DFT-Based Mechanistic Insights into Noble Metal-Catalyzed Rearrangement of Propargylic Derivatives: Chirality Transfer Processes

Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 302)

Abstract

Cascade transformations of enynes and propargylic acyl derivatives triggered by the π-acid activation of the alkyne by gold or platinum catalysts can afford diverse and complex molecular skeletons under mild conditions in an atom-economical manner. Often the rearrangements benefit from additional roles of the metal, either activating other functional groups and/or organizing the intermediates for further reactions. Mechanistic insights gleaned from kinetic and labeling studies have been complemented by quantum chemical calculations for different substrates and reaction types, which show some common features that can be traced back to the combination of the propargylic system and the noble metal catalyst. Among other results, theoretical studies of the reactivity of some systems revealed the prevalence of very low barriers for the bond-forming/bond-breaking processes along complex multistep mechanistic manifolds. As a consequence, the barriers corresponding to conformational changes (single bond rotations, helix inversions…) of the intermediates acquire unexpected importance. Thus, memory of chirality in reactions of enantiopure substrates is preserved, in some cases, in formally planar intermediates that however do not undergo conformational scrambling. In this chapter we will review how computational chemistry continues to play a key role in our understanding and interpretation of the catalytic cycles of complex transformations catalyzed by gold and platinum, in particular those involving transfer of chirality.

Graphical Abstract

Keywords

Computational studies Memory of chirality Noble metals Propargylic substrates Rearrangements 

Notes

Acknowledgments

We thank Centro de Supercomputación de Galicia (CESGA) for the allocation of computer time.

