Advertisement

Two-Dimensional Crystal Engineering at the Liquid–Solid Interface

  • Shuhei Furukawa
  • Steven De Feyter
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 287)

Abstract

Three-dimensional crystal engineering is a well-known concept. The invention of the scanningtunneling microscope opened the door to explore this engineering concept in two dimensions with submolecularresolution. The tools of supramolecular chemistry are also at play on surfaces but the large varietyof interactions—molecule–molecule, molecule–substrate, molecule–solvent, solvent–substrate—area challenge for the design of appropriate molecules which self-assemble at the liquid–solidinterface into the targeted pattern. Herein, we review the efforts to reach the ultimate goal, two-dimensionalcrystal engineering at the liquid–solid interface, including the formation of two-dimensionalporous networks and multicomponent systems. Two-dimensional crystal engineering is more than an academiceffort: it finds applications in fields ranging from molecular electronics to reactivity on surfaces.

Crystal Engineering Scanning tunneling microscopy Supramolecular chemistry  

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Braga D, Brammer L, Champness NR (2005) CrystEngComm 7:1 CrossRefGoogle Scholar
  2. 2.
    Brammer L (2004) Chem Soc Rev 33:476 CrossRefGoogle Scholar
  3. 3.
    Evans OR, Lin WB (2002) Acc Chem Res 35:511 CrossRefGoogle Scholar
  4. 4.
    Moulton B, Zaworotko MJ (2001) Chem Rev 101:1629 CrossRefGoogle Scholar
  5. 5.
    Melendez RE, Hamilton AD (1998) Top Curr Chem 198:97 CrossRefGoogle Scholar
  6. 6.
    Binnig G, Rohrer H, Gerber C, Weibel E (1982) Phys Rev Lett 49:57 CrossRefGoogle Scholar
  7. 7.
    Schuurmans N, Uji-i H, Mamdouh W, De Schryver FC, Feringa BL, van Ech J, De Feyter S (2004) J Am Chem Soc 126:13884 CrossRefGoogle Scholar
  8. 8.
    Lackinger M, Griessl S, Markert T, Jamitzky F, Heckl WM (2004) J Phys Chem B 108:13652 CrossRefGoogle Scholar
  9. 9.
    Cyr DM, Ventakaraman B, Flynn GW (1996) Chem Mater 8:1600 CrossRefGoogle Scholar
  10. 10.
    Gellman AJ, Paserba KR (2002) J Phys Chem B 106:13231 CrossRefGoogle Scholar
  11. 11.
    Yin S, Wang C, Cui X, Xu B, Bai CL (2001) Surf Interf Anal 32:248 CrossRefGoogle Scholar
  12. 12.
    De Feyter S, Gesquière A, Abdel-Mottaleb MM, Grim PCM, De Schryver FC, Meiners C, Sieffert M, Valiyaveettil S, Müllen K (2000) Acc Chem Res 33:520 CrossRefGoogle Scholar
  13. 13.
    De Feyter S, Gesquière A, Klapper M, Müllen K, De Schryver FC (2003) Nano Lett 3:1485 CrossRefGoogle Scholar
  14. 14.
    Eichhorst-Gerner K, Stabel A, Moessner G, Declercq D, Valiyaveettil S, Enkelmann V, Müllen K, Rabe JP (2006) Angew Chem Int Ed Engl 35:1492 CrossRefGoogle Scholar
  15. 15.
    Stepanow S, Lingenfelder M, Dmitriev A, Spillmann H, Delvigne E, Lin X, Deng XB, Ca CZ, Barth JV, Kern K (2004) Nat Mater 3:229 CrossRefGoogle Scholar
  16. 16.
    Surin M, Samori P, Jouaiti A, Kyritsakas N, Hosseini MW (2007) Angew Chem Int Ed 46:245 CrossRefGoogle Scholar
  17. 17.
    Alam MS, Strömsdörfer S, Dremov V, Müller P, Kortus J, Ruben M, Lehn JM (2005) Angew Chem Int Ed 44:7896 CrossRefGoogle Scholar
