Influence of Protecting Groups on the Reactivity and Selectivity of Glycosylation: Chemistry of the 4,6-O-Benzylidene Protected Mannopyranosyl Donors and Related Species

  • Sylvain Aubry
  • Kaname Sasaki
  • Indrajeet Sharma
  • David CrichEmail author
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 301)


The genesis and development of the 4,6-O-benzylidene acetal method for the preparation of β-mannopyranosides are reviewed. Particular emphasis is placed on the influence of the various protecting groups on stereoselectivity and these effects are interpreted in the framework of a general mechanistic scheme invoking a series of solvent-separated and contact ion pairs in dynamic equilibrium with a covalent α-glycosyl trifluoromethanesulfonate.


Acetal Anomeric effect Diastereoselectivity Glycosylation Ion pair Kinetic isotope effect Stereoelectronic effects 



D.C. is especially grateful to the many co-workers, graduate students, and postdoctoral fellows, past and present, who have contributed significantly to the mannose project. He is equally grateful to the many colleagues, most notably Michael L. Sinnott, for their insightful comments and encouragement over the years.


  1. 1.
    Fraser-Reid B (1975) Acc Chem Res 8:192Google Scholar
  2. 2.
    Barresi F, Hindsgaul O (1995) J Carbohydr Chem 14:1043Google Scholar
  3. 3.
    Zhu X, Schmidt RR (2009) Angew Chem Int Ed 48:1900Google Scholar
  4. 4.
    Gridley JJ, Osborn HMI (2000) J Chem Soc Perkin Trans 1:1471Google Scholar
  5. 5.
    Demchenko AV (2003) Curr Org Chem 7:35Google Scholar
  6. 6.
    Demchenko AV (2003) Synlett 1225Google Scholar
  7. 7.
    Barresi F, Hindsgaul O (1996) In: Khan SH, O’Neill RA (eds) Modern methods in carbohydrate synthesis. Harwood Academic Publishers, Amsterdam, p 251Google Scholar
  8. 8.
    Pozsgay V (2000) In: Ernst B, Hart GW, Sinaÿ P (eds) Carbohydrates in chemistry and biology, vol 1. Wiley-VCH, Weinheim, p 319Google Scholar
  9. 9.
    Ito Y, Ohnishi Y (2001) In: Fraser-Reid B, Kuniaki T, Thiem J (eds) Glycoscience: chemistry and chemical biology, vol 2. Springer-Verlag, Berlin, p 1589Google Scholar
  10. 10.
    Brunckova J, Crich D, Yao Q (1994) Tetrahedron Lett 35:6619Google Scholar
  11. 11.
    Crich D, Sun S, Brunckova J (1996) J Org Chem 61:605Google Scholar
  12. 12.
    Crich D, Hwang J-T, Yuan H (1996) J Org Chem 61:6189Google Scholar
  13. 13.
    Crich D, Sun S (1996) J Org Chem 61:4506Google Scholar
  14. 14.
    Crich D, Sun S (1997) J Org Chem 62:1198Google Scholar
  15. 15.
    Kahne D, Walker S, Cheng Y, Engen DV (1989) J Am Chem Soc 111:6881Google Scholar
  16. 16.
    Crich D, Smith M, Yao Q, Picione J (2001) Synthesis 323Google Scholar
  17. 17.
    Crich D, Li H (2002) J Org Chem 67:4640Google Scholar
  18. 18.
    Crich D, Sun S (1998) Tetrahedron 54:8321Google Scholar
  19. 19.
    Codée JDC, Kröck L, Castagner B, Seeberger PH (2008) Chem Eur J 14:3987Google Scholar
  20. 20.
    Crich D, Mataka J, Zakharov LN, Rheingold AL, Wink DJ (2002) J Am Chem Soc 124:6028Google Scholar
  21. 21.
    Crich D, Lim LBL (2004) Org React 64:115Google Scholar
  22. 22.
    Ferrieres V, Joutel J, Boulch R, Roussel M, Toupet L, Plusquellec D (2000) Tetrahedron Lett 41:5515Google Scholar
  23. 23.
    Nukada T, Bérces A, Wang L, Zgierski MZ, Whitfield DM (2005) Carbohydr Res 340:841Google Scholar
  24. 24.
    Nukada T, Berces A, Whitfield DM (2002) Carbohydr Res 337:765Google Scholar
  25. 25.
    Whitfield DM (2009) Adv Carbohydr Chem Biochem 62:83Google Scholar
  26. 26.
    Stevens RV (1984) Acc Chem Res 17:289Google Scholar
  27. 27.
    Kirby AJ (1983) The anomeric effect and related stereoelectronic effects at oxygen. Springer-Verlag, BerlinGoogle Scholar
  28. 28.
    Deslongchamps P (1983) Stereoelectronic effects in organic chemistry. Pergamon, OxfordGoogle Scholar
  29. 29.
    Crich D, Sun S (1997) J Am Chem Soc 119:11217Google Scholar
  30. 30.
    Crich D, Sun S (1998) J Am Chem Soc 120:435Google Scholar
  31. 31.
    Huang X, Huang L, Wang H, Ye X-S (2004) Angew Chem Int Ed 43:5221Google Scholar
  32. 32.
    Crich D, Cai F, Yang F (2008) Carbohydr Res 343:1858Google Scholar
  33. 33.
    Morishita T, Furukawa N, Oae S (1981) Tetrahedron 37:3115Google Scholar
  34. 34.
    Crich D, Smith M (2000) Org Lett 2:4067Google Scholar
  35. 35.
    Crich D, Smith M (2001) J Am Chem Soc 123:9015Google Scholar
  36. 36.
    Codée JDC, van den Bos LJ, Litjens REJN, Overkleeft HS, van Boeckel CAA, van Boom JH, van der Marel GA (2004) Tetrahedron 60:1057Google Scholar
  37. 37.
    Crich D, Banerjee A, Li W, Yao Q (2005) J Carbohydr Chem 24:415Google Scholar
  38. 38.
    Wang C, Wang H, Huang X, Zhang L-H, Ye X-S (2006) Synlett 2846Google Scholar
  39. 39.
    Durón SG, Polat T, Wong C-H (2004) Org Lett 6:839Google Scholar
  40. 40.
    Tatai J, Fügedi P (2007) Org Lett 9:4647Google Scholar
  41. 41.
    Nokami T, Shibuya A, Tsuyama H, Suga S, Bowers AA, Crich D, Yoshida J-i (2007) J Am Chem Soc 129:10922Google Scholar
  42. 42.
    Crich D, Li L (2007) J Org Chem 72:1681Google Scholar
  43. 43.
    Crich D, Pedersen CM, Bowers AA, Wink DJ (2007) J Org Chem 72:1553Google Scholar
  44. 44.
    Crich D, Cai W (1999) J Org Chem 64:4926Google Scholar
  45. 45.
    Crich D, Cai W, Dai Z (2000) J Org Chem 65:1291Google Scholar
  46. 46.
    Crich D, Vinogradova O (2007) J Am Chem Soc 129:11756Google Scholar
  47. 47.
    Crich D, Jayalath P (2005) J Org Chem 70:7252Google Scholar
  48. 48.
    Crich D, Subramanian V, Hutton TK (2007) Tetrahedron 63:5042Google Scholar
  49. 49.
    Crich D, Bowers AA (2006) J Org Chem 71:3452Google Scholar
  50. 50.
    Crich D, Hutton TK, Banerjee A, Jayalath P, Picione J (2005) Tetrahedron: Asymmetry 16:105Google Scholar
  51. 51.
    Crich D, Vinogradova O (2006) J Org Chem 71:8473Google Scholar
  52. 52.
    Pavia AA, Rocheville JM, Ung SN (1980) Carbohydr Res 79:79Google Scholar
  53. 53.
    Lacombe JM, Pavia AA, Rocheville JM (1981) Can J Chem 59:473Google Scholar
  54. 54.
    Pavia AA, Ung-Chhun SN (1981) Can J Chem 59:482Google Scholar
  55. 55.
    Leroux J, Perlin AS (1978) Carbohydr Res 67:163Google Scholar
  56. 56.
    Leroux J, Perlin AS (1976) Carbohydr Res 47:C8Google Scholar
  57. 57.
    Kronzer FJ, Schuerch C (1973) Carbohydr Res 27:379Google Scholar
  58. 58.
    Lucas TJ, Schuerch C (1975) Carbohydr Res 39:39Google Scholar
  59. 59.