References

  1. 1.
    Jiménez-Núñez E, Echavarren AM (2007) Chem Commun:333Google Scholar
  2. 2.
    Michelet V, Toullec PY, Genêt J-P (2008) Angew Chem Int Ed 47:4268CrossRefGoogle Scholar
  3. 3.
    Jiménez-Nuñez E, Echavarren AM (2008) Chem Rev 108:3326CrossRefGoogle Scholar
  4. 4.
    Gorin DJ, Sherry BD, Toste FD (2008) Chem Rev 108:3351CrossRefGoogle Scholar
  5. 5.
    Hashmi ASK (2007) Chem Rev 107:3180CrossRefGoogle Scholar
  6. 6.
    Soriano E, Marco-Contelles JA (2009) Acc Chem Res 42:1026CrossRefGoogle Scholar
  7. 7.
    Furstner A (2009) Chem Soc Rev 38:3208CrossRefGoogle Scholar
  8. 8.
    Lee SI, Chatani N (2009) Chem Commun:371Google Scholar
  9. 9.
    Das A, Sohel SMA, Liu R-S (2010) Org Biomol Chem 8:960CrossRefGoogle Scholar
  10. 10.
    Shapiro ND, Toste FD (2010) Synlett:675Google Scholar
  11. 11.
    Wang S, Zhang G, Zhang L (2010) Synlett:692Google Scholar
  12. 12.
    Gorin DJ, Toste FD (2007) Nature 446:395CrossRefGoogle Scholar
  13. 13.
    Frenking G, Fröhlich N (2000) Chem Rev 100:717CrossRefGoogle Scholar
  14. 14.
    Dedieu A (2000) Chem Rev 100:8372CrossRefGoogle Scholar
  15. 15.
    Hertwig R, Koch W, Schröer D, Schwarz H, Hrušak J, Schwerdtfeger P (1996) J Phys Chem 100:12253CrossRefGoogle Scholar
  16. 16.
    Schmidbaur H, Schier A (2010) Organometallics 29:2CrossRefGoogle Scholar
  17. 17.
    Shi X, Gorin DJ, Toste FD (2005) J Am Chem Soc 127:5802CrossRefGoogle Scholar
  18. 18.
    Nieto-Faza O, Silva-López C, Álvarez R, de Lera AR (2006) J Am Chem Soc 128:2434CrossRefGoogle Scholar
  19. 19.
    Soriano E, Marco-Contelles JL (2007) J Org Chem 72:1443CrossRefGoogle Scholar
  20. 20.
    Nieto-Oberhuber C, López S, Jiménez-Núñez E, Echavarren AM (2006) Chem Eur J 12:5916CrossRefGoogle Scholar
  21. 21.
    Soriano E, Ballesteros P, Marco-Contelles JL (2005) Organometallics 24:3172CrossRefGoogle Scholar
  22. 22.
    Pernpointner M, Hashmi ASK (2009) J Chem Theory Comput 5:2717CrossRefGoogle Scholar
  23. 23.
    Flügge S, Anoop A, Goddard R, Thiel W, Fürstner A (2009) Chem Eur J 15:8558Google Scholar
  24. 24.
    Shapiro N, Toste FD (2008) Proc Natl Acad Sci USA 105:2779CrossRefGoogle Scholar
  25. 25.
    Nechaev M, Rayon V, Frenking G (2004) J Phys Chem A 108:3134CrossRefGoogle Scholar
  26. 26.
    Correa A, Marion N, Fensterbank L, Malacria M, Nolan SP, Cavallo L (2008) Angew Chem Int Ed 47:718CrossRefGoogle Scholar
  27. 27.
    Marion N, Nolan SP (2007) Angew Chem Int Ed 46:2750CrossRefGoogle Scholar
  28. 28.
    Marion N, Lemiére G, Correa A, Costabile C, Ramón RS, Moreau X, de Frèmont P, Dahmane R, Hours A, Lesage D, Tabet J-C, Goddard J-P, Gandon V, Cavallo L, Fensterbank L, Malacria M, Nolan SP (2009) Chem Eur J 15:3243CrossRefGoogle Scholar
  29. 29.
    Mamane V, Gress T, Krause H, Furstner A (2004) J Am Chem Soc 126:8654CrossRefGoogle Scholar
  30. 30.
    Kleinbeck F, Toste FD (2009) J Am Chem Soc 131:9178CrossRefGoogle Scholar
  31. 31.
    Horino Y, Yamamoto T, Ueda K, Kuroda S, Toste FD (2009) J Am Chem Soc 131:2809CrossRefGoogle Scholar
  32. 32.
    Seidel G, Mynott R, Fürstner A (2009) Angew Chem Int Ed 48:2510CrossRefGoogle Scholar
  33. 33.
    Fürstner A, Morency L (2008) Angew Chem Int Ed 47:5030CrossRefGoogle Scholar
