Prion Proteins pp 169-197 | Cite as

Molecular Dynamics as an Approach to Study Prion Protein Misfolding and the Effect of Pathogenic Mutations

  • Marc W. van der Kamp
  • Valerie Daggett
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 305)


Computer simulation of protein dynamics offers unique high-resolution information that complements experiment. Using experimentally derived structures of the natively folded prion protein (PrP), physically realistic dynamics and conformational changes can be simulated, including the initial steps of misfolding. By introducing mutations in silico, the effect of pathogenic mutations on PrP conformation and dynamics can be assessed. Here, we briefly introduce molecular dynamics methods and review the application of molecular dynamics simulations to obtain insight into various aspects of the PrP, including the mechanism of misfolding, the response to changes in the environment, and the influence of disease-related mutations.

Graphical Abstract


Prion protein Molecular dynamics simulation Protein dynamics Protein misfolding pH-induced misfolding Disease-related mutations 


  1. 1.
    Alper T, Cramp WA, Haig DA, Clarke MC (1967) Does agent of scrapie replicate without nucleic acid? Nature 214:764CrossRefGoogle Scholar
  2. 2.
    Griffith JS (1967) Self-replication and scrapie. Nature 215:1043CrossRefGoogle Scholar
  3. 3.
    Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216:136CrossRefGoogle Scholar
  4. 4.
    Bolton DC, McKinley MP, Prusiner SB (1982) Identification of a protein that purifies with the scrapie prion. Science 218:1309CrossRefGoogle Scholar
  5. 5.
    Oesch B, Westaway D, Walchli M, McKinley MP, Kent SBH, Aebersold R, Barry RA, Tempst P, Teplow DB, Hood LE, Prusiner SB, Weissmann C (1985) A cellular gene encodes scrapie PrP 27-30 protein. Cell 40:735CrossRefGoogle Scholar
  6. 6.
    Prusiner SB, Scott M, Foster D, Pan KM, Groth D, Mirenda C, Torchia M, Yang SL, Serban D, Carlson GA, Hoppe PC, Westaway D, DeArmond SJ (1990) Transgenetic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. Cell 63:673CrossRefGoogle Scholar
  7. 7.
    Caughey BW, Dong A, Bhat KS, Ernst D, Hayes SF, Caughey WS (1991) Secondary structure-analysis of the scrapie-associated protein PrP 27–30 in water by infrared-spectroscopy. Biochemistry 30:7672CrossRefGoogle Scholar
  8. 8.
    Riek R, Hornemann S, Wider G, Billeter M, Glockshuber R, Wüthrich K (1996) NMR structure of the mouse prion protein domain PrP(121–231). Nature 382:180CrossRefGoogle Scholar
  9. 9.
    Wüthrich K, Riek R (2001) Adv Protein Chem 57:55CrossRefGoogle Scholar
  10. 10.
    Taylor DR, Hooper NM (2006) The prion protein and lipid rafts (Review). Mol Membr Biol 23:89CrossRefGoogle Scholar
  11. 11.
    Stahl N, Borchelt DR, Hsiao K, Prusiner SB (1987) Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 51:229CrossRefGoogle Scholar
  12. 12.
    Steele AD, Lindquist S, Aguzzi A (2007) The prion protein knockout mouse: a phenotype under challenge. Prion 1:83CrossRefGoogle Scholar
  13. 13.
    Linden R, Martins VR, Prado MAM, Cammarota M, Izquierdo I, Brentani RR (2008) Physiology of the prion protein. Physiol Rev 88:673CrossRefGoogle Scholar
  14. 14.
    Le Pichon CE, Firestein S (2008) Expression and localization of the prion protein PrPc in the olfactory system of the mouse. J Comp Neurol 508:487CrossRefGoogle Scholar
  15. 15.
    Millhauser GL (2007) Copper and the prion protein: methods, structures, function, and disease. Annu Rev Phys Chem 58:299CrossRefGoogle Scholar
  16. 16.
    Viles JH, Klewpatinond M, Nadal RC (2008) Copper and the structural biology of the prion protein. Biochem Soc Trans 36:1288CrossRefGoogle Scholar
  17. 17.
    Singh A, Mohan ML, Isaac AO, Luo X, Petrak J, Vyoral D, Singh N (2009) Prion protein modulates cellular iron uptake: a novel function with implications for prion disease pathogenesis. PLoS ONE 4:e4468CrossRefGoogle Scholar
  18. 18.
    Caughey B, Baron GS, Chesebro B, Jeffrey M (2009) Getting a grip on prions: oligomers, amyloids, and pathological membrane interactions. Annu Rev Biochem 78:177CrossRefGoogle Scholar
  19. 19.
    Jackson GS, Hill SF, Joseph C, Hosszu L, Power A, Waltho JP, Clarke AR, Collinge J (1999) Multiple folding pathways for heterologously expressed human prion protein. Biochim Biophys Acta: Protein Structure and Molecular Enzymology 1431:1CrossRefGoogle Scholar
  20. 20.
    Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang ZW, Fletterick RJ, Cohen FE, Prusiner SB (1993) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci USA 90:10962CrossRefGoogle Scholar
  21. 21.
    Cobb NJ, Apetri AC, Surewicz WK (2008) Prion protein amyloid formation under native-like conditions involves refolding of the C-terminal alpha-helical domain. J Biol Chem 283:34704CrossRefGoogle Scholar
  22. 22.
    Swietnicki W, Petersen R, Gambetti P, Surewicz WK (1997) pH-dependent stability and conformation of the recombinant human prion protein PrP(90–231). J Biol Chem 272:27517CrossRefGoogle Scholar
  23. 23.