    Marousek V, Lucas TJ, Wheat PE, Schuerch C (1978) Carbohydr Res 60:85Google Scholar
  60. 60.
    Srivastava VK, Schuerch C (1980) Carbohydr Res 79:C13Google Scholar
  61. 61.
    Srivastava VK, Schuerch C (1981) J Org Chem 46:1121Google Scholar
  62. 62.
    Garcia BA, Gin DY (2000) J Am Chem Soc 122:4269Google Scholar
  63. 63.
    Crich D, Chandrasekera NS (2004) Angew Chem Int Ed 43:5386Google Scholar
  64. 64.
    Singleton DA, Thomas AA (1995) J Am Chem Soc 117:9357Google Scholar
  65. 65.
    Westaway KC (2006) Adv Phys Org Chem 41:217Google Scholar
  66. 66.
    Peters KS (2007) Chem Rev 107:859Google Scholar
  67. 67.
    Horenstein NA (2006) Adv Phys Org Chem 41:275Google Scholar
  68. 68.
    El-Badri MH, Willenbring D, Tantillo DJ, Gervay-Hague J (2007) J Org Chem 72:4663Google Scholar
  69. 69.
    Amyes TL, Jencks WP (1989) J Am Chem Soc 111:7888Google Scholar
  70. 70.
    Zechel DL, Withers SG (2000) Acc Chem Res 33:11Google Scholar
  71. 71.
    Bohé L, Crich D (2011) CR Chimie 14: in pressGoogle Scholar
  72. 72.
    Matsumoto K, Ueoka K, Suzuki S, Suga S, Yoshida J-i (2009) Tetrahedron 65:10901Google Scholar
  73. 73.
    Winstein S, Clippinger E, Fainberg AH, Heck R, Robinson GC (1956) J Am Chem Soc 78:328Google Scholar
  74. 74.
    Richard JP, Amyes Tl, Toteva MM, Tsuji Y (2004) Adv Phys Org Chem 39:1Google Scholar
  75. 75.
    Rhind-Tutt AJ, Vernon CA (1960) J Chem Soc 4637Google Scholar
  76. 76.
    Lemieux RU, Hendriks KB, Stick RV, James K (1975) J Am Chem Soc 97:4056Google Scholar
  77. 77.
    Zeng Y, Wang Z, Whitfield D, Huang X (2008) J Org Chem 73:7952Google Scholar
  78. 78.
    Walvoort MTC, Lodder G, Mazurek J, Overkleeft HS, Codée JDC, van der Marel GA (2009) J Am Chem Soc 131:12080Google Scholar
  79. 79.
    Hoffmann R, Minkin VI, Carpenter BK (1996) Bull Soc Chim Fr 133:117Google Scholar
  80. 80.
    Crich D, Dudkin V (2000) Org Lett 2:3941Google Scholar
  81. 81.
    Crich D, Dudkin V (2002) J Am Chem Soc 124:2263Google Scholar
  82. 82.
    Fraser-Reid B, Wu ZC, Andrews W, Skowronski E (1991) J Am Chem Soc 113:1434Google Scholar
  83. 83.
    Andrews CW, Rodebaugh R, Fraser-Reid B (1996) J Org Chem 61:5280Google Scholar
  84. 84.
    Jensen HH, Nordstrom M, Bols M (2004) J Am Chem Soc 126:9205Google Scholar
  85. 85.
    Bock K, Duus JO (1994) J Carbohydr Chem 13:513Google Scholar
  86. 86.
    Crich D, Banerjee A (2006) J Am Chem Soc 128:8078Google Scholar
  87. 87.
    Reich HJ, Dykstra RR (1993) J Am Chem Soc 115:7041Google Scholar
  88. 88.
    Crich D, Smith M (2002) J Am Chem Soc 124:8867Google Scholar
  89. 89.
    Crich D, Yao Q (2004) J Am Chem Soc 126:8232Google Scholar
  90. 90.
    Ley SV, Baeschlin DK, Dixon DJ, Foster AC, Ince SJ, Priepke HWM, Reynolds DJ (2001) Chem Rev 101:53Google Scholar
  91. 91.
    Thompson HW, Gaglani KD (1993) J Chem Soc Perkin Trans 2:967Google Scholar
  92. 92.