  34. 34.
    Hashmi ASK (2008) Angew Chem Int Ed 47:6754CrossRefGoogle Scholar
  35. 35.
    Sanz R, Miguel D, Rodríguez F (2008) Angew Chem Int Ed 47:7354CrossRefGoogle Scholar
  36. 36.
    Benitez D, Shapiro ND, Tkatchouk E, Wang Y, Goddard WA, Toste FD (2009) Nat Chem 1:482CrossRefGoogle Scholar
  37. 37.
    Fürstner A, Davies PW (2007) Angew Chem Int Ed 46:3410CrossRefGoogle Scholar
  38. 38.
    Aponick A, Li C-Y, Biannic B (2008) Org Lett 10:669CrossRefGoogle Scholar
  39. 39.
    Marion N, Carlqvist P, Gealageas R, de Frémont P, Maseras F, Nolan SP (2007) Chem Eur J 13:6437CrossRefGoogle Scholar
  40. 40.
    Sromek AW, Rubina M, Gevorgyan V (2005) J Am Chem Soc 127:10500CrossRefGoogle Scholar
  41. 41.
    Cordonnier M-C, Blanc A, Pale P (2008) Org Lett 10:1569CrossRefGoogle Scholar
  42. 42.
    González Pérez A, Silva López C, Marco-Contelles J, Nieto Faza O, Soriano E, de Lera AR (2009) J Org Chem 74:2982CrossRefGoogle Scholar
  43. 43.
    Pyykkö P (2004) Angew Chem Int Ed 43:4412CrossRefGoogle Scholar
  44. 44.
    Pyykkö P (2005) Inorg Chem Acta 358:4113CrossRefGoogle Scholar
  45. 45.
    Pyykkö P (2008) Chem Soc Rev 37:1967CrossRefGoogle Scholar
  46. 46.
    Cramer C, Truhlar D (2009) Phys Chem Chem Phys 11:10757CrossRefGoogle Scholar
  47. 47.
    Niu S, Hall M (2000) Chem Rev 100:353CrossRefGoogle Scholar
  48. 48.
    Harvey JN (2006) Annu Rep Prog Chem Sect C 102:203CrossRefGoogle Scholar
  49. 49.
    Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, OxfordGoogle Scholar
  50. 50.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  51. 51.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  52. 52.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:270CrossRefGoogle Scholar
  53. 53.
    Andrae D, Häussermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123CrossRefGoogle Scholar
  54. 54.
    Perdew JP (1986) Phys Rev B 33:8822CrossRefGoogle Scholar
  55. 55.
    Zhao Y, Truhlar D (2008) Acc Chem Res 41:157CrossRefGoogle Scholar
  56. 56.
    Pantazis D, Chen X-Y, Landis C, Neese F (2008) J Chem Theory Comput 4:908CrossRefGoogle Scholar
  57. 57.
    Soriano E, Marco-Contelles JL (2005) J Org Chem 70:9345CrossRefGoogle Scholar
  58. 58.
    Ito Y, Sawamura M, Hayashi T (1996) J Am Chem Soc 108:6405CrossRefGoogle Scholar
  59. 59.
    Bongers N, Krause N (2008) Angew Chem Int Ed 47:2178CrossRefGoogle Scholar
  60. 60.
    Hashmi ASK, Hamzić M, Rominger F, Bats J (2009) Chem Eur J 15:13318Google Scholar
  61. 61.
    Widenhoefer RA (2008) Chem Eur J 14:5382CrossRefGoogle Scholar
  62. 62.
    Zhang Z, Widenhoefer RA (2007) Angew Chem Int Ed 46:283CrossRefGoogle Scholar
  63. 63.
    Muñoz MP, Adrio J, Carretero JC, Echavarren AM (2005) Organometallics 24:1293CrossRefGoogle Scholar
  64. 64.
    González-Arellano C, Corma A, Iglesias M, Sánchez F (2005) Chem Commun:3451Google Scholar
  65. 65.
    Teller H, Flügge S, Goddard R, Fürstner A (2010) Angew Chem Int Ed 49:1949Google Scholar
  66. 66.
    Johansson MJ, Gorin DJ, Staben ST, Toste FD (2005) J Am Chem Soc 127:18002CrossRefGoogle Scholar
  67. 67.
    Chao C-M, Beltrami D, Toullec PY, Michelet V (2009) Chem Commun:6988Google Scholar
  68. 68.
    Hamilton G, Eun J, Mba M, Toste FD (2007) Science 317:496CrossRefGoogle Scholar