  18. 18.
    Semenov A, Spatz JP, Möller M, Lehn JM, Sell B, Schubert D, Weidl CH, Schubert US (1999) Angew Chem Int Ed 111:2701 CrossRefGoogle Scholar
  19. 19.
    Mourran A, Ziener U, Möller M, Breuning E, Ohkita M, Lehn JM (2005) Eur J Inorg Chem 2641 Google Scholar
  20. 20.
    Zell P, Mögele F, Ziener U, Rieger B (2006) Chem Eur J 12:3847 CrossRefGoogle Scholar
  21. 21.
    Trixler F, Markert T, Lackinger M, Jamitzky F, Heckl WM (2007) Chem Eur J 13:7785 CrossRefGoogle Scholar
  22. 22.
    Lei SB, Wang C, Yin SX, Wang HN, Xi F, Liu HW, Xu B, Wan LJ, Bai C (2001) J Phys Chem B 105:10838 CrossRefGoogle Scholar
  23. 23.
    De Feyter S, Gesquiére A, De Schryver FC, Keller U, Müllen K (2002) Chem Mater 14:989 CrossRefGoogle Scholar
  24. 24.
    Gesquière A, De Feyter S, De Schryver FC, Schoonbeek F, van Esch J, Kellogg RM, Feringa BL (2001) Nano Lett 1:201 CrossRefGoogle Scholar
  25. 25.
    Puigmartí-Luis J, Minoia A, Uji-i H, Rovira C, Cornil J, De Feyter S, Lazzaroni R, Amabilino DB (2006) J Am Chem Soc 128:12602 CrossRefGoogle Scholar
  26. 26.
    De Feyter S, Grim K, van Esch J, Kellogg RM, Feringa BL, De Schryver FC (1998) J Phys Chem B 102:8981 CrossRefGoogle Scholar
  27. 27.
    Abdel-Mottaleb MMS, Schuurmans N, De Feyter S, van Esch J, Feringa BL, De Schryver FC (2002) Chem Commun, p 1894 Google Scholar
  28. 28.
    De Feyter S, Abdel-Mottaleb MMS, Schuurmans N, Verkuijl B, van Esch J, Feringa BL, De Schryver FC (2004) Chem Eur J 10:1124 CrossRefGoogle Scholar
  29. 29.
    Kim K, Matzger AJ (2002) J Am Chem Soc 124:8772 CrossRefGoogle Scholar
  30. 30.
    Plass KE, Kim K, Matzger AJ (2004) J Am Chem Soc 126:9042 CrossRefGoogle Scholar
  31. 31.
    Kim K, Plass KE, Matzger AJ (2005) Langmuir 21:647 CrossRefGoogle Scholar
  32. 32.
    Kim K, Plass KE, Matzger AJ (2003) Langmuir 19:7149 CrossRefGoogle Scholar
  33. 33.
    Plass KE, Grzesiak AL, Matzger AJ (2007) Acc Chem Res 40:287 CrossRefGoogle Scholar
  34. 34.
    Yang Y, Wang C (2007) Int J Nanotechnol 4:4 CrossRefGoogle Scholar
  35. 35.
    Surin M, Samori P (2007) Small 3:190 CrossRefGoogle Scholar
  36. 36.
    Venkataraman B, Breen JJ, Flynn GW (1995) J Phys Chem 99:6608 CrossRefGoogle Scholar
  37. 37.
    Padowitz DF, Sada DM, Kemer EL, Dougan ML, Xue WA (2002) J Phys Chem B 106:593 CrossRefGoogle Scholar
  38. 38.
    De Feyter S, Larsson M, Schuurmans N, Verkuijl B, Zoriniants G, Gesquière A, Abdel-Mottaleb MM, van Esch J, Feringa BL, van Stam J, De Schryver FC (2003) Chem Eur J 9:198 Google Scholar
  39. 39.
    Vanoppen P, Grim PCM, Rücker M, De Feyter S, Moessner G, Valiyaveetil S, Müllen K, De Schryver FC (1996) J Phys Chem 100:19636 CrossRefGoogle Scholar
  40. 40.
    Nath KG, Ivasenko O, Miwa JA, Dang H, Wuest JD (2006) J Am Chem Soc 128:4212 CrossRefGoogle Scholar
  41. 41.
    Nath KG, Ivasenko O, MacLeod JM, Miwa JA, Wuest JD, Nanci A, Perepichka DF, Rosei F (2007) J Phys Chem C 111:16996 CrossRefGoogle Scholar
  42. 42.
    MacLeod JM, Ivasenko O, Perepichka DF, Rosei F (2007) Nanotechnology 18:1 CrossRefGoogle Scholar
  43. 43.