    Speare JO, Rush TS, Bloom ME, Caughey B (2003) The role of helix 1 aspartates and salt bridges in the stability and conversion of prion protein. J Biol Chem 278:12522CrossRefGoogle Scholar
  24. 24.
    Vanik DL, Surewicz WK (2002) Disease-associated F198S mutation increases the propensity of the recombinant prion protein for conformational conversion to scrapie-like form. J Biol Chem 277:49065CrossRefGoogle Scholar
  25. 25.
    Saborio GP, Permanne B, Soto C (2001) Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411:810CrossRefGoogle Scholar
  26. 26.
    Van der Kamp MW, Shaw KE, Woods CJ, Mulholland AJ (2008) Biomolecular simulation and modelling: status, progress and prospects. J R Soc Interface 5:S173CrossRefGoogle Scholar
  27. 27.
    Glazer DS, Radmer RJ, Altman RB (2009) Improving structure-based function prediction using molecular dynamics. Structure 17:919CrossRefGoogle Scholar
  28. 28.
    Karplus M, Kuriyan J (2005) Molecular dynamics and protein function. Proc Natl Acad Sci USA 102:6679CrossRefGoogle Scholar
  29. 29.
    Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9:646CrossRefGoogle Scholar
  30. 30.
    Daggett V, Fersht A (2003) The present view of the mechanism of protein folding. Nat Rev Mol Cell Biol 4:497CrossRefGoogle Scholar
  31. 31.
    Schaeffer RD, Fersht A, Daggett V (2008) Combining experiment and simulation in protein folding: closing the gap for small model systems. Curr Opin Struct Biol 18:4CrossRefGoogle Scholar
  32. 32.
    Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333CrossRefGoogle Scholar
  33. 33.
    Daggett V (2006) Protein folding-simulation. Chem Rev 106:1898CrossRefGoogle Scholar
  34. 34.
    Van der Kamp MW, Schaeffer RD, Jonsson AL, Scouras AD, Simms AM, Toofanny RD, Benson NC, Anderson PC, Merkley ED, Rysavy S, Bromley D, Beck DAC, Daggett V (2010) Dynameomics: a comprehensive database of protein dynamics. Structure 18:423CrossRefGoogle Scholar
  35. 35.
    Kazmirski SL, Alonso DOV, Cohen FE, Prusiner SB, Daggett V (1995) Theoretical-studies of sequence effects on the conformational properties of a fragment of the prion protein: implication for scrapie formation. Chem Biol 2:305CrossRefGoogle Scholar
  36. 36.
    Donne DG, Viles JH, Groth D, Mehlhorn I, James TL, Cohen FE, Prusiner SB, Wright PE, Dyson HJ (1997) Structure of the recombinant full-length hamster prion protein PrP(29–231): the N terminus is highly flexible. Proc Natl Acad Sci USA 94:13452CrossRefGoogle Scholar
  37. 37.
    James TL, Liu H, Ulyanov NB, FarrJones S, Zhang H, Donne DG, Kaneko K, Groth D, Mehlhorn I, Prusiner SB, Cohen FE (1997) Solution structure of a 142-residue recombinant prion protein corresponding to the infectious fragment of the scrapie isoform. Proc Natl Acad Sci USA 94:10086CrossRefGoogle Scholar
  38. 38.
    Riek R, Hornemann S, Wider G, Glockshuber R, Wüthrich K (1997) NMR characterization of the full-length recombinant murine prion protein, mPrP(23–231). FEBS Lett 413:282CrossRefGoogle Scholar
  39. 39.
    Zahn R, Liu AZ, Luhrs T, Riek R, von Schroetter C, Garcia FL, Billeter M, Calzolai L, Wider G, Wüthrich K (2000) NMR solution structure of the human prion protein. Proc Natl Acad Sci USA 97:145CrossRefGoogle Scholar
  40. 40.
    El-Bastawissy E, Knaggs MH, Gilbert IH (2001) Molecular dynamics simulations of wild-type and point mutation human prion protein at normal and elevated temperature. J Mol Graph Model 20:145CrossRefGoogle Scholar
  41. 41.
    Guilbert C, Ricard F, Smith JC (2000) Dynamic simulation of the mouse prion protein. Biopolymers 54:406CrossRefGoogle Scholar
  42. 42.
    Parchment OG, Essex JW (2000) Molecular dynamics of mouse and syrian hamster PrP: implications for activity. Proteins: Struct Funct Genet 38:327CrossRefGoogle Scholar
  43. 43.
    Zuegg J, Gready JE (1999) Molecular dynamics simulations of human prion protein: importance of correct treatment of electrostatic interactions. Biochemistry 38:13862CrossRefGoogle Scholar
  44. 44.
    Beck DAC, Daggett V (2004) Methods for molecular dynamics simulations of protein folding/unfolding in solution. Methods 34:112CrossRefGoogle Scholar
  45. 45.
    Rapaport DC (2004) The art of molecular dynamics simulation. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  46. 46.
    Leach AR (2001) Molecular modelling: principles and applications. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  47. 47.
    MacKerell AD (2005) In: Simmerling C (ed) Annual reports in computational chemistry, vol 1. Elsevier, Oxford, UK, p 91Google Scholar
  48. 48.
    Mackerell AD (2004) Empirical force fields for biological macromolecules: overview and issues. J Comput Chem 25:1584CrossRefGoogle Scholar
  49. 49.
