NFA (2009) Hierarchical modeling of polymer permeation. Soft Matter 5:4556–4563CrossRefGoogle Scholar
  100. 100.
    Leon S, van der Vegt N, Delle Site L, Kremer K (2005) Bisphenol-A-polycarbonate: entanglement analysis from coarse-grained MD simulations. Macromolecules 38:8078–8092CrossRefGoogle Scholar
  101. 101.
    Hess B, Leon S, van der Vegt NFA, Kremer K (2006) Long time polymer trajectories from coarse grained simulations: bisphenol-A-polycarbonate. Soft Matter 2:409–414CrossRefGoogle Scholar
  102. 102.
    Harmandaris VA, Kremer K (2009) Dynamics of polystyrene melts through hierarchical multiscale simulations. Macromolecules 42:791–802CrossRefGoogle Scholar
  103. 103.
    Marcon V, Fritz D, van der Vegt NFA (2011) Hierarchical modelling of polystyrene surfaces (in preparation)Google Scholar
  104. 104.
    Reith D, Putz M, Müller-Plathe F (2003) Deriving effective mesoscale potentials from atomistic simulations. J Comput Chem 24:1624–1636CrossRefGoogle Scholar
  105. 105.
    Rühle V, Junghans C, Lukyanov A, Kremer K, Andrienko D (2009) Versatile object-oriented toolkit for coarse-graining applications. J Chem Theory Comput 5:3211–3223CrossRefGoogle Scholar
  106. 106.
    Fritz D (2009) Coarse-graining methods and polymer dynamics. PhD Thesis, University of MainzGoogle Scholar
  107. 107.
    Carbone P, Karimi-Varzaneh HA, Chem X, Müller-Plathe F (2008) Transferability of coarse-grained force fields: the polymer case. J Chem Phys 128:064904CrossRefGoogle Scholar
  108. 108.
    Villa A, van der Vegt NFA, Peter C (2009) Self-assembling dipeptides: including solvent degrees of freedom in a coarse-grained model. Phys Chem Chem Phys 11:2068–2076CrossRefGoogle Scholar
  109. 109.
    Yesylevskyy SO, Schäfer LV, Sengupta D, Marrink SJ (2010) Polarizable water model for the coarse-Grained MARTINI force field. PLoS Comput Biol 6:e1000810CrossRefGoogle Scholar
  110. 110.
    Wu Z, Cui Q, Yethiraj A (2010) Coarse-grained model for water: the importance of electrostatic interactions. J Phys Chem B 114:10524–10529CrossRefGoogle Scholar
  111. 111.
    Woodward CE, Jönsson B (1991) Chem Phys 155:207–219CrossRefGoogle Scholar
  112. 112.
    Stevens MJ, Kremer K (1993) Macromolecules 26:4717CrossRefGoogle Scholar
  113. 113.
    Stevens MJ, Kremer K (1993) Phys Rev Lett 71:2228CrossRefGoogle Scholar
  114. 114.
    Stevens MJ, Kremer K (1995) J Chem Phys 103(4):1669–1690CrossRefGoogle Scholar
  115. 115.
    Kremer K, Grest GS (1990) J Chem Phys 92:5057–5086CrossRefGoogle Scholar
  116. 116.
    Limbach HJ (2001) Ph.D. thesis. Johannes Gutenberg–Universität Mainz.
  117. 117.
    Dünweg B, Stevens MJ, Kremer K (1995) In: Binder K (ed) Monte Carlo and molecular dynamics simulations in polymer science. Oxford University Press, New YorkGoogle Scholar
  118. 118.
    Holm C, Rehahn M, Oppermann W, Ballauff M (2004) Adv Polym Sci 166:1–27Google Scholar
  119. 119.
    Dobrynin AV (2008) Curr Opin Colloid Interface Sci 13:376–388CrossRefGoogle Scholar
  120. 120.
    Micka U, Holm C, Kremer K (1999) Langmuir 15:4033CrossRefGoogle Scholar
  121. 121.
    Limbach HJ, Holm C, Kremer K (2002) Europhys Lett 60:566–572CrossRefGoogle Scholar
  122. 122.
    Mann BAF, Everaers R, Holm C, Kremer K (2004) Europhys Lett 67:786–792CrossRefGoogle Scholar
  123. 123.
    Mann BAF, Holm C, Kremer K (2005) J Chem Phys 122:154903CrossRefGoogle Scholar
  124. 124.
    Dobrynin AV, Rubinstein M, Obukhov SP (1996) Macromolecules 29:2974CrossRefGoogle Scholar
  125. 125.
    Limbach HJ, Holm C (2002) Comput Phys Commun 147:321–324CrossRefGoogle Scholar
  126. 126.