    De Feyter S, Miura A, Yao S, Chen Z, Wuerthner F, Jonkheijm P, Schenning APHJ, Meijer EW, De Schryver FC (2005) Nano Lett 5:77 CrossRefGoogle Scholar
  44. 44.
    Mamdouh W, Dong M, Xu S, Rauls E, Besenbacher F (2006) J Am Chem Soc 128:13305 CrossRefGoogle Scholar
  45. 45.
    Lei SB, Yin SX, Wang C, Wan LJ, Bai CL (2007) Chem Mater 14:2837 CrossRefGoogle Scholar
  46. 46.
    Mamdouh W, Uji-i H, Dulcey AE, Percec V, De Feyter S, De Schryver FC (2004) Langmuir 20:7678 CrossRefGoogle Scholar
  47. 47.
    Mamdouh W, Uji-i H, Ladislaw JS, Dulcey AE, Percec V, De Schryver FC, De Feyter S (2006) J Am Chem Soc 128:317 CrossRefGoogle Scholar
  48. 48.
    Gong JR, Yan HJ, Yuan QH, Xu LP, Bo ZS, Wan LJ (2006) J Am Chem Soc 128:317 CrossRefGoogle Scholar
  49. 49.
    Wei Y, Tong W, Wise C, Wei X, Armbrust K, Zimmt M (2006) J Am Chem Soc 128:13362 CrossRefGoogle Scholar
  50. 50.
    Mena-Osteritz E, Bäuerle P (2006) Adv Mater 18:447 CrossRefGoogle Scholar
  51. 51.
    Pan GB, Cheng XH, Höger S, Freyland W (2006) J Am Chem Soc 128:4218 CrossRefGoogle Scholar
  52. 52.
    Lackinger M, Griessl S, Heckl WM, Hietschold M, Flynn GW (2005) Langmuir 21:4984 CrossRefGoogle Scholar
  53. 53.
    Griessl SJH, Lackinger M, Jamitzky F, Markert T, Hietschold M, Heckl WM (2004) J Phys Chem B 108:11556 CrossRefGoogle Scholar
  54. 54.
    Griessl SJH, Lackinger M, Jamitzky F, Markert T, Hietschold M, Heckl WM (2004) Langmuir 20:9403 CrossRefGoogle Scholar
  55. 55.
    Kampschulte L, Lackinger M, Maier AK, Kishore RSK, Griessl S, Schmittel M, Heckl WM (2006) J Phys Chem B 110:10829 CrossRefGoogle Scholar
  56. 56.
    Zhou H, Dang H, Yi JH, Nanci A, Rochefort A, Wuest JD (2007) J Am Chem Soc 129:13774 CrossRefGoogle Scholar
  57. 57.
    Ma Z, Wang YY, Wang P, Huang W, Li YB, Lei SB, Yang YL, Fan XL, Wang C (2007) ACSNano 1:160 Google Scholar
  58. 58.
    Kampschulte L, Griessl S, Heckl WM, Lackinger M (2005) J Phys Chem B 109:14074 CrossRefGoogle Scholar
  59. 59.
    Tahara K, Furukawa S, Uji-I H, Uchino T, Ichikawa T, Zhang J, Mamdouh W, Sonoda M, De Schryver FC, De Feyter S, Tobe Y (2006) J Am Chem Soc 128:16613 CrossRefGoogle Scholar
  60. 60.
    Bléger D, Kreher D, Mathevet F, Attias AJ, Schull G, Huard A, Douillard L, Fiorini-Debuischert C, Charra F (2007) Angew Chem Int Ed 46:7404 CrossRefGoogle Scholar
  61. 61.
    Liu Y, Lei SB, Yin S, Xu S, Zheng Q, Zeng Q, Wang C, Wan L, Bai CL (2002) J Phys Chem B 106:12569 CrossRefGoogle Scholar
  62. 62.
    Furukawa S, Uji-I H, Tahara K, Ichikawa T, Sonoda M, De Schryver FC, Tobe Y, De Feyter S (2006) J Am Chem Soc 128:3502 CrossRefGoogle Scholar
  63. 63.
    Lei S, Tahara K, De Schryver FC, Van der Auweraer M, Tobe Y, De Feyter S (2008) Angew Chem Int Ed 47:2964 CrossRefGoogle Scholar
  64. 64.
    Schull G, Douillard L, Fiorini-Debuisschert C, Charra F (2007) Nano Lett 6:1360 CrossRefGoogle Scholar
  65. 65.
    Schull G, Douillard L, Fiorini-Debuisschert C, Charra F, Mathevet F, Kreher D, Attias AJ (2006) Adv Mater 18:2954 CrossRefGoogle Scholar
  66. 66.
    Furukawa S, Tahara K, De Schryver FC, Van der Auweraer M, Tobe Y, De Feyter S (2007) Angew Chem Int Ed 46:2831 CrossRefGoogle Scholar
  67. 67.