    Levitt M, Hirshberg M, Sharon R, Daggett V (1995) Potential-energy function and parameters for simulations of the molecular-dynamics of proteins and nucleic-acids in solution. Comput Phys Commun 91:215CrossRefGoogle Scholar
  50. 50.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235CrossRefGoogle Scholar
  51. 51.
    Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314:141CrossRefGoogle Scholar
  52. 52.
    Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci USA 99:12562CrossRefGoogle Scholar
  53. 53.
    DeMarco ML, Daggett V (2009) Characterization of cell-surface prion protein relative to its recombinant analogue: insights from molecular dynamics simulations of diglycosylated, membrane-bound human prion protein. J Neurochem 109:60CrossRefGoogle Scholar
  54. 54.
    Zhong LH, Xie JM (2009) Investigation of the effect of glycosylation on human prion protein by molecular dynamics. J Biomol Struct Dyn 26:525CrossRefGoogle Scholar
  55. 55.
    Zuegg J, Gready JE (2000) Molecular dynamics simulation of human prion protein including both N-linked oligosaccharides and the GPI anchor. Glycobiology 10:959CrossRefGoogle Scholar
  56. 56.
    Alonso DOV, DeArmond SJ, Cohen FE, Daggett V (2001) Mapping the early steps in the pH-induced conformational conversion of the prion protein. Proc Natl Acad Sci USA 98:2985CrossRefGoogle Scholar
  57. 57.
    Alonso DOV, An C, Daggett V (2002) Simulations of biomolecules: characterization of the early steps in the pH-induced conformational conversion of the hamster, bovine and human forms of the prion protein. Philos Trans R Soc Lond A Math Phys Eng Sci 360:1165CrossRefGoogle Scholar
  58. 58.
    Colombo G, Meli M, Morra G, Gabizon R, Gasset M (2009) Methionine sulfoxides on prion protein helix-3 switch on the alpha-fold destabilization required for conversion. PLoS ONE 4:e4296CrossRefGoogle Scholar
  59. 59.
    Van der Kamp MW, Daggett V (2010) The influence of pH on the human prion protein: insights into the early steps of misfolding. Biophys J 99:2289CrossRefGoogle Scholar
  60. 60.
    Campos SRR, Machuqueiro M, Baptista AM (2010) Constant-pH molecular dynamics simulations reveal a β-rich form of the human prion protein. J Phys Chem B. doi: 10.1021/jp104753t Google Scholar
  61. 61.
    DeMarco ML, Daggett V (2007) Molecular mechanism for low pH triggered misfolding of the human prion protein. Biochemistry 46:3045CrossRefGoogle Scholar
  62. 62.
    Barducci A, Chelli R, Procacci P, Schettino V, Gervasio FL, Parrinello M (2006) Metadynamics simulation of prion protein: beta-structure stability and the early stages of misfolding. J Am Chem Soc 128:2705CrossRefGoogle Scholar
  63. 63.
    De Simone A, Zagari A, Derreumaux P (2007) Structural and hydration properties of the partially unfolded states of the prion protein. Biophys J 93:1284CrossRefGoogle Scholar
  64. 64.
    Calzolai L, Lysek DA, Perez DR, Guntert P, Wuthrich K (2005) Prion protein NMR structures of chickens, turtles, and frogs. Proc Natl Acad Sci USA 102:651CrossRefGoogle Scholar
  65. 65.
    Christen B, Hornemann S, Damberger FF, Wuthrich K (2009) Prion protein NMR structure from Tammar wallaby (Macropus eugenii) shows that the beta 2-alpha 2 loop is modulated by long-range sequence effects. J Mol Biol 389:833CrossRefGoogle Scholar
  66. 66.
    Gossert AD, Bonjour S, Lysek DA, Fiorito F, Wuthrich K (2005) Prion protein NMR structures of elk and of mouse/elk hybrids. Proc Natl Acad Sci USA 102:646CrossRefGoogle Scholar
  67. 67.
    Lysek DA, Schorn C, Nivon LG, Esteve-Moya V, Christen B, Calzolai L, von Schroetter C, Fiorito F, Herrmann T, Guntert P, Wuthrich K (2005) Prion protein NMR structures of cats, dogs, pigs, and sheep. Proc Natl Acad Sci USA 102:640CrossRefGoogle Scholar
  68. 68.
    Wuthrich K, Riek R (2001) Adv Protein Chem 57:55CrossRefGoogle Scholar
  69. 69.
    Christen B, Perez DR, Hornemann S, Wuthrich K (2009) NMR structure of the bank vole prion protein at 20 degrees C contains a structured loop of residues 165-171. J Mol Biol 383:306CrossRefGoogle Scholar
  70. 70.
    Perez DR, Damberger FF, Wuthrich K (2010) Horse prion protein NMR structure and comparisons with related variants of the mouse prion protein. J Mol Biol 400:121CrossRefGoogle Scholar
  71. 71.
    Antonyuk SV, Trevitt CR, Strange RW, Jackson GS, Sangar D, Batchelor M, Cooper S, Fraser C, Jones S, Georgiou T, Khalili-Shirazi A, Clarke AR, Hasnain SS, Collinge J (2009) Crystal structure of human prion protein bound to a therapeutic antibody. Proc Natl Acad Sci USA 106:2554CrossRefGoogle Scholar
  72. 72.
    Eghiaian F, Grosclaude J, Lesceu S, Debey P, Doublet B, Treguer E, Rezaei H, Knossow M (2004) Insight into the PrPC -> PrPSc conversion from the structures of antibody-bound ovine prion scrapie-susceptibility variants. Proc Natl Acad Sci USA 101:10254CrossRefGoogle Scholar
  73. 73.
