Heterogeneously-Catalyzed Conversion of Carbohydrates

Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 295)


Polyfunctionality of carbohydrates and their low solubility in conventional organic solvents make rather complex their conversion to higher value added chemicals. Therefore, innovative processes are now strongly needed in order to increase the selectivity of these reactions. Here, we report an overview of the different heterogeneously-catalyzed processes described in the literature. In particular, hydrolysis, dehydration, oxidation, esterification, and etherification of carbohydrates are presented. We shall discuss the main structural parameters that need to be controlled and that permit the conversion of carbohydrates to bioproducts with good selectivity. The conversion of monosaccharides and disaccharides over solid catalysts, as well as recent advances in the heterogeneously-catalyzed conversion of cellulose, will be presented.


Carbohydrates Dehydration Heterogeneous catalysis Hydrolysis Oxidation 



1-Butyl 3-methyl imidazolium


Choline chloride






Hexagonal mesoporous silica


Ionic liquid


Periodic mesoporous organosilica






Turn over frequency


  1. 1.
    Narayan R (1992) Emerging technologies for materials and chemicals from biomass. American Chemical Society, Washington, DCGoogle Scholar
  2. 2.
    Eissen M, Metzger JO, Schmid E, Schneidewind U (2002) Angew Chem 41:414–436Google Scholar
  3. 3.
    Barrault J, Pouilloux Y, Clacens JM, Vanhove C, Bancquart S (2002) Catal Today 75:177–181Google Scholar
  4. 4.
    Deffeyes KS (1981) Beyond oil: the view from Hubbert’s peak. Farrar Straus and Giroux, New YorkGoogle Scholar
  5. 5.
    Chow J, Kopp RJ, Portney PR (2003) Science 302:1528–1531Google Scholar
  6. 6.
    Corma A, Iborra S, Velty A (2007) Chem Rev 107:2411–2502Google Scholar
  7. 7.
    Clark JH, Macquarrie DJ (2002) Handbook of green chemistry and technology. Blackwell, OxfordGoogle Scholar
  8. 8.
    Clark JH (1999) Green Chem:1–8Google Scholar
  9. 9.
    Anastas PA, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, OxfordGoogle Scholar
  10. 10.
    Neier W (1991) Ion exchangers as catalysts. W. der Gruyter, Germany, p 1060Google Scholar
  11. 11.
    McGovern TJ, Dranoff JS (2004) Anniversary article. Bioengineering, food, and natural products. AIChE J 16:536–546Google Scholar
  12. 12.
    Cunha LM, Oliveira FAR (2000) J Food Eng 46:53–60Google Scholar
  13. 13.
    Anastas PT, Kirchhoff MM (2002) Acc Chem Res 35:686–694Google Scholar
  14. 14.
    Lichtenthaler FW (1991) Carbohydates as organic materials, vol 1. VCH, WeinheimGoogle Scholar
  15. 15.
    Descotes G (1993) Carbohydates as organic materials, vol 2. VCH, WeinheimGoogle Scholar
  16. 16.
    Van Bekkun H, Ropper H, Voragen AGJ (1996) Carbohydates as organic materials, vol 3. CRF, The HagueGoogle Scholar
  17. 17.
    Praznik W, Huber A (1998) Carbohydates as organic materials, vol 4. WUV-Universitätsverlag, WienGoogle Scholar
  18. 18.
    Kunz M (1990) In: Lichtenthaler FW (ed) Carbohydrates as organic raw materials. New York, VCHGoogle Scholar
  19. 19.
    Lichtenthaler FW, Peters S (2004) C R Chim 7:65–90Google Scholar