    Lei S, Tahara K, Feng X, Furukawa S, De Schryver F, Müllen K, Tobe Y, De Feyter S (2008) J Am Chem Soc, in press Google Scholar
  68. 68.
    Lu J, Lei SB, Zeng Q, Kang S, Wang C, Wan LJ, Bai CL (2007) J Phys Chem B 108:5161 CrossRefGoogle Scholar
  69. 69.
    Kong XH, Deng K, Yang YL, Zeng QD, Wang C (2007) J Phys Chem C 111:17382 CrossRefGoogle Scholar
  70. 70.
    Li SS, Yan HJ, Wan LJ, Yang HB, Northrop BH, Stang PJ (2007) J Am Chem Soc 129:9268 CrossRefGoogle Scholar
  71. 71.
    Kong XH, Deng K, Yang YL, Zeng QD, Wang C (2007) J Phys Chem C 111:9235 CrossRefGoogle Scholar
  72. 72.
    Zhang HM, Yan JW, Xie ZX, Mao BW, Xu X (2006) Chem Eur J 12:4006 CrossRefGoogle Scholar
  73. 73.
    Uosaki K, Yamada R (1999) J Am Chem Soc 121:4090 CrossRefGoogle Scholar
  74. 74.
    Yamada R, Uosaki K (2000) J Phys Chem B 104:6021 CrossRefGoogle Scholar
  75. 75.
    Zhang HM, Xie ZX, Mao BW, Xin X (2004) Chem Eur J 10:1415 CrossRefGoogle Scholar
  76. 76.
    Katsonis N, Marchenko A, Fichou D (2003) J Am Chem Soc 125:13682 CrossRefGoogle Scholar
  77. 77.
    Katsonis N, Vicario J, Kudernac T, Visser J, Pollard MM, Feringa BL (2006) J Am Chem Soc 128:15537 CrossRefGoogle Scholar
  78. 78.
    Lei SB, Puimarti-Luis J, Minoia A, Van der Auweraer M, Lazzaroni R, Amabilino DB, De Feyter S (2008) Chem Commun 6:703 CrossRefGoogle Scholar
  79. 79.
    Lei SB, Wang C, Wan LJ, Bai CL (2004) J Phys Chem B 118:1173 CrossRefGoogle Scholar
  80. 80.
    Piot L, Marchenko A, Wu J, Müllen K, Fichou D (2005) J Am Chem Soc 127:16245 CrossRefGoogle Scholar
  81. 81.
    Samori P, Severin N, Simpson CD, Müllen K, Rabe JP (2002) J Am Chem Soc 124:9457 CrossRefGoogle Scholar
  82. 82.
    Samori P, Yin X, Tchebotareva N, Wang Z, Pakula T, Jäckel F, Watson MD, Venturini A, Müllen K, Rabe JP (2004) J Am Chem Soc 126:3567 CrossRefGoogle Scholar
  83. 83.
    Jäckel F, Wang Z, Watson MD, Müllen K, Rabe JP (2004) Chem Phys Lett 387:372 CrossRefGoogle Scholar
  84. 84.
    Hermann BA, Scherer JL, Housecroft CE, Constable EC (2006) Adv Func Mater 16:221 CrossRefGoogle Scholar
  85. 85.
    Jäckel F, Watson MD, Müllen K, Rabe JP (2004) Phys Rev Lett 92:188303 CrossRefGoogle Scholar
  86. 86.
    Enkelmann V (1984) Adv Polym Sci 63:91 CrossRefGoogle Scholar
  87. 87.
    Grim PCM, De Feyter S, Gesquière A, Vanoppen P, Rucker M, Valiyaveettil S, Moessner G, Müllen K, De Schryver FC (1997) Angew Chem Int Ed Eng 36:2601 CrossRefGoogle Scholar
  88. 88.
    Okawa Y, Aono M (2001) Nature 409:683 CrossRefGoogle Scholar
  89. 89.
    Miura A, De Feyter S, Abdel-Mottaleb MMS, Gesquière A, Grim PCM, Moessner G, Sieffert M, Klapper M, Müllen K, De Schryver FC (2003) Langmuir 19:6474 CrossRefGoogle Scholar
  90. 90.
    Hulsken B, Van Hameren R, Gerritsen JW, Khoury T, Thordarson P, Crossley MJ, Rowan AE, Nolte RJM, Elemans JAAW, Speller S (2007) Nat Nanotechnol 2:285 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Division of Molecular and Nano Materials, Department of Chemistry, and INPAC –Institute for Nanoscale Physics and ChemistryKatholieke Universiteit LeuvenLeuvenBelgium
  2. 2.ERATO Kitagawa Integrated Pores ProjectJapan Science and Technology Agency (JST)KyotoJapan

Personalised recommendations