    Haire LF, Whyte SM, Vasisht N, Gill AC, Verma C, Dodson EJ, Dodson GG, Bayley PM (2004) The crystal structure of the globular domain of sheep prion protein. J Mol Biol 336:1175CrossRefGoogle Scholar
  74. 74.
    Knaus KJ, Morillas M, Swietnicki W, Malone M, Surewicz WK, Yee VC (2001) Crystal structure of the human prion protein reveals a mechanism for oligomerization. Nat Struct Biol 8:770CrossRefGoogle Scholar
  75. 75.
    Lee S, Antony L, Hartmann R, Knaus KJ, Surewicz K, Surewicz WK, Yee VC (2010) Conformational diversity in prion protein variants influences intermolecular beta-sheet formation. EMBO J 29:251CrossRefGoogle Scholar
  76. 76.
    Calzolai L, Zahn R (2003) Influence of pH on NMR structure and stability of the human prion protein globular domain. J Biol Chem 278:35592CrossRefGoogle Scholar
  77. 77.
    Herrmann LM, Caughey B (1998) The importance of the disulfide bond in prion protein conversion. Neuroreport 9:2457CrossRefGoogle Scholar
  78. 78.
    Welker E, Raymond LD, Scheraga HA, Caughey B (2002) Intramolecular versus intermolecular disulfide bonds in prion proteins. J Biol Chem 277:33477CrossRefGoogle Scholar
  79. 79.
    Hosszu LLP, Baxter NJ, Jackson GS, Power A, Clarke AR, Waltho JP, Craven CJ, Collinge J (1999) Structural mobility of the human prion protein probed by backbone hydrogen exchange. Nat Struct Biol 6:740CrossRefGoogle Scholar
  80. 80.
    Tizzano B, Palladino P, De Capua A, Marasco D, Rossi F, Benedetti E, Pedone C, Ragone R, Ruvo M (2005) The human prion protein alpha 2 helix: a thermodynamic study of its conformational preferences. Proteins: Struct Funct Bioinform 59:72CrossRefGoogle Scholar
  81. 81.
    Harper ET, Rose GD (1993) Helix stop signals in proteins and peptides: the capping box. Biochemistry 32:7605CrossRefGoogle Scholar
  82. 82.
    Gallo M, Paludi D, Cicero DO, Chiovitti K, Millo E, Salis A, Damonte G, Corsaro A, Thellung S, Schettini G, Melino S, Florio T, Paci M, Aceto A (2005) Identification of a conserved N-capping box important for the structural autonomy of the prion alpha 3-helix: the disease associated D202N mutation destabilizes the helical conformation. Int J Immunopathol Pharmacol 18:95Google Scholar
  83. 83.
    Calzolai L, Lysek DA, Guntert P, von Schroetter C, Riek R, Zahn R, Wüthrich K (2000) NMR structures of three single-residue variants of the human prion protein. Proc Natl Acad Sci USA 97:8340CrossRefGoogle Scholar
  84. 84.
    O’Sullivan DBD, Jones CE, Abdelraheim SR, Brazier MW, Toms H, Brown DR, Viles JH (2009) Dynamics of a truncated prion protein, PrP(113–231), from N-15 NMR relaxation: order parameters calculated and slow conformational fluctuations localized to a distinct region. Protein Sci 18:410CrossRefGoogle Scholar
  85. 85.
    Viles JH, Donne D, Kroon G, Prusiner SB, Cohen FE, Dyson HJ, Wright PE (2001) Local structural plasticity of the prion protein. Analysis of NMR relaxation dynamics. Biochemistry 40:2743CrossRefGoogle Scholar
  86. 86.
    Rule GS, Hitchens TK (2005) Fundamentals of protein NMR spectroscopy (focus on structural biology). Springer, Dordrecht, The NetherlandsGoogle Scholar
  87. 87.
    DeMarco ML, Daggett V (2005) Local environmental effects on the structure of the prion protein. C R Biol 328:847CrossRefGoogle Scholar
  88. 88.
    Zou WQ, Cashman NR (2002) Acidic pH and detergents enhance in vitro conversion of human brain PrPC to a PrPSc-like form. J Biol Chem 277:43942CrossRefGoogle Scholar
  89. 89.
    Apetri AC, Maki K, Roder H, Surewicz WK (2006) Early intermediate in human prion protein folding as evidenced by ultrarapid mixing experiments. J Am Chem Soc 128:11673CrossRefGoogle Scholar
  90. 90.
    Gerber R, Tahiri-Alaoui A, Hore PJ, James W (2008) Conformational pH dependence of intermediate states during oligomerization of the human prion protein. Protein Sci 17:537CrossRefGoogle Scholar
  91. 91.
    Hornemann S, Glockshuber R (1998) A scrapie-like unfolding intermediate of the prion protein domain PrP(121–231) induced by acidic pH. Proc Natl Acad Sci USA 95:6010CrossRefGoogle Scholar
  92. 92.
    Matsunaga Y, Peretz D, Williamson A, Burton D, Mehlhorn I, Groth D, Cohen FE, Prusiner SB, Baldwin MA (2001) Cryptic epitopes in N-terminally truncated prion protein are exposed in the full-length molecule: dependence of conformation on pH. Proteins: Struct Funct Bioinform 44:110CrossRefGoogle Scholar
  93. 93.
    Arnold JE, Tipler C, Laszlo L, Hope J, Landon M, Mayer RJ (1995) The abnormal isoform of the prion protein accumulates in late-endosome-like organelles in scrapie-infected mouse-brain. J Pathol 176:403CrossRefGoogle Scholar
  94. 94.