    Limbach HJ, Holm C (2003) J Phys Chem B 107:8041–8055CrossRefGoogle Scholar
  127. 127.
    Liao Q, Dobrynin AV, Rubinstein M (2003) Macromolecules 36:3399–3410CrossRefGoogle Scholar
  128. 128.
    Liao Q, Dobrynin AV, Rubinstein M (2003) Macromolecules 36:3386–3398CrossRefGoogle Scholar
  129. 129.
    Liao Q, Dobrynin AV, Rubinstein M (2006) Macromolecules 39:1920–1938CrossRefGoogle Scholar
  130. 130.
    Deserno M, Holm C (2001) Cell-model and Poisson-Boltzmann-theory: a brief introduction. In: Holm C, Kékicheff P, Podgornik R (eds) Electrostatic effects in soft matter and biophysics, volume 46 of NATO science series II – mathematics, physics and chemistry. Kluwer, DordrechtGoogle Scholar
  131. 131.
    Blaul J, Wittemann M, Ballauff M, Rehahn M (2000) J Phys Chem B 104:7077–7081CrossRefGoogle Scholar
  132. 132.
    Deserno M, Holm C, Blaul J, Ballauff M, Rehahn M (2001) Eur Phys J E 5:97–103CrossRefGoogle Scholar
  133. 133.
    Antypov D, Holm C (2006) Phys Rev Lett 96:088302CrossRefGoogle Scholar
  134. 134.
    Antypov D, Holm C (2007) Macromolecules 40:731–738CrossRefGoogle Scholar
  135. 135.
    Arnold A, Holm C (2005) J Chem Phys 123:144103CrossRefGoogle Scholar
  136. 136.
    Deserno M, Holm C (2002) Mol Phys 100:2941–2956CrossRefGoogle Scholar
  137. 137.
    Dünweg B, Ladd AJC (2009) Adv Poly Sci 221:89–166Google Scholar
  138. 138.
    Gompper G, Ihle T, Kroll DM, Winkler RG (2009) Adv Poly Sci 221:1–87Google Scholar
  139. 139.
    Slater GW, Holm C, Chubynsky MV, de Haan HW, Dubé A, Grass K, Hickey OA, Kingsburry C, Sean D, Shendruk TN, Zhan L (2009) Electrophoresis 30:792–818CrossRefGoogle Scholar
  140. 140.
    Grass K, Böhme U, Scheler U, Cottet H, Holm C (2008) Phys Rev Lett 100:096104CrossRefGoogle Scholar
  141. 141.
    Frank S, Winkler RG (2008) Europhys Lett 83:38004CrossRefGoogle Scholar
  142. 142.
    Grass K, Holm C (2010) Faraday Discuss 144:5770CrossRefGoogle Scholar
  143. 143.
    Smiatek J, Schmid F (2010) J Phys Chem B 114:6266CrossRefGoogle Scholar
  144. 144.
    Netz RR (2003) Phys Rev Lett 90:128104CrossRefGoogle Scholar
  145. 145.
    Hsiao P-Y, Luijten E (2006) Phys Rev Lett 97:148301CrossRefGoogle Scholar
  146. 146.
    Liu H, Zhu Y, Maginn E (2010) Macromolecules 43:48054813Google Scholar
  147. 147.
    Schmitt J, Decher G, Hong G (1992) Thin Solid Films 210/211:831CrossRefGoogle Scholar
  148. 148.
    Decher G (1997) Science 277:1232–1237CrossRefGoogle Scholar
  149. 149.
    Netz RR, Joanny JF (1999) Macromolecules 32:9013CrossRefGoogle Scholar
  150. 150.
    Park SY, Rubner MF, Mayes AM (2002) Langmuir 18:9600–9604CrossRefGoogle Scholar
  151. 151.
    Castelnovo M, Joanny JF (2000) Langmuir 16:7524–7532CrossRefGoogle Scholar
  152. 152.
    Shafir A, Andelman D (2006) Eur Phys J E 19:155–162CrossRefGoogle Scholar
  153. 153.
    Wang Q (2006) J Phys Chem B 110:5825–5828CrossRefGoogle Scholar
  154. 154.
    Hoda N, Larson RG (2009) J Phys Chem B 113:4232–4241CrossRefGoogle Scholar
  155. 155.
    Wang Q (2009) Soft Matter 5:413–424CrossRefGoogle Scholar
  156. 156.
    Zhao W, Zheng B, Haynie DT (2006) Langmuir 22:6668–6675CrossRefGoogle Scholar
  157. 157.
    Reddy G, Chang R, Yethiraj A (2006) J Chem Theory Comput 2:630–636CrossRefGoogle Scholar
  158. 158.
    Chialvo AA, Simonson JM (2008) J Phys Chem C 112:19521–19529CrossRefGoogle Scholar
  159. 159.