  69. 69.
    Lalonde R, Wang Z, Mba M, Lackner A, Toste FD (2010) Angew Chem Int Ed 49:598Google Scholar
  70. 70.
    Lacour J, Moraleda D (2009) Chem Commun:7073Google Scholar
  71. 71.
    Zuccaccia D, Belpassi L, Tarantelli F, Macchioni A (2009) J Am Chem Soc 131:3170CrossRefGoogle Scholar
  72. 72.
    Gockel B, Krause N (2006) Org Lett 8:4485CrossRefGoogle Scholar
  73. 73.
    Hoffmann-Röder A, Krause N (2001) Org Lett 3:2537CrossRefGoogle Scholar
  74. 74.
    Sherry B, Toste FD (2004) J Am Chem Soc 126:15978CrossRefGoogle Scholar
  75. 75.
    Sherry BD, Maus L, Laforteza BN, Toste FD (2006) J Am Chem Soc 128:8132CrossRefGoogle Scholar
  76. 76.
    Shu X-Z, Liu X-Y, Ji K-G, Xiao H-Q, Liang Y-M (2008) Chem Eur J 14:5282CrossRefGoogle Scholar
  77. 77.
    Belot S, Vogt K, Besnard C, Krause N, Alexakis A (2009) Angew Chem Int Ed 48:8923CrossRefGoogle Scholar
  78. 78.
    Hashmi ASK, Hubbert C (2010) Angew Chem Int Ed 49:1010CrossRefGoogle Scholar
  79. 79.
    Marion N, Fremont Pd, Lemiere G, Stevens ED, Fensterbank L, Malacria M, Nolan SP (2006) Chem Commun:2048Google Scholar
  80. 80.
    Fehr C, Galindo J (2006) Angew Chem Int Ed 45:2901CrossRefGoogle Scholar
  81. 81.
    Fehr C, Winter B, Magpantay I (2009) Chem Eur J 15:9773CrossRefGoogle Scholar
  82. 82.
    Fürstner A, Hannen P (2006) Chem Eur J 12:3006CrossRefGoogle Scholar
  83. 83.
    Soriano E, Marco-Contelles JL (2007) J Org Chem 72:2651CrossRefGoogle Scholar
  84. 84.
    Watson IDG, Ritter S, Toste FD (2009) J Am Chem Soc 131:2056CrossRefGoogle Scholar
  85. 85.
    Deutsch C, Gockel B, Hoffmann-Röder A, Krause N (2007) Synlett:1790Google Scholar
  86. 86.
    Buzas A, Gagosz F (2006) J Am Chem Soc 128:12614CrossRefGoogle Scholar
  87. 87.
    Zhang L (2005) J Am Chem Soc 127:16804CrossRefGoogle Scholar
  88. 88.
    Zhang G, Catalano VJ, Zhang L (2007) J Am Chem Soc 129:11358CrossRefGoogle Scholar
  89. 89.
    Kirsch SF (2008) Synthesis:3183Google Scholar
  90. 90.
    Majumdar K, Debnath P, Roy B (2009) Heterocycles 78:2661CrossRefGoogle Scholar
  91. 91.
    Aponick A, Li C-Y, Malinge J, Marques E (2009) Org Lett 11:4624CrossRefGoogle Scholar
  92. 92.
    Hashmi SAK (2010) Pure Appl Chem 82:657CrossRefGoogle Scholar
  93. 93.
    Genin E, Toullec PY, Antoniotti S, Brancour C, Genet J-P, Michelet V (2006) J Am Chem Soc 128:3112CrossRefGoogle Scholar
  94. 94.
    Robles-Machín R, Adrio J, Carretero JC (2006) J Org Chem 71:5023CrossRefGoogle Scholar
  95. 95.
    Davies P, Albrecht S-C (2009) Angew Chem Int Ed 48:8372CrossRefGoogle Scholar
  96. 96.
    Barluenga J, Fernández A, Satrástegui A, Diéguez A, Rodríguez F, Fañanás F (2008) Chem Eur J 14:4153CrossRefGoogle Scholar
  97. 97.
    Barluenga J, Fernández A, Diéguez A, Rodríguez F, Fañanás F (2009) Chem Eur J 15:11660CrossRefGoogle Scholar
  98. 98.
    Okamura WH (1983) Acc Chem Res 16:81CrossRefGoogle Scholar
  99. 99.
    Okamura WH, Curtin ML (1990) Synlett:1Google Scholar
  100. 100.
    Nieto-Oberhuber C, Pérez-Galán P, Herrero-Gomez E, Lauterbach T, Rodríguez C, López S, Bour C, Rosellón A, Cárdenas DJ, Echavarren AM (2008) J Am Chem Soc 130:269CrossRefGoogle Scholar
  101. 101.
    González AZ, Toste FD (2010) Org Lett 12:200CrossRefGoogle Scholar