    Borchelt DR, Taraboulos A, Prusiner SB (1992) Evidence for synthesis of scrapie prion proteins in the endocytic pathway. J Biol Chem 267:16188Google Scholar
  95. 95.
    Caughey B, Raymond GJ, Ernst D, Race RE (1991) N-Terminal truncation of the scrapie-associated form of PrP by lysosomal protease(s): implications regarding the site of conversion of PrP to the protease-resistant state. J Virol 65:6597Google Scholar
  96. 96.
    Godsave SF, Wille H, Kujala P, Latawiec D, DeArmond SJ, Serban A, Prusiner SB, Peters PJ (2008) Cryo-immunogold electron microscopy for prions: toward identification of a conversion site. J Neurosci 28:12489CrossRefGoogle Scholar
  97. 97.
    Lee RJ, Wang S, Low PS (1996) Measurement of endosome pH following folate receptor-mediated endocytosis. Biochim Biophys Acta 1312:237CrossRefGoogle Scholar
  98. 98.
    Lide DR (2010) CRC Handbook of Chemistry and Physics, CRC Press, Taylor and Francis GroupGoogle Scholar
  99. 99.
    Langella E, Improta R, Crescenzi O, Barone V (2006) Assessing the acid-base and conformational properties of histidine residues in human prion protein (125–228) by means of pK a calculations and molecular dynamics simulations. Proteins: Struct Funct Bioinform 64:167CrossRefGoogle Scholar
  100. 100.
    Langella E, Improta R, Barone V (2004) Checking the pH-induced conformational transition of prion protein by molecular dynamics simulations: effect of protonation of histidine residues. Biophys J 87:3623CrossRefGoogle Scholar
  101. 101.
    Gu W, Wang TT, Zhu J, Shi YY, Liu HY (2003) Molecular dynamics simulation of the unfolding of the human prion protein domain under low pH and high temperature conditions. Biophys Chem 104:79CrossRefGoogle Scholar
  102. 102.
    Colacino S, Tiana G, Broglia RA, Colombo G (2006) The determinants of stability in the human prion protein: insights into folding and misfolding from the analysis of the change in the stabilization energy distribution in different conditions. Proteins: Struct Funct Bioinform 62:698CrossRefGoogle Scholar
  103. 103.
    Watanabe Y, Inanami O, Horiuchi M, Hiraoka W, Shimoyama Y, Inagaki F, Kuwabara M (2006) Identification of pH-sensitive regions in the mouse prion by the cysteine-scanning spin-labeling ESR technique. Biochem Biophys Res Commun 350:549CrossRefGoogle Scholar
  104. 104.
    Hosszu LLP, Wells MA, Jackson GS, Jones S, Batchelor M, Clarke AR, Craven CJ, Waltho JP, Collinge J (2005) Definable equilibrium states in the folding of human prion protein. Biochemistry 44:16649CrossRefGoogle Scholar
  105. 105.
    Torrent J, Alvarez-Martinez MT, Liautard JP, Balny C, Lange R (2005) The role of the 132–160 region in prion protein conformational transitions. Protein Sci 14:956CrossRefGoogle Scholar
  106. 106.
    Hirschberger T, Stork M, Schropp B, Winklhofer KF, Tatzelt J, Tavan P (2006) Structural instability of the prion protein upon M205S/R mutations revealed by molecular dynamics simulations. Biophys J 90:3908CrossRefGoogle Scholar
  107. 107.
    Winklhofer KF, Heske J, Heller U, Reintjes A, Muranyi W, Moarefi I, Tatzelt J (2003) Determinants of the in vivo folding of the prion protein – a bipartite function of helix 1 in folding and aggregation. J Biol Chem 278:14961CrossRefGoogle Scholar
  108. 108.
    Abalos GC, Cruite JT, Bellon A, Hemmers S, Akagi J, Mastrianni JA, Williamson RA, Solforosi L (2008) Identifying key components of the PrPC-PrPSc replicative interface. J Biol Chem 283:34021CrossRefGoogle Scholar
  109. 109.
    Brown DR, Herms J, Kretzschmar HA (1994) Mouse cortical-cells lacking cellular PrP survive in culture with a neurotoxic PrP fragment. Neuroreport 5:2057CrossRefGoogle Scholar
  110. 110.
    Forloni G, Angeretti N, Chiesa R, Monzani E, Salmona M, Bugiani O, Tagliavini F (1993) Neurotoxicity of a prion protein fragment. Nature 362:543CrossRefGoogle Scholar
  111. 111.
    Supattapone S, Bosque P, Muramoto T, Wille H, Aagaard C, Peretz D, Nguyen HOB, Heinrich C, Torchia M, Safar J, Cohen FE, DeArmond SJ, Prusiner SB, Scott M (1999) Prion protein of 106 residues creates an artificial transmission barrier for prion replication in transgenic mice. Cell 96:869CrossRefGoogle Scholar
  112. 112.
    Khalili-Shirazi A, Kaisar M, Mallinson G, Jones S, Bhelt D, Fraser C, Clarke AR, Hawke SH, Jackson GS, Collinge J (2007) beta-PrP fom of human prion protein stimulates production of monoclonal antibodies to epitope 91–110 that recognise native PrPsc. Biochim Biophys Acta: Proteins Proteomics 1774:1438CrossRefGoogle Scholar
  113. 113.