    Horinek D, Serr A, Geisler M, Pirzer T, Slotta U, Lud SQ, Garrido JA, Scheibel T, Hugel T, Netz RR (2008) Proc Natl Acad Sci 105:2842–2847CrossRefGoogle Scholar
  160. 160.
    Qiao B, Cerdá JJ, Holm C (2010) Macromolecules 43:7828–7838CrossRefGoogle Scholar
  161. 161.
    Qiao B, Cerdá JJ, Holm C (2011) Macromolecules 44:1707–1718Google Scholar
  162. 162.
    Messina R, Holm C, Kremer K (2003) Langmuir 19:4473–4482CrossRefGoogle Scholar
  163. 163.
    Messina R (2003) J Chem Phys 119:8133–8139CrossRefGoogle Scholar
  164. 164.
    Messina R (2004) Macromolecules 37:621–629CrossRefGoogle Scholar
  165. 165.
    Messina R, Holm C, Kremer K (2004) J Polym Sci B Polym Phys 42:3557CrossRefGoogle Scholar
  166. 166.
    Panchagnula V, Jeon J, Dobrynin AV (2004) Phys Rev Lett 93:037801CrossRefGoogle Scholar
  167. 167.
    Messina R (2004) Phys Rev E 70:051802CrossRefGoogle Scholar
  168. 168.
    Patel PA, Jeon J, Mather PT, Dobrynin AV (2005) Langmuir 21:6113–6122CrossRefGoogle Scholar
  169. 169.
    Panchagnula V, Jeon J, Rusling JF, Dobrynin AV (2005) Langmuir 21:1118–1125CrossRefGoogle Scholar
  170. 170.
    Jeon J, Panchagnula V, Pan J, Dobrynin AV (2006) Langmuir 22:4629–4637CrossRefGoogle Scholar
  171. 171.
    Guyomard A, Muller G, Glinel K (2005) Macromolecules 38:5737–5742CrossRefGoogle Scholar
  172. 172.
    Kovacevic D, van der Burgh S, de Keizer A, Stuart MAC (2002) Langmuir 18:5607–5612CrossRefGoogle Scholar
  173. 173.
    Gopinadhan M, Ahrens H, Gunther JU, Steitz R, Helm CA (2005) Macromolecules 38:5228–5235CrossRefGoogle Scholar
  174. 174.
    Liu G, Zhao J, Sun Q, Zhang G (2008) J Phys Chem B 112:3333–3338CrossRefGoogle Scholar
  175. 175.
    Riegler H, Essler F (2002) Langmuir 18:6694–6698CrossRefGoogle Scholar
  176. 176.
    Tanchak OM, Yager KG, Fritzsche H, Harroun T, Katsaras J, Barrett CJ (2008) J Chem Phys 129:084901CrossRefGoogle Scholar
  177. 177.
    Kolasinska M, Warszynski P (2005) Bioelectrochemistry 66:65–70CrossRefGoogle Scholar
  178. 178.
    Buron CC, Filiatre C, Membrey F, Bainier C, Charraut D, Foissy A (2007) Colloids Surf A 305:105–111CrossRefGoogle Scholar
  179. 179.
    Steitz R, Jaeger W, von Klitzing R (2001) Langmuir 17:4471–4474CrossRefGoogle Scholar
  180. 180.
    Schoeler B, Kumaraswamy G, Caruso F (2002) Macromolecules 35:889–897CrossRefGoogle Scholar
  181. 181.
    Glinel K, Moussa A, Jonas AM, Laschewsky A (2002) Langmuir 18:1408–1412CrossRefGoogle Scholar
  182. 182.
    Salomäki M, Kankare J (2008) Macromolecules 41:4423–4428CrossRefGoogle Scholar
  183. 183.
    El Haitami AE, Martel D, Ball V, Nguyen HC, Gonthier E, Labbe P, Voegel JC, Schaaf P, Senger B, Boulmedais F (2009) Langmuir 25:2282–2289CrossRefGoogle Scholar
  184. 184.
    Muller M, Meier-Haack J, Schwarz S, Buchhammer HM, Eichhorn EJ, Janke A, Kessler B, Nagel J, Oelmann M, Reihs T, Lunkwitz K (2004) J Adhes 80:521–547CrossRefGoogle Scholar
  185. 185.
    Gopinadhan M, Ivanova O, Ahrens H, Günther JU, Steitz R, Helm CA (2007) J Phys Chem B 111:8426–8434CrossRefGoogle Scholar
  186. 186.
    Cerdá JJ, Qiao B, Holm C (2009) Soft Matter 5:4412–4425CrossRefGoogle Scholar
  187. 187.
    Cerdá JJ, Qiao B, Holm C (2009) Eur Phys J Spec Top 177:129–148CrossRefGoogle Scholar
  188. 188.
