Advertisement

High-Pressure Crystallography

  • Malcolm I. McMahon
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 315)

Abstract

The ability of pressure to change inter-atomic distances strongly leads to a wide range of pressure-induced phenomena at high pressures: for example metallisation, amorphisation, superconductivity and polymerisation. Key to understanding these phenomena is the determination of the crystal structure using x-ray or neutron diffraction. The tools necessary to compress matter above 1 million atmospheres (1 Megabar or 100 GPa) were established by the mid 1970s, but it is only since the early 1990s that we have been able to determine the detailed crystal structures of materials at such pressures. In this chapter I briefly review the history of high-pressure crystallography, and describe the techniques used to obtain and study materials at high pressure. Recent crystallographic studies of elements are then used to illustrate what is now possible using modern detectors and synchrotron sources. Finally, I speculate as to what crystallographic studies might become possible over the next decade.

Keywords

Crystallography High-Pressure X-ray Diffraction Neutron Diffraction 

Notes

Acknowledgements

I would like to thank and acknowledge the numerous colleagues and collaborators who have contributed to the research and developments published by our group over the past 20 years that I have cited in this review. I would also like to thank facility staff at synchrotron and neutron sources for their assistance and support in the experiments and technical developments. This work was supported by grants from the Engineering and Physical Sciences Research Council and the Royal Society, and facilities and funding provided by SRS Daresbury Laboratory, ISIS, the European Synchrotron Radiation Facility, the Advanced Photon Source, the Institut Laue-Langevin, and Diamond Light Source.

References

  1. 1.
    Luo H, Desgreniers S, Vohra YK, Ruoff AL (1991) Phys Rev Lett 67(21):2998Google Scholar
  2. 2.
    Struzhkin V, Hemley RJ, Mao HK, Timofeev Y (1997) Nature 390(6658):382Google Scholar
  3. 3.
    Kometani S, Eremets MI, Shimizu K, Kobayashi M, Amaya K (1997) J Phys Soc Jpn 66(9):2564Google Scholar
  4. 4.
    Lundegaard LF, Weck G, McMahon MI, Desgreniers S, Loubeyre P (2006) Nature 443(7108):201. doi: 10.1038/nature05174 Google Scholar
  5. 5.
    Ma Y, Eremets M, Oganov AR, Xie Y, Trojan I, Medvedev S, Lyakhov AO, Valle M, Prakapenka V (2009) Nature 458(7235):182. doi: 10.1038/nature07786 Google Scholar
  6. 6.
    Hazen RM (1994) The new alchemists: breaking through the barriers of high pressure. Times Books, New YorkGoogle Scholar
  7. 7.
    Hazen RM (1999) The diamond makers. Cambridge University Press, CambridgeGoogle Scholar
  8. 8.
    Bridgman PW (1964) Collected experimental papers by P.W. Bridgman. Harvard University Press, CambridgeGoogle Scholar
  9. 9.
    Nobel Lectures (1964) Physics 1942–1962. Elsevier, AmsterdamGoogle Scholar
  10. 10.
    Lawson AW, Tang TY (1950) Rev Sci Instrum 21(9):815Google Scholar
  11. 11.
    Jamieson JC (1957) J Geol 65(3):334Google Scholar
  12. 12.
    Jamieson JC, Lawson AW, Nachtrieb ND (1959) Rev Sci Instrum 30(11):1016Google Scholar
  13. 13.
    Weir CE, Lippincott ER, Vanvalkenburg A, Bunting EN (1959) J Res Natl Bureau Stand Sect A Phys Chem 63(1):55Google Scholar
  14. 14.
    Jamieson JC, Lawson AW (1962) J Appl Phys 33(3):776Google Scholar
  15. 15.
    Jamieson JC (1963) Science 139(355):762Google Scholar
  16. 16.
    Jamieson JC, McWhan DB (1965) J Chem Phys 43(4):1149Google Scholar
  17. 17.
    Weir C, Block S, Piermarini G (1965) J Res Natl Bureau Stand Sect C Eng Instrum C 69(4):275Google Scholar
  18. 18.
    Merrill L, Bassett WA (1974) Rev Sci Instrum 45(2):290Google Scholar
  19. 19.
    Hazen RM, Finger LW (1982) Comparative crystal chemistry: temperature, pressure, composition and the variation of crystal structure. Wiley, LondonGoogle Scholar
  20. 20.
    Bassett WA (2009) High Press Res 29(2):CP5. doi: 10.1080/08957950802597239 Google Scholar
  21. 21.
    Mao HK, Bell PM (1976) Science 191(4229):851Google Scholar
  22. 22.
    Bell PM, Mao HK, Goettel K (1984) Science 226(4674):542Google Scholar
  23. 23.
    Mao HK, Hemley RJ, Chen LC, Shu JF, Finger LW, Wu Y (1989) Science 246(4930):649. doi: 10.1126/science.246.4930.649 Google Scholar
  24. 24.
    Ruoff AL, Xia H, Xia Q (1992) Rev Sci Instrum 63(10):4342. doi: 10.1063/1.1143734 Google Scholar
  25. 25.
    Akahama Y, Kawamura H (2010) J Phys Conf Ser 215:012195Google Scholar
  26. 26.
    Duclos SJ, Vohra YK, Ruoff AL (1990) Phys Rev B 41(17):12021Google Scholar
  27. 27.
    Young DA (1991) Phase diagrams of the elements. University of California Press, BerkeleyGoogle Scholar
  28. 28.
    Shimomura O, Takemura K, Fujihisa H, Fujii Y, Ohishi Y, Kikegawa T, Amemiya Y, Matsushita T (1992) Rev Sci Instrum 63(1, part 2b):967. Fourth International Conference on Synchrotron Radiation Instrumentation, Chester, England, 15–19 Jul 1991Google Scholar
  29. 29.
    Nelmes RJ, Hatton PD, McMahon MI, Piltz RO, Crain J, Cernik RJ, Bushnell-Wye G (1992) Rev Sci Instrum 63(1, part 2b):1039. Fourth International Conference on Synchrotron Radiation Instrumentation, Chester, England, 15–19 Jul 1991Google Scholar
  30. 30.
    Nelmes RJ, McMahon MI (1994) J Synchrotron Radiat 1(Part 1):69Google Scholar
  31. 31.
    Nelmes RJ, McMahon MI, Hatton PD, Crain J, Piltz RO (1993) Phys Rev B 47(1):35Google Scholar
  32. 32.
    McMahon MI, Nelmes RJ (1993) Phys Rev B 47(13):8337Google Scholar
  33. 33.
    Nelmes RJ, McMahon MI (1998) In: High pressure in semiconductor physics I, semiconductors and semimetals, vol 54, pp 145–246Google Scholar
  34. 34.