    Peretz D, Williamson RA, Matsunaga Y, Serban H, Pinilla C, Bastidas RB, Rozenshteyn R, James TL, Houghten RA, Cohen FE, Prusiner SB, Burton DR (1997) A conformational transition at the N terminus of the prion protein features in formation of the scrapie isoform. J Mol Biol 273:614CrossRefGoogle Scholar
  114. 114.
    Yuan FF, Biffin S, Brazier MW, Suarez M, Cappai R, Hill AF, Collins SJ, Sullivan JS, Middleton D, Multhaup G, Geczy AF, Masters CL (2005) Detection of prion epitopes on PrPc and PrPsc of transmissible spongiform encephalopathies using specific monoclonal antibodies to PrP. Immunol Cell Biol 83:632CrossRefGoogle Scholar
  115. 115.
    Kaneko K, Ball HL, Wille H, Zhang H, Groth D, Torchia M, Tremblay P, Safar J, Prusiner SB, DeArmond SJ, Baldwin MA, Cohen FE (2000) A synthetic peptide initiates Gerstmann-Sträussler-Scheinker (GSS) disease in transgenic mice. J Mol Biol 295:997CrossRefGoogle Scholar
  116. 116.
    Kachel N, Kremer W, Zahn R, Kalbitzer HR (2006) Observation of intermediate states of the human prion protein by high pressure NMR spectroscopy. BMC Struct Biol 6:18CrossRefGoogle Scholar
  117. 117.
    DeMarco ML, Daggett V (2004) From conversion to aggregation: protofibril formation of the prion protein. Proc Natl Acad Sci USA 101:2293CrossRefGoogle Scholar
  118. 118.
    Supattapone S, Bouzamondo E, Ball HL, Wille H, Nguyen HOB, Cohen FE, DeArmond SJ, Prusiner SB, Scott M (2001) A protease-resistant 61-residue prion peptide causes neurodegeneration in transgenic mice. Mol Cell Biol 21:2608CrossRefGoogle Scholar
  119. 119.
    DeMarco ML, Silveira J, Caughey B, Daggett V (2006) Structural properties of prion protein protofibrils and fibrils: an experimental assessment of atomic models. Biochemistry 45:15573CrossRefGoogle Scholar
  120. 120.
    Govaerts C, Wille H, Prusiner SB, Cohen FE (2004) Evidence for assembly of prions with left-handed beta 3-helices into trimers. Proc Natl Acad Sci USA 101:8342CrossRefGoogle Scholar
  121. 121.
    Scouras AD, Daggett V (2008) Species variation in PrPSc protofibril models. J Mater Sci 43:3625CrossRefGoogle Scholar
  122. 122.
    Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95:13363CrossRefGoogle Scholar
  123. 123.
    Van der Kamp MW, Daggett V (2009) The consequences of pathogenic mutations to the human prion protein. Protein Eng Des Sel 22:461CrossRefGoogle Scholar
  124. 124.
    Chen W, Van der Kamp MW, Daggett V (2010) Diverse effects on the native β-sheet of the human prion protein due to disease-associated mutations. Biochemistry 49:9874CrossRefGoogle Scholar
  125. 125.
    Rossetti G, Giachin G, Legname G, Carloni P (2010) Structural facets of disease-linked human prion protein mutants: a molecular dynamic study. Proteins: Struct Funct Bioinform. doi: 10.1002/prot.22834 Google Scholar
  126. 126.
    Van der Kamp MW, Daggett V (2010) Pathogenic mutations in the hydrophobic core of the human prion protein can promote structural instability and misfolding. J Mol Biol 404:732CrossRefGoogle Scholar
  127. 127.
    Zhang YB, Swietnicki W, Zagorski MG, Surewicz WK, Sonnichsen FD (2000) Solution structure of the E200K variant of human prion protein: implications for the mechanism of pathogenesis in familial prion diseases. J Biol Chem 275:33650CrossRefGoogle Scholar
  128. 128.
    Rutherford K, Bennion BJ, Parson WW, Daggett V (2006) The 108M polymorph of human catechol O-methyltransferase is prone to deformation at physiological temperatures. Biochemistry 45:2178CrossRefGoogle Scholar
  129. 129.
    Rutherford K, Daggett V (2009) A hotspot of inactivation: the A22S and V108M polymorphisms individually destabilize the active site structure of catechol O-methyltransferase. Biochemistry 48:6450CrossRefGoogle Scholar
  130. 130.
    Rutherford K, Le Trong I, Stenkamp RE, Person VW (2008) Crystal structures of human 108V and 108M catechol O-methyltransferase. J Mol Biol 380:120CrossRefGoogle Scholar
  131. 131.
    Mead S (2006) Prion disease genetics. Eur J Hum Genet 14:273CrossRefGoogle Scholar
  132. 132.
    Goldfarb LG, Petersen RB, Tabaton M, Brown P, Leblanc AC, Montagna P, Cortelli P, Julien J, Vital C, Pendelbury WW, Haltia M, Wills PR, Hauw JJ, Mckeever PE, Monari L, Schrank B, Swergold GD, Autiliogambetti L, Gajdusek DC, Lugaresi E, Gambetti P (1992) Fatal familial insomnia and familial Creutzfeldt-Jakob disease: disease phenotype determined by a DNA polymorphism. Science 258:806CrossRefGoogle Scholar
  133. 133.
    Brown DR (2000) Altered toxicity of the prion protein peptide PrP106-126 carrying the Ala(117) -> Val mutation. Biochem J 346:785CrossRefGoogle Scholar
  134. 134.