  20. 20.
    Queneau Y, Fitremann J, Trombotto S (2004) C R Chim 7:177–188Google Scholar
  21. 21.
    Okuhara T (2002) Chem Rev 102:3641–3666Google Scholar
  22. 22.
    Zhang H (1989) CN Patent 1048233Google Scholar
  23. 23.
    Satyanarayana B, Varma YBG (1970) Indian J Technol 8:58–61Google Scholar
  24. 24.
    Masroua A, Revillon A, Martin JC, Guyot A, Descotes G (1988) Bull Soc Chim Fr 3:561–566Google Scholar
  25. 25.
    Hahn-Hägerdal B, Skoog K, Mattiasson B (1983) Eur J Microbiol Biotechnol 17:344–348Google Scholar
  26. 26.
    Yoshioka T, Shimamura M (1984) Bull Chem Soc Jpn 57:334–337Google Scholar
  27. 27.
    Mizota T, Tsuneda S, Saito K, Sugo T (1994) Ind Eng Chem Res 33:2215–2219Google Scholar
  28. 28.
    Nasefa MM, Saidia H, Sennab MM (2005) Chem Eng J 108:13–17Google Scholar
  29. 29.
    Abd El-Mohdy HL, Abd El-Rehim HA (2008) Chem Eng J 145:154–159Google Scholar
  30. 30.
    Chambré D, Idiţoiu C, Szabo MR (2007) J Thermal Anal Calorim 88:681–686Google Scholar
  31. 31.
    Chambre D, Szabo MR, Popescu C, Idiţoiu C (2008) J Thermal Anal Calorim 94:417–420Google Scholar
  32. 32.
    Buttersack C, Laketic D (1994) J Mol Catal 94:L283–L290Google Scholar
  33. 33.
    Bootsma JA, Shanks BH (2007) Appl Catal A 327:44–51Google Scholar
  34. 34.
    Hoffmann F, Cornelius M, Morell J, Fröba M (2006) Angew Chem Int Ed 45:3216–3251Google Scholar
  35. 35.
    Inagaki S, Guan S, Ohsuna T, Terasaki O (2002) Nature 416:304–307Google Scholar
  36. 36.
    Rac B, Hegyes P, Forgo P, Molnar A (2006) Appl Catal A 299:193–201Google Scholar
  37. 37.
    Rat M, Zahedi-Niaki MH, Kaliaguine S, Do TO (2008) Microporous Mesoporous Mater 112:26–31Google Scholar
  38. 38.
    Yang Q, Kapoor MP, Inagaki S, Shirokura N, Kondo JN, Domen K (2005) J Mol Catal A 230:85–89Google Scholar
  39. 39.
    Yang Q, Liu J, Kapoor MP, Inagaki S, Li C (2004) J Catal 228:265–272Google Scholar
  40. 40.
    Dhepe PL, Ohashi M, Inagaki S, Ichikawa M, Fukuoka A (2005) Catal Lett 102:163–169Google Scholar
  41. 41.
    Takagaki A, Tagusagawa C, Domen K (2008) Chem Commun:5363–5365Google Scholar
  42. 42.
    Toda M, Takagaki A, Okamura M, Kondo JN, Hayashi S, Domen K, Hara M (2005) Nature 438:178Google Scholar
  43. 43.
    Okamura M, Takagaki A, Toda M, Kondo JN, Domen K, Tatsumi T, Hara M, Hayashi S (2006) Chem Mater 18:3039–3045Google Scholar
  44. 44.
    Nakajima K, Hara M (2007) J Am Ceram Soc 90:3725–3734Google Scholar
  45. 45.
    Yamaguchi D, Kitano M, Suganuma S, Nakajima K, Kato H, Hara M (2009) J Phys Chem C 113:3181–3188Google Scholar
  46. 46.
    Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M (2008) J Am Chem Soc 130:12787–12793Google Scholar
  47. 47.
    Onda A, Ochi T, Yanagisawa K (2009) Top Catal 52:801–807Google Scholar
  48. 48.
    Dhepe LP, Fukuoka A (2008) ChemSusChem 1:969–975Google Scholar
  49. 49.
    Fukuoka A, Dhepe LP (2006) Angew Chem 47:8510–8513Google Scholar
  50. 50.
    Luo C, Wang S, Liu H (2007) Angew Chem 46:7636–7639Google Scholar
  51. 51.
    Deng W, Tan X, Fang W, Zhang Q, Wang Y (2009) Catal Lett. doi: 10.1007/s10562-009-0136-3Google Scholar
  52. 52.
    Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Chen JG (2008) Angew Chem 47:8510–8513Google Scholar
  53. 53.
    Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Shu Y, Stottlemyer AL, Chen JG (2009) Catal Today 147:77–85Google Scholar
  54. 54.
    Rinaldi R, Palkovits R, Schüth F (2008) Angew Chem 47:1–5Google Scholar
  55. 55.
    Lichtenthaler FW (2002) Acc Chem Res 35:728–737Google Scholar
  56. 56.
    Gandini A (1992) Polymers from renewable resources. In: Aggarwal SL, Russo S (eds) Comprehensive polymer science, Suppl 1. Pergamon, OxfordGoogle Scholar
  57. 57.
    Kunz M (1993) Hydroxymethylfurfural, a possible basic chemical for industrial intermediates. In: Fuchs A (ed) Inulin and inulin-containing crops. Elsevier, AmsterdamGoogle Scholar
  58. 58.
    Gandini A, Belgacem MN (2002) Actual Chim:56–59Google Scholar
  59. 59.
    Moreau C, Belgacem MN, Gandini A (2004) Top Catal 27:11–30Google Scholar
  60. 60.
    Cottier L, Descotes G (1991) Trends Heterocycl Chem 2:233–248Google Scholar
  61. 61.
    Faury A, Gaset A, Gorrichon JP (1981) Inf Chim 214:203Google Scholar
  62. 62.
    Gaset A, Gorrichon JP, Truchot E (1981) Inf Chim 212:179Google Scholar
  63. 63.
    Kuster BFM (1990) Starch/Stärke 42:314–321Google Scholar
  64. 64.
    Lewkowski J (2001) ArkiVoc 2:17–54Google Scholar
  65. 65.
    Dull G (1895) Chem Ztg 19:216–220Google Scholar
  66. 66.
    Kiermayer J (1895) Chem Ztg 19:1003–1006Google Scholar
  67. 67.
    Haworth WN, Jones WGM (1944) J Chem Soc Chem Soc:667–670Google Scholar
  68. 68.
    Van Dam HE, Kieboom APG, Van Bekkum H (1986) Starch/Stärke 38:95–101Google Scholar
  69. 69.
    Antal MJ, Mok WSL, Richards GN (1990) Carbohydr Res 199:91–109Google Scholar
  70. 70.
    Cottier L, Descotes G, Neyret C, Nigay H (1989) Ind Aliment Agricol:567–570Google Scholar
  71. 71.
    Pummerer R, Guyot O, Birkofer L (1935) Chem Ber 68B:480–493Google Scholar
  72. 72.
    Horvat J, Klaic B, Metelko B, Sunjic V (1985) Tetrahedron Lett 26:2111Google Scholar
  73. 73.
    Jing Q, Xiuyang LU (2008) Chin J Chem Eng 16:890–894Google Scholar
  74. 74.
    Carlini C, Giuttari M, Raspolli Galletti AM, Sbrana G, Armaroli T, Busca G (1999) Appl Catal A 183:295–302Google Scholar
  75. 75.
    Benvenuti F, Carlini C, Patrono P, Raspolli Galletti AM, Sbrana G, Massucci MA, Galli P (2000) Appl Catal A 193:147–153Google Scholar
  76. 76.
    Carlini C, Patrono P, Raspolli Galletti AM, Sbrana G (2004) Appl Catal A 275:111–118Google Scholar
  77. 77.
    Asghari FS, Yoshida H (2006) Carbohydr Res 341:2379–2387Google Scholar
  78. 78.
    Watanabe M, Aizawa Y, Toru I, Nishimura Ryo, Inomata H (2005) Appl Catal A 295:150–156Google Scholar
  79. 79.
    Watanabe M, Aizawa Y, Iida T, Aida TM, Levy C, Sue K, Inomata H (2005) Carbohydr Res 340:1925–1930Google Scholar
  80. 80.
    Qi X, Watanabe M, Aida TM, Smith RL Jr (2008) Catal Commun 9:2244–2249Google Scholar
  81. 81.
    Lourvanij K, Rorrer GL (1994) Appl Catal A 109:147–165Google Scholar
  82. 82.
    Jow J, Rorrer GL, Hawley MC, Lamport DTA (1987) Biomass 14:185–194Google Scholar
  83. 83.
    Lourvanij K, Rorrer GL (1993) Ind Eng Chem Res 32:11–19Google Scholar
  84. 84.