  102. 102.
    Luzung MR, Mauleon P, Toste FD (2007) J Am Chem Soc 129:12402CrossRefGoogle Scholar
  103. 103.
    Cheong PH-Y, Morganelli P, Luzung MR, Houk KN, Toste FD (2008) J Am Chem Soc 130:4517CrossRefGoogle Scholar
  104. 104.
    Uemura M, Watson IDG, Katsukawa M, Toste FD (2009) J Am Chem Soc 131:3464CrossRefGoogle Scholar
  105. 105.
    Habermas KL, Denmark SE, Jones TK (1994) Org React 45:1Google Scholar
  106. 106.
    Frontier AJ, Collison C (2005) Tetrahedron 61:7577CrossRefGoogle Scholar
  107. 107.
    Tius MA (2005) Eur J Org Chem:2193Google Scholar
  108. 108.
    Pellisier H (2005) Tetrahedron 61:6479CrossRefGoogle Scholar
  109. 109.
    Grant TN, Rieder CJ, West FG (2009) Chem Commun:5676Google Scholar
  110. 110.
    Nieto Faza O, Silva López C, Álvarez R, de Lera AR (2004) Chem Eur J 10:4324CrossRefGoogle Scholar
  111. 111.
    Nieto Faza O, Silva López C, Alvarez R, de Lera AR (2009) Chem Eur J 15:1944CrossRefGoogle Scholar
  112. 112.
    Overman LE (1992) Acc Chem Res 25:352CrossRefGoogle Scholar
  113. 113.
    Rautenstrauch V (1984) J Org Chem 49:950CrossRefGoogle Scholar
  114. 114.
    Zhang L, Wang S (2006) J Am Chem Soc 128:1442CrossRefGoogle Scholar
  115. 115.
    Xia Y, Dudnik AS, Gevorgyan V, Li Y (2008) J Am Chem Soc 130:6940CrossRefGoogle Scholar
  116. 116.
    Shi F-Q, Li X, Xia Y, Zhang L, Yu Z-X (2007) J Am Chem Soc 129:15503CrossRefGoogle Scholar
  117. 117.
    Sethofer SG, Staben ST, Hung OY, Toste FD (2008) Org Lett 10:4315CrossRefGoogle Scholar
  118. 118.
    Sanz R, Miguel D, Gohain M, García-García P, Fernández Rodríguez MA, González-Pérez A, Nieto-Faza O, de Lera AR, Rodríguez F (2010) Chem Eur J 16:9818Google Scholar
  119. 119.
    Zou Y, Garayalde D, Wang Q, Nevado C, Goeke A (2008) Angew Chem Int Ed 47:10110CrossRefGoogle Scholar
  120. 120.
    Garayalde D, Gómez-Bengoa E, Huang X, Goeke A, Nevado C (2010) J Am Chem Soc 132:4720CrossRefGoogle Scholar
  121. 121.
    Wang S, Zhang L (2006) J Am Chem Soc 128:8414CrossRefGoogle Scholar
  122. 122.
    Mauleón P, Krinsky JL, Toste FD (2009) J Am Chem Soc 131:4513CrossRefGoogle Scholar
  123. 123.
    Dubé P, Toste FD (2006) J Am Chem Soc 128:12062CrossRefGoogle Scholar
  124. 124.
    Nieto Faza O, Silva López C, de Lera AR (2011) SubmittedGoogle Scholar
  125. 125.
    Lemiére G, Gandon V, Cariou K, Fukuyama T, Dhimane A-L, Fensterbank L, Malacria M (2007) Org Lett 9:2207CrossRefGoogle Scholar
  126. 126.
    Gandon V, Lemière G, Hours A, Fensterbank L, Malacria M (2008) Angew Chem Int Ed 47:7534CrossRefGoogle Scholar
  127. 127.
    Lemiére G, Gandon V, Cariou K, Hours A, Fukuyama T, Dhimane A-L, Fensterbank L, Malacria M (2009) J Am Chem Soc 131:2993CrossRefGoogle Scholar
  128. 128.
    Lee JH, Toste FD (2007) Angew Chem Int Ed 46:912CrossRefGoogle Scholar
  129. 129.
    Pujanauski BG, Bhanu Prasad BA, Sarpong R (2006) J Am Chem Soc 128:6786CrossRefGoogle Scholar
  130. 130.
    González Pérez A, Nieto Faza O, de Lera AR (2011) SubmittedGoogle Scholar
  131. 131.
    PvR S, Maerker C, Dransfeld A, Jiao H, NJRvE H (1996) J Am Chem Soc 118:6317CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Departamento de Química OrgánicaUniversidade de VigoVigoSpain

Personalised recommendations