    Carrillo JMY, Dobrynin AV (2007) Langmuir 23:2472–2482CrossRefGoogle Scholar
  189. 189.
    Patel PA, Jeon J, Mather PT, Dobrynin AV (2006) Langmuir 22:9994–10002CrossRefGoogle Scholar
  190. 190.
    Kulcsar A, Voegel JC, Schaaf P, Kekicheff P (2005) Langmuir 21:1166–1170CrossRefGoogle Scholar
  191. 191.
    Gavryushov S, Linse P (2006) J Phys Chem B 110:10878–10887CrossRefGoogle Scholar
  192. 192.
    Neff PA, Wunderlich BK, von Klitzing R, Bausch AR (2007) Langmuir 23:4048–4052CrossRefGoogle Scholar
  193. 193.
    Schönhoff M, Ball V, Bausch AR, Dejugnat C, Delorme N, Glinel K, von Klitzing R, Steitz R (2007) Colloids Surf A 303:14–29CrossRefGoogle Scholar
  194. 194.
    Wende C, Schönhof M (2010) Langmuir 26:8352–8357CrossRefGoogle Scholar
  195. 195.
    Kusalik PG, Mandy ME, Svishchev IM (1994) J Chem Phys 100:7654–7664CrossRefGoogle Scholar
  196. 196.
    Mahoney MW, Jorgensen WL (2000) J Chem Phys 112:8910–8922CrossRefGoogle Scholar
  197. 197.
    Tyagi S, Arnold A, Holm C (2007) J Chem Phys 127:154723CrossRefGoogle Scholar
  198. 198.
    Tyagi S, Arnold A, Holm C (2008) J Chem Phys 129:204102CrossRefGoogle Scholar
  199. 199.
    Tyagi S, Süzen M, Sega M, Barbosa M, Kantorovich SS, Holm C (2010) J Chem Phys 132:154112CrossRefGoogle Scholar
  200. 200.
    Sagui C, Darden T (2001) J Chem Phys 114:6578CrossRefGoogle Scholar
  201. 201.
    Banerjee S, Board JA Jr (2005) J Comput Chem 26:957–967CrossRefGoogle Scholar
  202. 202.
    Maggs AC (2002) J Chem Phys 117:1975CrossRefGoogle Scholar
  203. 203.
    Pasichnyk I, Dünweg B (2004) J Phys Condens Matter 16:3999–4020CrossRefGoogle Scholar
  204. 204.
    Rottler J (2007) J Chem Phys 127:134104–134109CrossRefGoogle Scholar
  205. 205.
    Meller LNA, Branton D (2001) Phys Rev Lett 86:3435CrossRefGoogle Scholar
  206. 206.
    Keyser UF, Koeleman BN, van Dorp S, Krapf D, Smeets RMM, Lemay SG, Dekker NH, Dekker C (2006) Nat Phys 2:473–477CrossRefGoogle Scholar
  207. 207.
    Howorka S, Siwy Z (2009) Chem Soc Rev 38:2360–2384CrossRefGoogle Scholar
  208. 208.
    van Dorp S, Keyser UF, Dekker NH, Dekker C, Lemay SG (2009) Nat Phys 5:347–351CrossRefGoogle Scholar
  209. 209.
    Muthukumar M (1999) J Chem Phys 111:10371CrossRefGoogle Scholar
  210. 210.
    Milchev A, Binder K, Bhattacharya A (2004) J Chem Phys 121:6042–6051CrossRefGoogle Scholar
  211. 211.
    Gracheva ME, Xiong A, Aksimentiev A, Schulten K, Timp G, Leburton JP (2006) Nanotechnology 17:622–633CrossRefGoogle Scholar
  212. 212.
    Forrey C, Muthukumar M (2007) J Chem Phys 127:015102CrossRefGoogle Scholar
  213. 213.
    Luan B, Aksimentiev A (2008) Phys Rev E 78:21912CrossRefGoogle Scholar
  214. 214.
    Melchionna S, Bernaschi M, Fyta M, Kaxiras E, Succi S (2009) Phys Rev E 79:30901CrossRefGoogle Scholar
  215. 215.
    Kesselheim S, Sega M, Holm C (2011) Comput Phys Commun 182:33–35CrossRefGoogle Scholar
  216. 216.
    Fixman M, Skolnick J (1978) Macromolecules 11:863CrossRefGoogle Scholar
  217. 217.
    Poma AB, Delle Site L (2010) Phys Rev Lett 104:250201CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Max-Planck Institute for Polymer ResearchMainzGermany
  2. 2.Institute for Computational PhysicsUniversität StuttgartStuttgartGermany
  3. 3.Center of Smart InterfacesTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations