Advertisement

From Self-Assembly to Charge Transport with Single Molecules – An Electrochemical Approach

  • Bo Han
  • Zhihai Li
  • Chen Li
  • Ilya Pobelov
  • Guijin Su
  • Rocio Aguilar-Sanchez
  • Thomas WandlowskiEmail author
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 287)

Abstract

Structure formation and self-assembly of physisorbed and chemisorbed organic monolayers will be describedon electrified solid–liquid interfaces employing in-situ scanning tunneling microscopy (STM) and surface-enhancedinfrared spectroscopy (SEIRAS) in combination with electrochemical techniques. We present first a casestudy on self-assembly by directional hydrogen bonding and its interplay with the electrode potential choosingaromatic carboxylic acids, with an emphasis on 1,3,5-benzene-tricarboxylic acid (TMA). Structure and electricalcharacteristics of chemisorbed organic monolayers involving the formation of covalent bonds with the substratesurface will be discussed for a series of 4-methyl-4′-(n-mercaptoalkyl)biphenylson Au(111) electrodes. In an attempt to explore single molecule properties, such as charge transport andredox-mediated tunneling, we subsequently introduce an STM-based technique to construct symmetric and asymmetricmetal/(single) molecule/metal junctions. Employing α,ω-alkanedithiols and redox-active derivatives of viologens we demonstratenovel transport and single molecule electrochemical studies, which bear unique novel perspectives for fundamentalas well as applied investigations.