    Hausermann D, Hanfland M (1996) High Press Res 14(4–6):223. Fourth workshop of the IUCr high pressure group on synchrotron and neutron sources, KEK, Japan, 22–24 Mar 1995Google Scholar
  35. 35.
    Akahama Y, Kawamura H, Hausermann D, Hanfland M, Shimomura O (1995) Phys Rev Lett 74(23):4690Google Scholar
  36. 36.
    Loubeyre P, LeToullec R, Hausermann D, Hanfland M, Hemley RJ, Mao HK, Finger LW (1996) Nature 383(6602):702Google Scholar
  37. 37.
    Paszkowicz W (2002) Nuclear Instrum Methods Phys Res B Beam Interact Mater Atoms 198(3–4):142Google Scholar
  38. 38.
    Hanfland M, Syassen K, Christensen NE, Novikov DL (2000) Nature 408(6809):174Google Scholar
  39. 39.
    Hanfland M, Loa I, Syassen K (2002) Phys Rev B 65 (18). doi:10.1103/PhysRevB.65.184109Google Scholar
  40. 40.
    Schwarz U, Takemura K, Hanfland M, Syassen K (1998) Phys Rev Lett 81(13):2711Google Scholar
  41. 41.
    Schwarz U, Grzechnik A, Syassen K, Loa I, Hanfland M (1999) Phys Rev Lett 83(20):4085Google Scholar
  42. 42.
    Takemura K, Christensen N, Novikov D, Syassen K, Schwarz U, Hanfland M (2000) Phys Rev B 61(21):14399Google Scholar
  43. 43.
    Hanfland M, Schwarz U, Syassen K, Takemura K (1999) Phys Rev Lett 82(6):1197Google Scholar
  44. 44.
    Akahama Y, Fujihisa H, Kawamura H (2005) Phys Rev Lett 94(19). doi:10.1103/PhysRevLett.94.195503Google Scholar
  45. 45.
    Akahama Y, Kawamura H, Carlson S, Le Bihan T, Hausermann D (2000) Phys Rev B 61(5):3139Google Scholar
  46. 46.
    Fujihisa H, Akahama Y, Kawamura H, Ohishi Y, Gotoh Y, Yamawaki H, Sakashita M, Takeya S, Honda K (2007) Phys Rev Lett 98(17). doi:10.1103/PhysRevLett.98.175501Google Scholar
  47. 47.
    Akahama Y, Kawamura H, Le Bihan T (2001) Phys Rev Lett 87(27). doi:10.1103/PhysRevLett.87.275503Google Scholar
  48. 48.
    Dubrovinsky L, Dubrovinskaia N, Crichton WA, Mikhaylushkin AS, Simak SI, Abrikosov IA, de Almeida JS, Ahuja R, Luo W, Johansson B (2007) Phys Rev Lett 98(4):045503. doi: 10.1103/PhysRevLett.98.045503 Google Scholar
  49. 49.
    Ding Y, Ahuja R, Shu JF, Chow P, Luo W, Mao HK (2007) Phys Rev Lett 98(8):085502. doi: 10.1103/PhysRevLett.98.085502 Google Scholar
  50. 50.
    Mao WL, Wang L, Ding Y, Yang WG, Liu WJ, Kim DY, Luo W, Ahuja R, Meng Y, Sinogeikin S, Shu JF, Mao HK (2010) Proc Natl Acad Sci USA 107(22):9965. doi: 10.1073/pnas.1005279107 Google Scholar
  51. 51.
    Kenichi T, Kyoko S, Hiroshi F, Mitsuko O (2003) Nature 423(6943):971. doi: 10.1038/nature01724 Google Scholar
  52. 52.
    Fujihisa H, Akahama Y, Kawamura H, Ohishi Y, Shimomura O, Yamawaki H, Sakashita M, Gotoh Y, Takeya S, Honda K (2006) Phys Rev Lett 97(8). doi: 10.1103/PhysRevLett.97.085503
  53. 53.
    Weck G, Loubeyre P, LeToullec R (2002) Phys Rev Lett 88(3). doi:10.1103/PhysRevB.88.035504Google Scholar
  54. 54.
    Gregoryanz E, Goncharov AF, Sanloup C, Somayazulu M, Mao HK, Hemley RJ (2007) J Chem Phys 126(18). doi:10.1063/1.2723069Google Scholar
  55. 55.
    Eremets M, Gavriliuk A, Serebryanaya N, Trojan I, Dzivenko D, Boehler R, Mao H, Hemley R (2004) J Chem Phys 121(22):11296. doi: 10.1063/1.1814074 Google Scholar
  56. 56.
    Andrault D, Fiquet G, Kunz M, Visocekas F, Hausermann D (1997) Science 278(5339):831Google Scholar
  57. 57.
    Dubrovinsky L, Lazor P, Saxena S, Haggkvist P, Weber H, Le Bihan T, Hausermann D (1999) Phys Chem Miner 26(7):539Google Scholar
  58. 58.
    Lin J, Heinz D, Mao H, Hemley R, Devine J, Li J, Shen G (2003) Proc Natl Acad Sci USA 100(8):4405. doi: 10.1073/pnas.252782399 Google Scholar
  59. 59.
    Ma Y, Somayazulu M, Shen G, Mao H, Shu J, Hemley R (2004) Phys Earth Planet Interiors 143:455. doi:10.1016/j.pepi.2003.06.005. High Pressure Mineral Physics Seminars, Verbania, Italy, 26–31 Aug 2002Google Scholar
  60. 60.
    Angel RJ, Ross NL, Wood IG, Woods PA (1992) Phase Trans 39(1–4, Part B):13Google Scholar
  61. 61.
    Katrusiak A (2004) In: Katrusiak A, McMillan P (eds) High-pressure crystallography, NATO science series, series II: mathematics, physics and chemistry, vol 140, pp 57–68. NATO. Springer, Po Box 17, 3300 AA Dordrecht, Netherlands. NATO Advanced Research Workshop on High-Pressure Crystallography, Erice, Italy, 04–15 Jun 2003Google Scholar
  62. 62.
    Guionneau P, Le Pevelen D, Marchivie M, Pechev S, Gaultier J, Barrans Y, Chasseau D (2004) J Phys Condens Matter 16(14, Sp. Iss. SI), S1151. doi:10.1088/0953-8984/16/14/025. International Conference on High Pressure Science and Technology, Bordeaux, France, 07–11 Jul 2003Google Scholar
  63. 63.
    Miletich R, Allan DR, Kuhs WF (2000) In: High-temperature and high-pressure crystal chemistry, reviews in mineralogy and geochemistry, vol 41. Mineralogical Soc America, 1015 Eighteenth St, NW, Suite 601, Washington, DC 20036–5274 USA, pp 445–519Google Scholar
  64. 64.
    Sowa H, Reithmayer K, Macavei J, Rieck W, Schulz H, Kupcik V (1990) J Appl Crystallogr 23(Part 5):397Google Scholar
  65. 65.
    Cernik RJ, Clegg W, Catlow CRA, Bushnell-Wye G, Flaherty JV, Greaves GN, Burrows I, Taylor DJ, Teat SJ, Hamichi M (1997) J Synchrotron Radiat 4(Part 5):279Google Scholar
  66. 66.
    Cernik RJ, Clegg W, Catlow CRA, Bushnell-Wye G, Flaherty JV, Greaves GN, Burrows I, Taylor DJ, Teat SJ, Hamichi M (2000) J Synchrotron Radiat 7(Part 1):40Google Scholar
  67. 67.
    Fourme R, Girard E, Kahn R, Ascone I, Mezouar M, Lin T, Johnson JE (2004) In: Katrusiak A, McMillan P (eds) High-pressure crystallography, NATO science series, series II: mathematics, physics and chemistry, vol 140, pp. 527–542. NATO Advanced Research Workshop on High-Pressure Crystallography, Erice, Italy, 04–15 Jun 2003Google Scholar
  68. 68.
    Moggach SA, Parsons S, Wood PA (2008) Crystallogr Rev 14(2):143. doi: 10.1080/08893110802037945 Google Scholar
  69. 69.
    Kurpiewska K, Lewinski K (2010) Cent Eur J Biol 5(5):531. doi: 10.2478/s11535-010-0044-y Google Scholar
  70. 70.
    Lobban C, Finney JL, Kuhs WF (1998) Nature 391(6664):268Google Scholar
  71. 71.
    Nelmes RJ, McMahon MI, Hatton PD, Crain J, Piltz RO (1993) Phys Rev B 48(13):9949Google Scholar
  72. 72.
    Mirebeau I (2007) Comptes Rendus Physique 8(7–8):737. doi: 10.1016/j.crhy.2007.09.020 Google Scholar
  73. 73.
    Goncharenko IN (2005) Phys Rev Lett 94(20). doi:10.1103/PhysRevLett.94.205701Google Scholar
  74. 74.
    Klotz S, Besson JM, Braden M, Karch K, Pavone P, Strauch D, Marshall WG (1997) Phys Rev Lett 79(7):1313Google Scholar
  75. 75.
    McMahon MI, Piltz RO, Nelmes RJ (1990) Ferroelectrics 108:277. Seventh International Meeting on Ferroelectricity (IMF-7), Saarbrucken, Fed Rep Ger, 28 Aug–01 Sep 1989Google Scholar
  76. 76.
    Besson JM, Nelmes RJ, Hamel G, Loveday JS, Weill G, Hull S (1992) Physica B 180(Part B):907. International Conference on Neutron Scattering (ICNS 91), Oxford, England, 27–30 Aug 1991Google Scholar
  77. 77.
    Klotz S, Besson JM, Hamel G, Nelmes RJ, Loveday JS, Marshall WG, Wilson RM (1995) Appl Phys Lett 66(14):1735Google Scholar
  78. 78.
    Bull CL, Guthrie M, Nelmes RJ, Loveday JS, Komatsu K, Hamidov H, Gutmann MJ (2009) High Press Res 29(4):780. doi: 10.1080/08957950903414763 Google Scholar
  79. 79.
    Besson JM, Pruzan P, Klotz S, Hamel G, Silvi B, Nelmes RJ, Loveday JS, Wilson RM, Hull S (1994) Phys Rev B 49(18):12540Google Scholar
  80. 80.
    vonDreele R (1995) High Press Res 14(1–3):13. International Seminar on Neutron Scattering at High Pressure, Dubna, Russia, 05–07 Oct 1994Google Scholar
  81. 81.
    Loveday JS, Nelmes RJ, Klotz S, Besson JM, Hamel G (2000) Phys Rev Lett 85(5):1024Google Scholar
  82. 82.
    Marshall WG, Nelmes RJ, Loveday JS, Klotz S, Besson JM, Hamel G, Parise JB (2000) Phys Rev B 61(17):11201Google Scholar
  83. 83.
    Klotz S, Strassle T, Nelmes RJ, Loveday JS, Hamel G, Rousse G, Canny B, Chervin J, Saitta A (2005) Phys Rev Lett 94(2). doi: 10.1103/PhysRevLett.94.025506
  84. 84.
    Monaco G, Falconi S, Crichton WA, Mezouar M (2003) Phys Rev Lett 90(25). doi: 10.1103/PhysRevLett.90.255701
  85. 85.
    Crichton WA, Mezouar M (2005) In: Chen J, Wang Y, Duffy TS, Shen G, Dobrzhinetskaya LF (eds) Advances in high-pressure technology for geophysical applications. Elsevier, Amsterdam, pp 353–369. doi: 10.1016/B978-044451979-5.50019-3
  86. 86.
    Morard G, Sanloup C, Fiquet G, Mezouar M, Rey N, Poloni R, Beck P (2007) Earth Planet Sci Lett 263(1–2):128. doi: 10.1016/j.epsl.2007.09.009 Google Scholar
  87. 87.
    McMahon MI, Nelmes RJ (2006) Chem Soc Rev 35(10):943. doi: 10.1039/b517777b Google Scholar
  88. 88.
    Friedrich A, Haussuehl E, Boehler R, Morgenroth W, Juarez-Arellano EA, Winkler B (2007) Am Miner 92(10):1640. doi: 10.2138/am.2007.2549 Google Scholar
  89. 89.
    Gregoryanz E, Degtyareva O, Somayazulu M, Hemley RJ, Mao HK (2005) Phys Rev Lett 94(18). doi:10.1103/PhysRevLett.94.185502Google Scholar
  90. 90.
    McMahon MI, Gregoryanz E, Lundegaard LF, Loa I, Guillaume C, Nelmes RJ, Kleppe AK, Amboage M, Wilhelm H, Jephcoat AP (2007) Proc Natl Acad Sci USA 104(44):17297. doi: 10.1073/pnas.0709309104 Google Scholar
  91. 91.
    Gregoryanz E, Lundegaard LF, McMahon MI, Guillaume C, Nelmes RJ, Mezouar M (2008) Science 320(5879):1054. doi: 10.1126/science.1155715 Google Scholar
  92. 92.
    Lundegaard LF, Gregoryanz E, McMahon MI, Guillaume C, Loa I, Nelmes RJ (2009) Physical Review B 79(6) doi: 10.1103/PhysRevB.79.064105Google Scholar
  93. 93.
    Uemura E, Akahama Y, Kawamura H, Le Bihan T, Shobu T, Noda Y, Shimomura O (2002) J Phys Condens Matter 14(44):10423Google Scholar
  94. 94.
    Yamanaka T, Komatsu Y, Nomori H (2007) Phys Chem Miner 34(5):307. doi: 10.1007/s00269-007-0149-7 Google Scholar
  95. 95.
    Merlini M, Gemmi M, Hanfland M, Crichton WA (2009) Am Miner 94(5–6):704. doi: 10.2138/am.2009.3072 Google Scholar
  96. 96.
    Yamanaka T, Okada T, Nakamoto Y (2009) Phys Rev B 80(9). doi:10.1103/PhysRevB.80.094108Google Scholar
  97. 97.
    Datchi F, Giordano VM, Munsch P, Saitta AM (2009) Phys Rev Lett 103(18). doi:10.1103/PhysRevLett.103.185701Google Scholar
  98. 98.
    Weck G, Desgreniers S, Loubeyre P, Mezouar M (2009) Phys Rev Lett 102(25). doi:10.1103/PhysRevLett.102.255503Google Scholar
  99. 99.
    Somayazulu M, Dera P, Goncharov AF, Gramsch SA, Liermann P, Yang W, Liu Z, Mao HK, Hemley RJ (2010) Nat Chem 2(1):50. doi: 10.1038/NCHEM.445 Google Scholar
  100. 100.
    Lundegaard LF, Guillaume C, McMahon MI, Gregoryanz E, Merlini M (2009) Journal Of Chemical Physics 130:16 doi 10.1063/1.3118970Google Scholar
  101. 101.
    Sanloup C, Gregoryanz E, Degtyareva O, Hanfland M (2008) Phys Rev Lett 100(7). doi:10.1103/PhysRevLett.100.075701Google Scholar
  102. 102.
    Ninet S, Datchi F, Klotz S, Hamel G, Loveday JS, Nelmes RJ (2009) Phys Rev B 79(10). doi:10.1103/PhysRevB.79.100101Google Scholar
  103. 103.
    Lawson AW, Riley NA (1949) Rev Sci Instrum 20(11):763Google Scholar
  104. 104.
    Vanvalkenburg A (1962) Rev Sci Instrum 33(12):1462Google Scholar
  105. 105.
    Jayaraman A (1983) Rev Mod Phys 55(1):65Google Scholar
  106. 106.
    Jayaraman A (1984) Sci Am 250(4):54Google Scholar
  107. 107.
    Jayaraman A (1986) Rev Sci Instrum 57(6):1013Google Scholar
  108. 108.
    Ahsbahs H (1987) Prog Cryst Growth Charact Mater 14:263Google Scholar
  109. 109.
    Eremets MI (1996) High pressure experimental methods. Oxford University Press, OxfordGoogle Scholar
  110. 110.
    Holzapfel WB, Isaacs NI (1997) High-pressure techniques in chemistry and physics. Oxford University Press, OxfordGoogle Scholar
  111. 111.
    Katrusiak A (2008) Acta Crystallogr Sect A 64(Part 1):135. doi: 10.1107/S0108767307061181 Google Scholar
  112. 112.
    Mao HK, Bell PM (1978) Science 200(4346):1145Google Scholar
  113. 113.
    Piermarini GJ, Block S, Barnett JD (1973) J Appl Phys 44(12):5377Google Scholar
  114. 114.
    Eggert JH, Xu LW, Che RZ, Chen LC, Wang JF (1992) J Appl Phys 72(6):2453Google Scholar
  115. 115.
    Angel RJ, Bujak M, Zhao J, Gatta GD, Jacobsen SD (2007) J Appl Crystallogr 40(Part 1):26. doi: 10.1107/S0021889806045523 Google Scholar
  116. 116.
    Klotz S, Chervin JC, Munsch P, Le Marchand G (2009) J Phys D Appl Phys 42(7). doi:10.1088/0022-3727/42/7/075413Google Scholar
  117. 117.
    Schiferl D (1987) Rev Sci Instrum 58(7):1316Google Scholar
  118. 118.
    Malinowski M (1987) J Appl Crystallogr 20(Part 5):379Google Scholar
  119. 119.
    Boehler R, De Hantsetters K (2004) High Press Res 24(3):391. doi: 10.1080/08957950412331323924 Google Scholar
  120. 120.
    Lundegaard LF, Gregoryanz E, McMahon MI, Guillaume C, Loa I, Nelmes RJ (2009b) Phys Rev B 79(6). doi:10.1103/PhysRevB.79.064105Google Scholar
  121. 121.
    Irifune T, Kurio A, Sakamoto S, Inoue T, Sumiya H (2003) Nature 421(6923):599Google Scholar
  122. 122.
    Irifune T, Kurio A, Sakamoto S, Inoue T, Sumiya H (2003) Nature 421(6925):806. doi: 10.1038/421806b Google Scholar
  123. 123.
    Nakamoto Y, Sumiya H, Matsuoka T, Shimizu K, Irifune T, Ohishi Y (2007) Jpn J Appl Phys Part 2 Lett Express Lett 46(25–28):L640. doi: 10.1143/JJAP.46.L640 Google Scholar
  124. 124.
    Ohfuji H, Okada T, Yagi T, Sumiya H, Irifune T (2010) J Phys Conf Ser 215(1):012192Google Scholar
  125. 125.
    Glazkov VP, Goncharenko IN, Irodova VA, Somenkov VA, Shilstein SS, Besedin SP, Makarenko IN, Stishov SM (1989) Zeitschrift fur Physikalische Chemie Neuefolge 163(Part 2):509Google Scholar
  126. 126.
    Paureau J, Vettier C (1975) Rev Sci Instrum 46(11):1484Google Scholar
  127. 127.
    Mizuki J, Endoh Y (1981) J Phys Soc Jpn 50(3):914Google Scholar
  128. 128.
    McWhan DB (1984) Revue de Physique Appliquee 19(9):715Google Scholar
  129. 129.
    Goncharenko I, Loubeyre P (2005) Nature 435(7046):1206. doi: 10.1038/nature03699 Google Scholar
  130. 130.
    Ding Y, Xu J, Prewitt C, Hemley R, Mao H, Cowan J, Zhang J, Qian J, Vogel S, Lokshin K, Zhao Y (2005) Appl Phys Lett 86(5). doi:10.1063/1.1852075Google Scholar
  131. 131.
    Zhao Y, Zhang J, Xu H, Lokshin KA, He D, Qian J, Pantea C, Daemen LL, Vogel SC, Ding Y, Xu J (2010) Appl Phys A Mater Sci Process 99(3, Sp. Iss. SI):585. doi:10.1007/s00339-010-5640-1Google Scholar
  132. 132.
    Khvostantsev LG, Vereshchagin LF, Novikov AP (1977) High Temp High Press 9:637Google Scholar
  133. 133.
    Khvostantsev LG, Slesarev VN, Brazhkin V (2004) High Press Res 24(3):371. doi: 10.1080/08957950412331298761 Google Scholar
  134. 134.
    Marshall WG, Francis D (2002) J Appl Crystallogr 35(1):122Google Scholar
  135. 135.
    Le Godec Y, Strassle T, Hamel G, Nelmes RJ, Loveday JS, Marshall WG, Klotz S (2004) High Press Res 24(1):205. doi:10.1080/08957950410001661972. Meeting on matter under extreme conditions, Paris, France, 16 May 2003Google Scholar
  136. 136.
    Bocian A, Bull CL, Hamidov H, Loveday JS, Nelmes RJ, Kamenev KV (2010) Rev Sci Instrum 81(9):093904. doi:10.1063/1.3480555. URL:http://link.aip.org/link/?RSI/81/093904/1 Google Scholar
  137. 137.
    Klotz S, Hamel G, Frelat J (2004) High Press Res 24(1):219. doi:10.1080/08957950410001661963. Meeting on Matter Under Extreme Conditions, Paris, France, 16 May 2003Google Scholar
  138. 138.
    Holzapfel WB (2005) High Press Res 25(2):87. doi: 10.1080/09511920500147501 Google Scholar
  139. 139.
    Forman RA, Block S, Barnett JD, Piermarini GJ (1972) Science 176(4032):284Google Scholar
  140. 140.
    Barnett JD, Block S, Piermarini GJ (1973) Rev Sci Instrum 44(1):1Google Scholar
  141. 141.
    Piermarini GJ, Block S, Barnett JD, Forman RA (1975) J Appl Phys 46(6):2774Google Scholar
  142. 142.
    Syassen K (2008) High Press Res 28(2):75. doi: 10.1080/08957950802235640 Google Scholar
  143. 143.
    Bell P, Xu J, Mao HK (1986) Shock waves in condensed matter. Plenum, New York, p 125130Google Scholar
  144. 144.
    Mao H, Xu J, Bell P (1986) J Geophys Res Solid Earth Planets 91(B5):4673Google Scholar
  145. 145.
    Evans SR, Loa I, Lundegaard LF, McMahon MI (2009) Phys Rev B 80(13). doi:10.1103/PhysRevB.80.134105Google Scholar
  146. 146.
    Lacam A, Chateau C (1989) J Appl Phys 66(1):366Google Scholar
  147. 147.
    Leger JM, Chateau C, Lacam A (1990) J Appl Phys 68(5):2351Google Scholar
  148. 148.
    Datchi F, LeToullec R, Loubeyre P (1997) J Appl Phys 81(8, Part 1):3333Google Scholar
  149. 149.
    Occelli F, Loubeyre P, LeToullec R (2003) Nat Mater 2(3):151Google Scholar
  150. 150.
    Goncharov AF, Sinogeikin S, Crowhurst JC, Ahart M, Lakshtanov D, Prakapenka V, Bass J, Beck P, Tkachev SN, Zaug JM, Fei Y (2007) High Press Res 27(4):409. doi: 10.1080/08957950701659726 Google Scholar
  151. 151.
    Birch F (1986) J Geophys Res Solid Earth Planets 91(B5):4949Google Scholar
  152. 152.
    Angel RJ, Allan DR, Milletich R, Finger LW (1997) J Appl Crystallogr 30(Part 4):461Google Scholar
  153. 153.
    Dewaele A, Loubeyre P, Mezouar M (2004) Phys Rev B 70(9). doi:10.1103/PhysRevB.70.094112Google Scholar
  154. 154.
    Hanfland M, Syassen K, Kohler J (2002) J Appl Phys 91(7):4143. doi: 10.1063/1.1454200 Google Scholar
  155. 155.
    Errandonea D, Martinez-Garcia D, Segura A, Haines J, Machado-Charry E, Canadell E, Chervin JC, Chevy A (2008) Phys Rev B 77(4). doi:10.1103/PhysRevB.77.045208Google Scholar
  156. 156.
    Dubrovinsky L, Dubrovinskaia N, Kantor I, Nestola F, Gatta D (2006) High Press Res 26(2):137. doi:10.1080/08957950600765301. European Science Foundation Workshop on Novel Superhard Materials, Bayreuth, Germany, 16–20 Nov 2005Google Scholar
  157. 157.
    Haines J, Leger J, Gorelli F, Klug D, Tse J, Li Z (2001) Phys Rev B 64(13)Google Scholar
  158. 158.
    Delattre J, Badding J (1999) J Solid State Chem 144(1):16Google Scholar
  159. 159.
    Hu JZ, Merkle LD, Menoni CS, Spain IL (1986) Phys Rev B 34(7):4679Google Scholar
  160. 160.
    Baublitz MA, Arnold V, Ruoff AL (1981) Rev Sci Instrum 52(11):1616Google Scholar
  161. 161.
    Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Hausermann D (1996) High Press Res 14(4–6):235. Fourth Workshop of the IUCr High Pressure Group on Synchrotron and Neutron Sources, Kek, Japan, 22–24 Mar 1995Google Scholar
  162. 162.
    Piltz RO, McMahon MI, Crain J, Hatton PD, Nelmes RJ, Cernik RJ, Bushnell-Wye G (1992) Rev Sci Instrum 63(1, Part 2A):700. Fourth International Conference on Synchrotron Radiation Instrumentation, Chester, England, 15–19 Jul 1991Google Scholar
  163. 163.
    McMahon MI, Nelmes RJ (1997) Phys Rev Lett 78(19):3697Google Scholar
  164. 164.
    Nelmes RJ, McMahon MI, Hatton PD, Crain J, Piltz RO (1993) Physical Review B 47(1):35–54Google Scholar
  165. 165.
    Nelmes RJ, McMahon MI (1995) Phys Rev Lett 74(1):106Google Scholar
  166. 166.
    Nelmes RJ, Allan DR, McMahon MI, Belmonte SA (1999) Phys Rev Lett 83(20):4081Google Scholar
  167. 167.
    McMahon MI, Degtyareva O, Nelmes RJ (2000) Phys Rev Lett 85(23):4896Google Scholar
  168. 168.
    Finger LW, King H (1978) Am Miner 63(3–4):337Google Scholar
  169. 169.
    Dawson A, Allan DR, Parsons S, Ruf M (2004) J Appl Crystallogr 37(Part 3):410. doi: 10.1107/S0021889804007149 Google Scholar
  170. 170.
    Allan DR, Clark SJ, Parsons S, Ruf M (2000) J Phys Condens Matter 12(39):L613Google Scholar
  171. 171.