    Moreau C, Durand R, Razigade S, Duhamet J, Faugeras P, Rivalier P, Ros P, Avignon G (1996) Appl Catal A 145:211–224Google Scholar
  85. 85.
    Moreau C, Durand R, Pourcheron C, Razigade S (1994) Ind Crops Prod 3:85–90Google Scholar
  86. 86.
    Nakamura Y, Morikawa S (1980) Bull Chem Soc Jpn 53:3705–3706Google Scholar
  87. 87.
    Cottier L, Descotes G, Neyret C, Nigay H (1990) FR 9011479Google Scholar
  88. 88.
    Brown DW, Floyd AJ, Kinsman RG, Roshanhyphen Y (1982) J Chem Technol Biotechnol 32:920–924Google Scholar
  89. 89.
    El Hajj T, Masroua A, Martin JC, Descotes G (1987) Bull Soc Chim Fr 855–860Google Scholar
  90. 90.
    Mercadier D, Rigal L, Gaset A, Gorrichon JP (1981) J Chem Technol Biotechnol 31:503–508Google Scholar
  91. 91.
    Takagaki A, Ohara M, Nishimura S, Ebitani K (2009) Chem Commun. doi: 10.1039/b914087eGoogle Scholar
  92. 92.
    Qi X, Watanabe M, Aida TM, Smith RL Jr (2008) Green Chem 8:799–805Google Scholar
  93. 93.
    Fleche G, Gaset A, Gorrichon JP, Truchot E, Sicard P (1982) US 4339487Google Scholar
  94. 94.
    Rigal L, Gorrichon JP, Gaset A, Heughebaert JC (1985) Biomass 7:27–45Google Scholar
  95. 95.
    Lansalot-Matras C, Moreau C (2003) Catal Commun 4:517–520Google Scholar
  96. 96.
    Qi X, Watanabe M, Aida TM, Smith RL (2009) ChemSusChem. doi: 10.1002/cssc.200900199Google Scholar
  97. 97.
    Ilgen F, Ott D, Kralisch D, Reil C, Palmberger A, König B (2009) Green Chem. doi: 10.1039/b917548mGoogle Scholar
  98. 98.
    Collins PM, Ferrier RJ (1995) Oxidations monosaccharides: their chemistry and their role in natural products. Wiley, New YorkGoogle Scholar
  99. 99.
    Madsen R (2008) Oxidation, reduction and deoxygenation. In: Fraser-Reid BO, Tatsuta K, Thiem J (eds) Glycoscience, chemistry and chemical biology, oxidation, reduction and deoxygenation. Springer, HeidelbergGoogle Scholar
  100. 100.
    Besemer AC, Van Bekkum H (1996) Calcium sequestering agents based on carbohydrates. In: Van Bekkum H, Röper H, Voragen AGJ (eds) Carbohydrates as organic raw materials. VCH, WheineimGoogle Scholar
  101. 101.
    de Nooy AEJ, Besemer AC, Van Bekkum H (1998) New polyelectrolytes by selective oxidation of polysaccharides. In: Praznik W, Huber H (eds) Carbohydrates as organic raw materials. WUV, ViennaGoogle Scholar
  102. 102.
    Mäki-Arvela P, Holmbom B, Salmi T, Murzin DY (2007) Catal Rev 49:197–340Google Scholar
  103. 103.
    Fritsche-Lang W, Leopold I, Schlingmann M (1987) DE Patent 3535720Google Scholar
  104. 104.
    Kunz M, Puke H, Recker C, Scheiwe L, Kowalczyk J (1994) DE 4307388Google Scholar
  105. 105.
    Kunz M, Schwarz A, Kowalczyk J (1997) DE 19542287Google Scholar
  106. 106.
    Edye LA, Meehan GV, Richards GN (1994) J Carbohydr Chem 13:273–283Google Scholar
  107. 107.
    Edye LA, Meehan GV, Richards GN (1991) J Carbohydr Chem 10:11–23Google Scholar
  108. 108.
    Ramachandran S, Fontanille P, Pandey A, Larroche C (2006) Food Technol Biotechnol 44:185–195Google Scholar
  109. 109.
    Dirkx JMH, Van der Ban HS (1981) J Catal 67:1–13Google Scholar
  110. 110.
    Abbadi A, Van Bekkum H (1995) J Mol Cat A Chem 97:111–118Google Scholar
  111. 111.