    McLean CA, Storey E, Gardner RJM, Tannenberg AEG, Cervenakova L, Brown P (1997) The D178N (cis-129M) “fatal familial insomnia” mutation associated with diverse clinicopathologic phenotypes in an Australian kindred. Neurology 49:552CrossRefGoogle Scholar
  135. 135.
    Swietnicki W, Petersen RB, Gambetti P, Surewicz WK (1998) Familial mutations and the thermodynamic stability of the recombinant human prion protein. J Biol Chem 273:31048CrossRefGoogle Scholar
  136. 136.
    Liemann S, Glockshuber R (1999) Influence of amino acid substitutions related to inherited human prion diseases on the thermodynamic stability of the cellular prion protein. Biochemistry 38:3258CrossRefGoogle Scholar
  137. 137.
    Apetri AC, Vanik DL, Surewicz WK (2005) Polymorphism at residue 129 modulates the conformational conversion of the D178N variant of human prion protein 90–231. Biochemistry 44:15880CrossRefGoogle Scholar
  138. 138.
    Chen SG, Zou W, Parchi P, Gambetti P (2000) PrPSc typing by N-terminal sequencing and mass spectrometry. Arch Virol 209Google Scholar
  139. 139.
    Watanabe Y, Hiraoka W, Shimoyama Y, Horiuchi M, Kuwabara M, Inanami O (2008) Instability of familial spongiform encephalopathy-related prion mutants. Biochem Biophys Res Commun 366:244CrossRefGoogle Scholar
  140. 140.
    Billeter M, Wüthrich K (2000) The prion protein globular domain and disease-related mutants studied by molecular dynamics simulations. Arch Virol 251Google Scholar
  141. 141.
    Gsponer J, Ferrara P, Caflisch A (2001) Flexibility of the murine prion protein and its Asp178Asn mutant investigated by molecular dynamics simulations. J Mol Graph Model 20:169CrossRefGoogle Scholar
  142. 142.
    Levy Y, Becker OM (2002) Conformational polymorphism of wild-type and mutant prion proteins: energy landscape analysis. Proteins: Struct Funct Genet 47:458CrossRefGoogle Scholar
  143. 143.
    Shamsir MS, Dalby AR (2005) One gene, two diseases and three conformations: molecular dynamics simulations of mutants of human prion protein at room temperature and elevated temperatures. Proteins: Struct Funct Bioinform 59:275CrossRefGoogle Scholar
  144. 144.
    Barducci A, Chelli R, Procacci P, Schettino V (2005) Misfolding pathways of the prion protein probed by molecular dynamics simulations. Biophys J 88:1334CrossRefGoogle Scholar
  145. 145.
    Riek R, Wider G, Billeter M, Hornemann S, Glockshuber R, Wüthrich K (1998) Prion protein NMR structure and familial human spongiform encephalopathies. Proc Natl Acad Sci USA 95:11667CrossRefGoogle Scholar
  146. 146.
    Hsiao K, Dlouhy SR, Farlow MR, Cass C, Dacosta M, Conneally PM, Hodes ME, Ghetti B, Prusiner SB (1992) Mutant prion proteins in Gerstmann-Straüssler-Scheinker disease with neurofibrillary tangles. Nat Genet 1:68CrossRefGoogle Scholar
  147. 147.
    Kitamoto T, Ohta M, Dohura K, Hitoshi S, Terao Y, Tateishi J (1993) Novel missense variants of prion protein in Creutzfeldt-Jakob disease or Gerstmann-Straüssler syndrome. Biochem Biophys Res Commun 191:709CrossRefGoogle Scholar
  148. 148.
    Peoc’h K, Manivet P, Beaudry P, Attane F, Besson G, Hannequin D, Delasnerie-Lauprêtre N, Laplanche J-L (2000) Identification of three novel mutations (E196K, V203I, E211Q) in the prion protein gene PRNP in inherited prion diseases with Creutzfeldt-Jakob disease phenotype. Hum Mutat 15:482CrossRefGoogle Scholar
  149. 149.
    Ripoll L, Laplanche JL, Salzmann M, Jouvet A, Planques B, Dussaucy M, Chatelain J, Beaudry P, Launay JM (1993) A new point mutation in the prion protein gene at codon 210 in Creutzfeldt-Jakob disease. Neurology 43:1934CrossRefGoogle Scholar
  150. 150.
    Nitrini R, Rosemberg S, PassosBueno MR, daSilva LST, Iughetti P, Papadopoulos M, Carrilho PM, Caramelli P, Albrecht S, Zatz M, LeBlanc A (1997) Familial spongiform encephalopathy associated with a novel prion protein gene mutation. Ann Neurol 42:138CrossRefGoogle Scholar
  151. 151.
    Apetri AC, Surewicz K, Surewicz WK (2004) The effect of disease-associated mutations on the folding pathway of human prion protein. J Biol Chem 279:18008CrossRefGoogle Scholar
  152. 152.
    Mishra RS, Bose S, Gu Y, Li R, Singh N (2003) Aggresome formation by mutant prion proteins: the unfolding role of proteasomes in familial prion disorders. J Alzheimers Dis 5:15Google Scholar
  153. 153.
    Silvestrini MC, Cardone F, Maras B, Pucci P, Barra D, Brunori M, Pocchiari M (1997) Identification of the prion protein allotypes which accumulate in the brain of sporadic and familial Creutzfeldt-Jakob disease patients. Nat Med 3:521CrossRefGoogle Scholar
  154. 154.
    Chebaro Y, Derreumaux P (2009) The conversion of helix H2 to beta-sheet is accelerated in the monomer and dimer of the prion protein upon T183A mutation. J Phys Chem B 113:6942CrossRefGoogle Scholar
  155. 155.