    Moggach SA, Allan DR, Parsons S, Warren JE (2008) J Appl Crystallogr 41(Part 2):249. doi: 10.1107/S0021889808000514 Google Scholar
  172. 172.
    Brugger RM, Bennion RB, Worlton TG (1967) Phys Lett A 24(13):714. doi: 10.1016/0375-9601(67)90230-7 Google Scholar
  173. 173.
    Worlton T, Decker D, Jorgensen J, Kleb R (1986) Physica B & C 136(1–3):503. doi:10.1016/S0378-4363(86)80128-0. URL:http://www.sciencedirect.com/science/article/B6X43-4RWNMK2-4 J/2/f3dc3844dd2ac028370ed89a9f842c2b. Proceedings of the International Conference on Neutron Scattering
  174. 174.
    Jorgensen JE, Jorgensen JD, Batlogg B, Remeika JP, Axe JD (1986) Phys Rev B 33(7):4793Google Scholar
  175. 175.
    Kuhs WF, Finney JL, Vettier C, Bliss DV (1984) J Chem Phys 81(8):3612Google Scholar
  176. 176.
    Nelmes RJ, Wilding NB, Hatton PD, Caignaert V, Raveau B, McMahon MI, Piltz RO (1990) Physica C 166(3–4):329Google Scholar
  177. 177.
    Wilson RM, Loveday JS, Nelmes RJ, Klotz S, Marshall WG (1995) Nuclear Instrum Methods Phys Res Sect A Accelerators Spectrometers Detectors and Associated Equipment 354(1):145. Third Workshop on Neutron Scattering Data Analysis (WONSDA 94), Chilton, England, 13–15 Apr 1994Google Scholar
  178. 178.
    Loveday JS, Nelmes RJ (2008) Phys Chem Chem Phys 10(7):937. doi: 10.1039/b704740a Google Scholar
  179. 179.
    Loveday JS, Nelmes RJ, Guthrie M, Belmonte SA, Allan DR, Klug D, Tse J, Handa Y (2001) Nature 410(6829):661Google Scholar
  180. 180.
    Loveday JS, Nelmes RJ, Marshall WG, Besson JM, Klotz S, Hamel G (1996) Phys Rev Lett 76(1):74Google Scholar
  181. 181.
    Strassle T, Saitta A, Le Godec Y, Hamel G, Klotz S, Loveday JS, Nelmes RJ (2006) Phys Rev Lett 96(6). doi:10.1103/PhysRevLett.96.067801Google Scholar
  182. 182.
    Klotz S, Hamel G, Loveday JS, Nelmes RJ, Guthrie M, Soper AK (2002) Phys Rev Lett 89(28). doi:10.1103/PhysRevLett.89.285502Google Scholar
  183. 183.
    Nelmes RJ, Loveday JS, Strassle T, Bull CL, Guthrie M, Hamel G, Klotz S (2006) Nat Phys 2(6):414. doi: 10.1038/nphys313 Google Scholar
  184. 184.
    Klotz S, Strassle T, Rousse G, Hamel G, Pomjakushin V (2005) Appl Phys Lett 86(3). doi:10.1063/1.1855419Google Scholar
  185. 185.
    Nelmes RJ, Tun Z, Kuhs WF (1987) Ferroelectrics 71(1–4):125Google Scholar
  186. 186.
    Nelmes RJ, McMahon MI, Piltz RO, Wright NG (1991) Ferroelectrics 124(1–4):355Google Scholar
  187. 187.
    Ahsbahs H (1984) Revue de Physique Appliquee 19(9):819Google Scholar
  188. 188.
    Kuhs WF, Ahsbahs H, Londono D, Finney JL (1989) Physica B 156:684Google Scholar
  189. 189.
    Kuhs WF, Bauer FC, Hausmann R, Ahsbahs H, Dorwarth R, Holzer K (1996) High Press Res 14(4–6):341. Fourth Workshop of the IUCr High Pressure Group on Synchrotron and Neutron Sources, Kek, Japan, 22–24 Mar 1995Google Scholar
  190. 190.
    Lehmann MS, Kuhs WF, McIntyre GJ, Wilkinson C, Allibon JR (1989) J Appl Crystallogr 22(Part 6):562Google Scholar
  191. 191.
    Bull CL, Guthrie M, Klotz S, Philippe J, Strassle T, Nelmes RJ, Loveday JS, Hamel G (2005) High Press Res 25(4):229. doi: 10.1080/08957950500452893 Google Scholar
  192. 192.
    Bull CL, Guthrie M, Nelmes RJ, Loveday JS, Hamidov H, Gutmann MJ (2009) High Press Res 29(4):644. doi:10.1080/08957950903415752. 47th Meeting of the European-High Pressure Research Group (EHPRG 47), Paris, France, 06–11 Sep 2009Google Scholar
  193. 193.
    Fang J, Bull CL, Hamidov H, Loveday JS, Gutmann MJ, Nelmes RJ, Kamenev KV (2010) Rev Sci Instrum 81(11):113901. doi:10.1063/1.3494606. URL:http://link.aip.org/link/?RSI/81/113901/1 Google Scholar
  194. 194.
    McIntyre G, Melesi L, Guthrie M, Tulk C, Xu J, Parise JB (2005) J Phys Condens Matter 17(40, Sp. Iss. SI):S3017. doi:10.1088/0953-8984/17/40/004. International Workshop on Medium Pressure Advances for Neutron Scattering, Grenoble, France, 20–23 Oct 2004Google Scholar
  195. 195.
    Angel RJ, Downs RT, Finger LW (2000) In: High-temperature and high-pressure crystal chemistry, reviews in mineralogy and geochemistry, vol 41. Mineralogical Society of America, pp 559–596Google Scholar
  196. 196.
    Bassett WA, Takahashi T (1965) Am Miner 50(10):1576Google Scholar
  197. 197.
    Bassett WA (2001) Rev Sci Instrum 72(2):1270. Workshop on Advances in Laser Heated Diamond Cell Techniques, Chicago, IL, 25–27 May 2000Google Scholar
  198. 198.
    Fei YW, Wang YB (2000) In: High-temperature and high-pressure crystal chemistry, reviews in mineralogy and geochemistry, vol 41, pp 521–557Google Scholar
  199. 199.
    Dubrovinskaia N, Dubrovinsky L (2005) In: Chen J, Wang Y, Duffy TS, Shen G, Dobrzhinetskaya LF (eds) Advances in high-pressure technology for geophysical applications. Elsevier, Amsterdam, pp 487–501. doi:10.1016/B978-044451979-5.50027-2Google Scholar
  200. 200.
    Bassett WA, Shen AH, Bucknum M, Chou IM (1993) Rev Sci Instrum 64(8):2340. doi: 10.1063/1.1143931 Google Scholar
  201. 201.