    Hattori K, Miya B, Matsuda M, Ishii M, Saito H, Watanabe H, Takizawa H (1976) JP 53040713Google Scholar
  112. 112.
    Besson M, Gallezot P, Lahmer E, Flèche G, Fuertes P (1993) Oxidation of glucose on palladium catalysts: particle size and support effects. In: Kosak JR, Johnson TA (eds) Catalysis of organic reactions. Marcel Dekker, New YorkGoogle Scholar
  113. 113.
    Fuertes P, F1èche G, Frères R (1987) EP 233816Google Scholar
  114. 114.
    Besson M, Flèche G, Fuertes P, Gallezot P, Lahmer F (1996) Recl Trav Chim Pays Bas 115:217–221Google Scholar
  115. 115.
    Besson M, Lahmer F, Gallezot P, Fuertes P, Flèche G (1995) J Catal 152:116–121Google Scholar
  116. 116.
    Gallezot P (1997) Catal Today 37:405–418Google Scholar
  117. 117.
    Karski S, Witońska I, Gołuchowska J (2006) J Mol Cat A Chem 245:225–230Google Scholar
  118. 118.
    Bönnemann H, Brijoux W, Brinkmann R, Schulze Tilling A, Schilling T, Tesche B, Seevogel B, Franke R, Hormes J, Köhl G, Pollmann J, Rothe J, Vogel W (1998) Inorg Chim Acta 270:95–110Google Scholar
  119. 119.
    Biella S, Prati L, Rossi M (2002) J Catal 206:242–247Google Scholar
  120. 120.
    Önal Y, Schimpf S, Claus P (2004) J Catal 223:122–133Google Scholar
  121. 121.
    Comotti M, Della Pina C, Matarrese R, Rossi M, Siani A (2005) Appl Catal A 291:204–209Google Scholar
  122. 122.
    Beltrame P, Della Pina C, Rossi M, Comotti M (2006) Appl Catal A 297:1–7Google Scholar
  123. 123.
    Mirescu A, Prüße U (2006) Catal Commun 7:11–17Google Scholar
  124. 124.
    Huford JR (1980) Surface-active agents derived from disaccharides. In: Lee CK (ed) Developments in food carbohydrates. Applied Science, EnglandGoogle Scholar
  125. 125.
    Kosaka T, Yamada T (1977) New plant and applications of sucrose esters. In: Hickson JL (ed) Sucrochemistry. ACS Symposium Series, Washington, DCGoogle Scholar
  126. 126.
    Okabe S, Suganuma M, Tada Y, Ochiai Y, Sueoka E, Kohya H, Shibata A, Takahashi M, Mizutani M, Matsuzaki T, Fujiki H (1999) Jpn J Cancer Res 90:669–676Google Scholar
  127. 127.
    Puterka GJ, Farone W, Palmer T, Barrington A (2003) J Econ Entomol 96:636–644Google Scholar
  128. 128.
    Wang Y (1988) Synthesis and application of sucrose ester. Light Industrial, LondonGoogle Scholar
  129. 129.
    Kharchafi G, Jerôme K, Adam I, Pouilloux Y, Barrault J (2005) New J Chem 26:928–934Google Scholar
  130. 130.
    Van Rhijn W, De Vos D, Bossaert W, Bullen J, Wouters B, Grobet P, Jacobs P (1998) Stud Surf Sci Catal 117:183–190Google Scholar
  131. 131.
    Corma A, Hamid SBA, Iborra S, Velty A (2008) ChemSusChem 1:85–90Google Scholar
  132. 132.
    Van Es DS, Frissen AE, Luitjes H (2001) WO 2001083488Google Scholar
  133. 133.
    Usmani AM, Salyer IO (1981) Org Coatings Appl Polym Sci Proc 46:269Google Scholar
  134. 134.
    Ronan P, Adam I, Fitremann J, Jérôme F, Bouchu A, Courtois G, Barrault J, Queneau Y (2004) C R Chimie 7:151–160Google Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • Karine De Oliveira Vigier
    • 1
  • François Jérôme
    • 1
  1. 1.Laboratoire de Catalyse en Chimie OrganiqueLACCO UMR CNRS 6503 Université de PoitiersPoitiers CedexFrance

Personalised recommendations