    Olsson JDM, Landstroem J, Roennols J, Oscarson S, Widmalm G (2009) Org Biomol Chem 7:162Google Scholar
  93. 93.
    Kajimoto T, Ishioka Y, Katoh T, Node M (2006) Bioorg Med Chem Lett 16:5736Google Scholar
  94. 94.
    Hanashima S, Inamori K-i, Manabe S, Taniguchi N, Ito Y (2006) Chem Eur J 12:3449Google Scholar
  95. 95.
    El Alaoui A, Schmidt F, Monneret C, Florent J-C (2006) J Org Chem 71:9628Google Scholar
  96. 96.
    Chevalier R, Esnault J, Vandewalle P, Sendid B, Colombel J-F, Poulain D, Mallet JM (2006) Tetrahedron 61:7669Google Scholar
  97. 97.
    Crich D, Dai Z, Gastaldi S (1999) J Org Chem 64:5224Google Scholar
  98. 98.
    Crich D, Barba GR (1998) Tetrahedron Lett 39:9339Google Scholar
  99. 99.
    Crich D, de la Mora MA, Cruz R (2002) Tetrahedron 58:35Google Scholar
  100. 100.
    Crich D, Jayalath P, Hutton TK (2006) J Org Chem 71:3064Google Scholar
  101. 101.
    Crich D, Karatholuvhu MS (2008) J Org Chem 73:5173Google Scholar
  102. 102.
    Crich D, Wu B (2006) Org Lett 8:4879Google Scholar
  103. 103.
    Dromer F, Chevalier R, Sendid B, Improvisi L, Jouault T, Robert R, Mallet JM, Poulain D (2002) Antimicrob Agents Chemother 46:3869Google Scholar
  104. 104.
    Bedini E, Carabellese A, Barone G, Parrilli M (2005) J Org Chem 70:8064Google Scholar
  105. 105.
    Gorin PAJ, Perlin AS (1961) Can J Chem 39:2474Google Scholar
  106. 106.
    Crich D, Vinod AU, Picione J (2003) J Org Chem 68:8453Google Scholar
  107. 107.
    Backinowskii LV, Balan NF, Shashkov AS, Kochetkov NK (1980) Carbohydr Res 84:225Google Scholar
  108. 108.
    Crich D, Vinod AU, Picione J, Wink DJ (2005) ARKIVOC vi:339Google Scholar
  109. 109.
    Manabe S, Ishii K, Hashizume D, Ito Y (2007) Acta Crystallogr E63:o3028Google Scholar
  110. 110.
    Baek JY, Lee B-Y, Jo MG, Kim KS (2009) J Am Chem Soc 131:17705Google Scholar
  111. 111.
    Crich D, Hu T, Cai F (2008) J Org Chem 73:8942Google Scholar
  112. 112.
    Gonzalez-Outeiriño J (2005) J Org Chem 70:2486Google Scholar
  113. 113.
    Schweitzer WB, Dunitz JD (1982) Helv Chim Acta 65:1547Google Scholar
  114. 114.
    Crich D, Picione J (2003) Org Lett 5:781Google Scholar
  115. 115.
    De Meo C, Kamat MN, Demchenko AV (2005) Eur J Org Chem 706Google Scholar
  116. 116.
    van Boeckel CAA, Beetz T, van Aelst SF (1984) Tetrahedron 40:4097Google Scholar
  117. 117.
    Tanaka H, Yoshizawa A, Takahashi T (2007) Angew Chem Int Ed 46:2505Google Scholar
  118. 118.
    Crich D, Dudkin V (2000) Tetrahedron Lett 41:5643Google Scholar
  119. 119.
    Crich D, Li W, Li H (2004) J Am Chem Soc 126:15081Google Scholar
  120. 120.
    Crich D, Wu B, Jayalath P (2007) J Org Chem 72:6806Google Scholar
  121. 121.
    Crich D (2007) In: Demchenko AV (ed) ACS symposium series, vol 960. American Chemical Society, Washington, p 60Google Scholar
  122. 122.
    Schneider H-J, Hoppen V (1978) J Org Chem 43:3866Google Scholar
  123. 123.
    Sülze D, Gatial A, Karlsson A, Klaeboe P, Nielsen CJ (1988) J Mol Struct 174:207Google Scholar
  124. 124.
    Jensen FR, Bushweller CH, Beck BH (1969) J Am Chem Soc 91:344Google Scholar
  125. 125.