    Dubrovinskaia N, Dubrovinsky L (2003) Rev Sci Instrum 74(7):3433. doi: 10.1063/1.1578151 Google Scholar
  202. 202.
    LeToullec R, Pinceaux JP, Loubeyre P (1988) High Press Res 1(1):77Google Scholar
  203. 203.
    LeToullec R, Datchi F, Loubeyre P, Rambert N, Sitaud B, Thevenin T (1996) In: High pressure science and technology, Proceedings of Joint 15th AIRAPT and 33rd EHPRG International Conference. World Scientific Publishing, Warsaw, p 5456Google Scholar
  204. 204.
    Miletich R, Cinato D, Johaenntgen S (2009) High Press Res 29(2):290. doi: 10.1080/08957950902747403 Google Scholar
  205. 205.
    Boehler R, Nicol M, Zha CS, Johnson ML (1986) Physica B & C 139(1–3):916Google Scholar
  206. 206.
    Saxena SK, Dubrovinsky LS (1998) Petrology 6(6):535Google Scholar
  207. 207.
    Zha CS, Bassett WA (2003) Rev Sci Instrum 74(3, Part 1):1255. doi: 10.1063/1.1539895 Google Scholar
  208. 208.
    Hazen RM, Finger LW (1981) Rev Sci Instrum 52(1):75Google Scholar
  209. 209.
    Tateno S, Hirose K, Ohishi Y, Tatsumi Y (2010) Science 330(6002):359. doi: 10.1126/science.1194662 Google Scholar
  210. 210.
    Prakapenka VB, Kubo A, Kuznetsov A, Laskin A, Shkurikhin O, Dera P, Rivers ML, Sutton SR (2008) High Press Res Int J 28(3):225Google Scholar
  211. 211.
    Dubrovinsky L, Glazyrin K, McCammon C, Narygina O, Greenberg E, Übelhack S, Chumakov AI, Pascarelli S, Prakapenka V, Bock J, Dubrovinskaia N (2009) J Synchrotron Radiat 16(6):737. doi: 10.1107/S0909049509039065 Google Scholar
  212. 212.
    Goncharov AF, Beck P, Struzhkin VV, Hemley RJ, Crowhurst JC (2008) J Phys Chem Solids 69(9):2217. doi: 10.1016/j.jpcs.2008.03.037 Google Scholar
  213. 213.
    Le Godec Y, Dove M, Redfern S, Tucker M, Marshall WG, Syfosse G, Besson JM (2001) High Press Res 21(5):263Google Scholar
  214. 214.
    Le Godec Y, Dove M, Francis D, Kohn S, Marshall WG, Pawley A, Price G, Redfern S, Rhodes N, Ross N, Schofield P, Schooneveld E, Syfosse G, Tucker M, Welch M (2001) Mineral Mag 65(6):737Google Scholar
  215. 215.
    Le Godec Y, Dove M, Redfern S, Tucker M, Marshall WG, Syfosse G, Klotz S (2003) High Press Res 23(3):281. doi:10.1080/0895795032000102496. 40th Meeting of the European High Pressure Research Group (EHPRG), Edinburgh, Scotland, 04–07 Sep 2002Google Scholar
  216. 216.
    Le Godec Y, Hamel G, Martinez-Garcia D, Hammouda T, Solozhenko V, Klotz S (2005) High Press Res 25(4):243. doi: 10.1080/08957950500368982 Google Scholar
  217. 217.
    Le Godec Y, Hamel G, Solozhenko VL, Martinez-Garcia D, Philippe J, Hammouda T, Mezouar M, Crichton WA, Morard G, Klotz S (2009) J Synchrotron Radiat 16(Part 4):513. doi: 10.1107/S0909049509012928 Google Scholar
  218. 218.
    Degtyareva O, Magnitskaya MV, Kohanoff J, Profeta G, Scandolo S, Hanfland M, McMahon MI, Gregoryanz E (2007) Phys Rev Lett 99(15). doi:10.1103/PhysRevLett.99.155505Google Scholar
  219. 219.
    Ahart M, Somayazulu M, Cohen RE, Ganesh P, Dera P, Mao HK, Hemley RJ, Ren Y, Liermann P, Wu Z (2008) Nature 451(7178):545. doi: 10.1038/nature06459 Google Scholar
  220. 220.
    Bridgman PW (1952) Proc Am Acad Arts Sci 81:167Google Scholar
  221. 221.
    Parthasarathy G, Holzapfel WB (1988) Phys Rev B 37(14):8499Google Scholar
  222. 222.
    Akahama Y, Kobayashi M, Kawamura H (1992) Solid State Commun 84(8):803Google Scholar
  223. 223.
    Brazhkin VV, Voloshin RN, Popova SV, Umnov AG (1992) J Phys Condens Matter 4(6):1419Google Scholar
  224. 224.
    Aoki K, Shimomura O, Minomura S (1980) J Phys Soc Jpn 48(2):551Google Scholar
  225. 225.
    Yaoita K, Tsuji K, Katayama Y, Koyama N, Kikegawa T, Shimomura O (1993) J Non-Crystalline Solids 156(Part 1):157. Eighth International Conference on Liquid and Amorphous Metals, Vienna, Austria, 31 Aug–04 Sep 1992Google Scholar
  226. 226.
    Funamori N, Tsuji K (2002) Phys Rev B 65(1). doi:10.1103/PhysRevB.65.014105Google Scholar
  227. 227.
    Vaidya SN, Kennedy GC (1972) J Phys Chem Solids 33(7):1377Google Scholar
  228. 228.
    Hsueh HC, Lee CC, Wang CW, Crain J (2000) Phys Rev B 61(6):3851Google Scholar
  229. 229.
    Bundy FP, Dunn KJ (1980) Phys Rev Lett 44(24):1623Google Scholar
  230. 230.
    Mauri F, Zakharov O, de Gironcoli S, Louie SG, Cohen ML (1996) Phys Rev Lett 77(6):1151Google Scholar
  231. 231.
    Takumi M, Masamitsu T, Nagata K (2002) J Phys Condens Matter 14(44):10609Google Scholar
  232. 232.
    Hejny C, McMahon MI (2003) Phys Rev Lett 91(21). doi:10.1103/PhysRevLett.91.215502Google Scholar
  233. 233.
    Hejny C, McMahon MI (2004) Phys Rev B 70(18). doi:10.1103/PhysRevB.70.184109Google Scholar
  234. 234.
    Van Smallen S (1995) Crystallogr Rev 4(2):79Google Scholar
  235. 235.
    Petricek V, Dusek M (2000) The crystallographic computing system JANA2000. Institute of Physics, Praha, Czech RepublicGoogle Scholar
  236. 236.