    Kiachopoulos S, Bracher A, Winklhofer KF, Tatzelt J (2005) Pathogenic mutations located in the hydrophobic core of the prion protein interfere with folding and attachment of the glycosylphosphatidylinositol anchor. J Biol Chem 280:9320CrossRefGoogle Scholar
  156. 156.
    Zaidi SIA, Richardson SL, Capellari S, Song L, Smith MA, Ghetti B, Sy MS, Gambetti P, Petersen RB (2005) Characterization of the F198S prion protein mutation: enhanced glycosylation and defective refolding. J Alzheimers Dis 7:159Google Scholar
  157. 157.
    Kovacs GG, Trabattoni G, Hainfellner JA, Ironside JW, Knight RSG, Budka H (2002) Mutations of the prion protein gene: phenotypic spectrum. J Neurol 249:1567CrossRefGoogle Scholar
  158. 158.
    Piccardo P, Liepnieks JJ, William A, Dlouhy SR, Farlow MR, Young K, Nochlin D, Bird TD, Nixon RR, Ball MJ, DeCarli C, Bugiani O, Tagliavini F, Benson MD, Ghetti B (2001) Prion proteins with different conformations accumulate in Gerstmann-Sträussler-Scheinker disease caused by A117V and F198S mutations. Am J Pathol 158:2201CrossRefGoogle Scholar
  159. 159.
    Caughey B, Race RE, Ernst D, Buchmeier MJ, Chesebro B (1989) Prion protein biosynthesis in scrapie-infected and uninfected neuroblastoma cells. J Virol 63:175Google Scholar
  160. 160.
    Endo T, Groth D, Prusiner SB, Kobata A (1989) Diversity of oligosaccharide structures linked to asparagines of the scrapie prion protein. Biochemistry 28:8380CrossRefGoogle Scholar
  161. 161.
    Hornemann S, Schorn C, Wüthrich K (2004) NMR structure of the bovine prion protein isolated from healthy calf brains. Embo Rep 5:1159CrossRefGoogle Scholar
  162. 162.
    Stadtman ER, Van Remmen H, Richardson A, Wehr NB, Levine RL (2005) Methionine oxidation and aging. Biochim Biophys Acta: Proteins Proteomics 1703:135CrossRefGoogle Scholar
  163. 163.
    Canello T, Engelstein R, Moshel O, Xanthopoulos K, Juanes ME, Langeveld J, Sklaviadis T, Gasset M, Gabizon R (2008) Methionine sulfoxides on PrPSc: a prion-specific covalent signature. Biochemistry 47:8866CrossRefGoogle Scholar
  164. 164.
    Silva CJ, Onisko BC, Dynin I, Erickson ML, Vensel WH, Requena JR, Antaki EM, Carter JM (2010) Assessing the role of oxidized methionine at position 213 in the formation of prions in hamsters. Biochemistry 49:1854CrossRefGoogle Scholar
  165. 165.
    Wolschner C, Giese A, Kretzschmar HA, Huber R, Moroder L, Budisa N (2009) Design of anti- and pro-aggregation variants to assess the effects of methionine oxidation in human prion protein. Proc Natl Acad Sci USA 106:7756CrossRefGoogle Scholar
  166. 166.
    Lisa S, Meli M, Cabello G, Gabizon R, Colombo G, Gasset M (2010) The structural intolerance of the PrP α-fold for polar substitution of the helix-3 methionines Cell Mol Life Sci. doi: 10.1007/s00018Google Scholar
  167. 167.
    Tatzelt J, Prusiner SB, Welch WJ (1996) Chemical chaperones interfere with the formation of scrapie prion protein. EMBO J 15:6363Google Scholar
  168. 168.
    Bennion BJ, DeMarco ML, Daggett V (2004) Preventing misfolding of the prion protein by trimethylamine N-oxide. Biochemistry 43:12955CrossRefGoogle Scholar
  169. 169.
    Granata V, Palladino P, Tizzano B, Negro A, Berisio R, Zagari A (2006) The effect of the osmolyte trimethylamine N-oxide on the stability of the prion protein at low pH. Biopolymers 82:234CrossRefGoogle Scholar
  170. 170.
    Wang A, Bolen DW (1997) A naturally occurring protective system in urea-rich cells: mechanism of osmolyte protection of proteins against urea denaturation. Biochemistry 36:9101CrossRefGoogle Scholar
  171. 171.
    Bennion BJ, Daggett V (2004) Counteraction of urea-induced protein denaturation by trimethylamine N-oxide: a chemical chaperone at atomic resolution. Proc Natl Acad Sci USA 101:6433CrossRefGoogle Scholar
  172. 172.
    Zou Q, Bennion BJ, Daggett V, Murphy KP (2002) The molecular mechanism of stabilization of proteins by TMAO and its ability to counteract the effects of urea. J Am Chem Soc 124:1192CrossRefGoogle Scholar
  173. 173.
    Kuwata K, Nishida N, Matsumoto T, Kamatari YO, Hosokawa-Muto J, Kodama K, Nakamura HK, Kimura K, Kawasaki M, Takakura Y, Shirabe S, Takata J, Kataoka Y, Katamine S (2007) Hot spots in prion protein for pathogenic conversion. Proc Natl Acad Sci USA 104:11921CrossRefGoogle Scholar
  174. 174.
    Yamamoto N, Kuwata K (2009) Regulating the conformation of prion protein through ligand binding. J Phys Chem B 113:12853CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of BioengineeringUniversity of WashingtonSeattleUSA

Personalised recommendations