    Bugay DE, Bushweller CH, Danehy CT, Hoogasian S, Blersch JA, Leenstra WR (1989) J Phys Chem 93:3908Google Scholar
  126. 126.
    Subbotin OA, Sergeyev NM (1975) J Am Chem Soc 97:1080Google Scholar
  127. 127.
    Chu P-S, True NS (1985) J Phys Chem 89:5613Google Scholar
  128. 128.
    Jensen FR, Bushweller CH (1971) Adv Alicycl Chem 3:139Google Scholar
  129. 129.
    Crich D, Li L, Shirai M (2009) J Org Chem 74:2486Google Scholar
  130. 130.
    Crich D, Xu H (2007) J Org Chem 72:5183Google Scholar
  131. 131.
    Crich D, Li L (2009) J Org Chem 74:773Google Scholar
  132. 132.
    Castagner B, Seeberger PH (2007) Top Curr Chem 278:289Google Scholar
  133. 133.
    Seeberger PH (2001) Solid support oligosaccharide synthesis and combinatorial carbohydrate libraries, Wiley Interscience, New York, p 308Google Scholar
  134. 134.
    Ratner DM, Swanson ER, Seeberger PH (2003) Org Lett 5:4717Google Scholar
  135. 135.
    Bousquet E, Khitri M, Lay L, Nicotra F, Panza L, Russo G (1998) Carbohydr Res 311:171Google Scholar
  136. 136.
    Sinnott ML (2007) Carbohydrate chemistry and biochemistry. RSC Publishing, CambridgeGoogle Scholar
  137. 137.
    Green LG, Ley SV (2000) In: Ernst B, Hart GW, Sinaÿ P (eds) Carbohydrates in chemistry and biology, vol 1. Wiley-VCH, Weinheim, p 427Google Scholar
  138. 138.
    Namchuk MN, McCarter JD, Becalski A, Andrews T, Withers SG (2000) J Am Chem Soc 122:1270Google Scholar
  139. 139.
    Dean KES, Kirby AJ, Komarov IV (2002) J Chem Soc Perkin Trans 2:337Google Scholar
  140. 140.
    Ford GP, Raghuveer KS (1988) Tetrahedron 44:7489Google Scholar
  141. 141.
    Olah GA, Prakash GKS, Krishnamurthy VV (1983) J Org Chem 48:5116Google Scholar
  142. 142.
    Wallace JE, Schroeder LR (1976) J Chem Soc Perkin Trans 2:1632Google Scholar
  143. 143.
    Horeau A, Kagan H-B, Vigneron JP (1968) Bull Soc Chim Fr 3795Google Scholar
  144. 144.
    Masamune S, Choy W, Peterson JS, Sita LR (1985) Angew Chem Int Ed 24:1Google Scholar
  145. 145.
    Spijker NM, van Boeckel CAA (1991) Angew Chem Int Ed 30:180Google Scholar
  146. 146.
    Bohé L, Crich D (2010) Trends Glycosci Glycotech 22:1Google Scholar
  147. 147.
    Crich D, Li H (2000) J Org Chem 56:801Google Scholar
  148. 148.
    McGarvey GJ, LeClair CA, Schmidtmann BA (2008) Org Lett 10:4727Google Scholar
  149. 149.
    Crich D, Sharma I (2008) Org Lett 10:4731Google Scholar
  150. 150.
    Ducros VM-A, Zechel DL, Murshudov GN, Gilbert HJ, Szabo L, Stoll D, Withers SG, Davies GJ (2002) Angew Chem Int Ed 41:2824Google Scholar
  151. 151.
    Zhu Y, Suits MDL, Thompson AJ, Chavan S, Dinev Z, Dumon C, Smith N, Moremen KW, Xiang Y, Siriwardena A, Williams SJ, Gilbert HJ, Davies GJ (2010) Nature Chem Biol 6:125Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sylvain Aubry
    • 1
  • Kaname Sasaki
    • 1
  • Indrajeet Sharma
    • 2
  • David Crich
    • 1
    • 2
    Email author
  1. 1.Centre de Recherche de GifInstitut de Chimie des Substances Naturelles, CNRSGif-sur-YvetteFrance
  2. 2.Department of ChemistryWayne State UniversityDetroitUSA

Personalised recommendations