    McMahon MI, Hejny C, Loveday JS, Lundegaard LF, Hanfland M (2004) Phys Rev B 70(5). doi:10.1103/PhysRevB.70.054101Google Scholar
  237. 237.
    Degtyareva O, Gregoryanz E, Somayazulu M, Mao HK, Hemley RJ (2005) Phys Rev B 71(21). doi:10.1103/PhysRevB.71.214104Google Scholar
  238. 238.
    Hejny C, Lundegaard LF, Falconi S, McMahon MI, Hanfland M (2005) Phys Rev B 71(2). doi:10.1103/PhysRevB.71.020101Google Scholar
  239. 239.
    Vohra YK, Grosshans W, Holzapfel WB (1982) Phys Rev B 25(9):6019Google Scholar
  240. 240.
    Grosshans W, Vohra Y, Holzapfel WB (1982) J Magn Magn Mater 29(1–3):282Google Scholar
  241. 241.
    Akella J, Xu J, Smith GS (1986) Physica B & C 139(1–3):285Google Scholar
  242. 242.
    Zhao YC, Porsch F, Holzapfel WB (1996) Phys Rev B 54(14):9715Google Scholar
  243. 243.
    Fujihisa H, Akahama Y, Kawamura H, Gotoh Y, Yamawaki H, Sakashita M, Takeya S, Honda K (2005) Phys Rev B 72(13). doi:10.1103/PhysRevB.72.132103Google Scholar
  244. 244.
    Nelmes RJ, Allan DR, McMahon MI, Belmonte SA (1999) Physical Review Letters 83: 4081–4084Google Scholar
  245. 245.
    Bovornratanaraks T, Allan DR, Belmonte SA, McMahon MI, Nelmes RJ (2006) Phys Rev B 73(14). doi:10.1103/PhysRevB.73.144112Google Scholar
  246. 246.
    McMahon MI, Lundegaard LF, Hejny C, Falconi S, Nelmes RJ (2006) Phys Rev B 73(13). doi:10.1103/PhysRevB.73.134102Google Scholar
  247. 247.
    Siringo F, Pucci R, Angilella G (1997) High Press Res 15(4):255Google Scholar
  248. 248.
    Syassen K (2002) In: Hemley RJ, Chiarotti GL, Bernasconi M, Ulivi L (eds) High pressure phenomena. Proceedings of the International School of Physics. IOS Press, Amsterdam, p 266268Google Scholar
  249. 249.
    McMahon MI, Rekhi S, Nelmes RJ (2001) Phys Rev Lett 87(5). doi:10.1103/PhysRevLett.87.055501Google Scholar
  250. 250.
    McMahon MI, Nelmes RJ, Schwarz U, Syassen K (2006) Phys Rev B 74(14). doi:10.1103/PhysRevB.74.140102Google Scholar
  251. 251.
    McMahon MI, Nelmes RJ (2004) Phys Rev Lett 93(5). doi:10.1103/PhysRevLett.93.055501Google Scholar
  252. 252.
    Marques M, Ackland GJ, Lundegaard LF, Stinton G, Nelmes RJ, McMahon MI, Contreras-Garcia J (2009) Phys Rev Lett 103(11). doi:10.1103/PhysRevLett. 103.115501Google Scholar
  253. 253.
    Liang Q, Yan CS, Meng Y, Lai J, Krasnicki S, Mao HK, Hemley RJ (2009) Diam Relat Mater 18(5–8, Sp. Iss. SI):698. doi:10.1016/j.diamond.2008.12.002. 19th European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes, Nitrides and Silicon Carbide, Sitges, Spain, 07–11 Sep 2008Google Scholar
  254. 254.
    Zha CS, Krasnicki S, Meng YF, Yan CS, Lai J, Liang Q, Mao HK, Hemley RJ (2009) High Press Res 29(2):317. doi: 10.1080/08957950902941048 Google Scholar
  255. 255.
    Deemyad S, Sterer E, Barthel C, Rekhi S, Tempere J, Silvera IF (2005) Rev Sci Instrum 76(12). doi:10.1063/1.2140493Google Scholar
  256. 256.
    Rekhi S, Tempere J, Silvera IF (2003) Rev Sci Instrum 74(8):3820. doi: 10.1063/1.1593790 Google Scholar
  257. 257.
    Goncharov AF, Montoya JA, Subramanian N, Struzhkin VV, Kolesnikov A, Somayazulu M, Hemley RJ (2009) J Synchrotron Radiat 16(Part 6):769. doi:10.1107/S0909049509033433. Workshop on Advances in High-Pressure Science Using Synchrotron X-Rays, Upton, NY, 04 Oct 2008Google Scholar
  258. 258.
    Wang L, Ding Y, Yang W, Liu W, Cai Z, Kung J, Shu J, Hemley RJ, Mao WL, Mao HK (2010) Proc Natl Acad Sci USA 107(14):6140. doi: 10.1073/pnas.1001141107 Google Scholar
  259. 259.
  260. 260.
    Jenkins T, Hemley RJ, Mao HK, Parise JB, Tulk C (2005) Abs Papers Am Chem Soc 230:497. 230th National Meeting of the American Chemical Society, Washington, DC, 28 Aug–01 Sep 2005Google Scholar
  261. 261.
  262. 262.
  263. 263.
  264. 264.
    Altarelli M (2010) Magnetism and synchrotron radiation: new trends. Springer Proceedings in Physics. Springer, pp 407–419Google Scholar
  265. 265.
    Drake RP (2010) Physics Today 63(6):28Google Scholar
  266. 266.
    J.H. Eggert. UnpublishedGoogle Scholar
  267. 267.
    Ma Y, Oganov AR, Xie Y (2008) Physical Review B. 78(1). Doi: 10.1103/PhysRevB.78.014102
  268. 268.
    Pickard CJ, Needs RJ (2010) Nat Mater 9(8):624Google Scholar
  269. 269.
    Klotz S, Gauthier M, Besson JM, Hamel G, Nelmes RJ, Loveday JS, Wilson RM, Marshall’WG (1995) Applied Physics Letters 67(9):1188–1190Google Scholar
  270. 270.
    Maynard HE, Loveday JS, Klotz S, Bull CL, Hansen TC (2009) High Pressure Research 29(1):125–128Google Scholar
  271. 271.
    Maynard-Casely HE, Bull CL, Guthrie M, Loa I, McMahon MI, Gregoryanz E, Nelmes RJ, Loveday JS (2010) Journal Of Chemical Physics 133(6): doi  10.1063/1.3455889

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.SUPA, Centre for Science at Extreme Conditions, School of Physics and AstronomyThe University of EdinburghEdinburghUK

Personalised recommendations