Charge transport Electrochemistry Scanning tunneling microscopy (STM) Scanning tunneling spectroscopy (STS) Self assembly Single molecules 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lehn J-M (1995) Supramolecular Chemistry: Concepts and Perspectives. Wiley-VCH, Weinheim CrossRefGoogle Scholar
  2. 2.
    Whitesides GM (2002) Science 295:2418–2421 CrossRefGoogle Scholar
  3. 3.
    Leininger S, Olenyuk B, Stang PJ (2000) Chem Rev 100:853–908 CrossRefGoogle Scholar
  4. 4.
    Barth JV, Costantini G, Kern K (2005) Nature 437:671–679 CrossRefGoogle Scholar
  5. 5.
    Desiraju GR (2002) Acc Chem Res 35:565–573 CrossRefGoogle Scholar
  6. 6.
    Kaifer AE, Gómez-Kaifer M (1999) Supramolecular Chemistry. Wiley-VCH, Weinheim Google Scholar
  7. 7.
    Wandlowski T (2003) Fundamentals of Nanoelectronics. Lectures of the 34th IFF Spring School; Jülich Google Scholar
  8. 8.
    Heath JR, Ratner MA (2003) Phys Today 5:43–46 CrossRefGoogle Scholar
  9. 9.
    Moore G (1965) Electron Mag 4:19–22 Google Scholar
  10. 10.
    Iwasita T, Nart F (1997) Progr Surf Sci 55:271–340 CrossRefGoogle Scholar
  11. 11.
    Wandlowski T, Ocko BM, Magnussen OM, Wu S, Lipkowski J (1996) J Electroanal Chem 409:155–164 CrossRefGoogle Scholar
  12. 12.
    Wu S, Lipkowski J, Magnussen OM, Ocko BM, Wandlowski T (1998) J Electroanal Chem 446:67–77 CrossRefGoogle Scholar
  13. 13.
    Hamelin A (1995) Harmony of electrochemical results, in situ STM observations and in situ SXRS data at gold | aqueous solution interfaces. In: Gewirth AG, Siegenthaler H (eds) Nanoscale Probes of the Solid/Liquid Interface. Kluwer, Dordrecht, pp 285–306 Google Scholar
  14. 14.
    Kolb DM, Schneider J (1986) Electrochim Acta 31:929–936 CrossRefGoogle Scholar
  15. 15.
    Zei MS, Lehmpfuhl G, Kolb DM (1985) Surf Sci 221:23–34 CrossRefGoogle Scholar
  16. 16.
    Friedrich A, Pettinger B, Kolb DM, Lüpke G, Steinhoff R, Marowsky G (1989) Chem Phys Lett 163:123–128 CrossRefGoogle Scholar
  17. 17.
    Wang J, Ocko BM, Davenport AJ, Isaacs HS (1992) Phys Rev B 46:10321–10338 CrossRefGoogle Scholar
  18. 18.
    Magnussen OM (1993) PhD Thesis, University of Ulm Google Scholar
  19. 19.
    Gao X, Hamelin A, Weaver MJ (1991) J Chem Phys 95:6993–6996 CrossRefGoogle Scholar
  20. 20.
    Tao NJ, Lindsay SM (1992) Surf Sci 274:L546–L552 CrossRefGoogle Scholar
  21. 21.
    Dretschkow T, Wandlowski T (2003) Structural transitions in organic adlayers – A molecular view. In: Wandelt K, Thurgate S (eds) Solid–Liquid Interfaces: Macroscopic Phenomena – Microscopic Understanding. Springer, Berlin, pp 259–321 Google Scholar
  22. 22.
    Wandlowski T, Ataka K, Pronkin S, Diesing D (2006) Electrochim Acta 49:1233–1247 CrossRefGoogle Scholar
  23. 23.
    Kolb DM (1996) Prog Surf Sci 51:109–173 CrossRefGoogle Scholar
  24. 24.
    Chambliss DD, Wilson RJ (1991) J Vac Sci Technol B 9:928–932 CrossRefGoogle Scholar
  25. 25.
    Barth JV, Brune H, Ertl G, Behm RJ (1990) Phys Rev 42:9307–9318 CrossRefGoogle Scholar
  26. 26.
    Randler R (1995) Diploma Thesis, University of Ulm Google Scholar
  27. 27.
    Magnussen OM, Hageböck J, Hotlos J, Behm RJ (1992) Faraday Discuss Chem Soc 94:329–338 CrossRefGoogle Scholar
  28. 28.
    Eden GJ, Gao X, Weaver MJ (1994) J Electroanal Chem 375:357–366 CrossRefGoogle Scholar
  29. 29.
    Dretschkow T, Wandlowski T (1997) Ber Bunsenges Phys Chem 101:749–756 CrossRefGoogle Scholar
  30. 30.
    Cuesta A, Kleinert M, Kolb DM (2000) PhysChemChemPhys 2:5684–5690 Google Scholar
  31. 31.
    Ataka K, Osawa M (1998) Langmuir 14:951–959 CrossRefGoogle Scholar
  32. 32.
    Magnussen OM, Hotlos J, Behm RJ, Batina N, Kolb DM (1993) Surf Sci 296:310–332 CrossRefGoogle Scholar
  33. 33.
    Gao X, Edens GJ, Hamelin A, Weaver MJ (1993) Surf Sci 296:333–342 CrossRefGoogle Scholar
  34. 34.
    Batina N, Dakkouri AS, Kolb DM (1994) J Electroanal Chem 370:87–94 CrossRefGoogle Scholar
  35. 35.
    Ocko BM, Wang J, Davenport A, Isaacs H (1990) Phys Rev Lett 65:1466–1469 CrossRefGoogle Scholar
  36. 36.
    Lehn JM (1995) Supramolecular Chemistry. Wiley-VCH, Weinheim CrossRefGoogle Scholar
  37. 37.
    Atwood LJ, Davies JED, MacNicols DD, Vögtle F, Lehn JM (eds) (1996) Comprehensive Supramolecular Chemistry. Pergamon, New York Google Scholar
  38. 38.
    Etter MC (1990) Acc Chem Res 23:120–126 CrossRefGoogle Scholar
  39. 39.
    Desiraju GR (1989) Crystal Engineering. Elsevier, Amsterdam Google Scholar
  40. 40.
    Ward MD, Hollingsworth MD (eds) (1994) Chem Mater 6 Google Scholar
  41. 41.
    Jeffrey GA, Saenger W (1991) Hydrogen Bonding. Biological Structures. Springer, Berlin CrossRefGoogle Scholar
  42. 42.
    Subramanian S, Zaworotko MJ (1994) Coord Chem Rev 137:357–401 CrossRefGoogle Scholar
  43. 43.
    MacDonald JG, Whitesides GM (1994) Chem Rev 94:2383–2420 CrossRefGoogle Scholar
  44. 44.
    Melendez R, Hamilton AD (1998) Topics Curr Chem 198:97–129 CrossRefGoogle Scholar
  45. 45.
    Bailey M, Brown CJ (1967) Acta Crystallogr 22:387–391 CrossRefGoogle Scholar
  46. 46.
    Alcala R, Martinez-Carrera S (1969) Acta Crystallogr B 25:5–19 CrossRefGoogle Scholar
  47. 47.
    Duchamp DJ, March RE (1972) Acta Crystallogr B 28:1671–1677 CrossRefGoogle Scholar
  48. 48.
    Zaworotko MJ (2001) Chem Commun 1:1–138 CrossRefGoogle Scholar
  49. 49.
    Herbstein FH (1987) Top Curr Chem 140:107–139 CrossRefGoogle Scholar
  50. 50.
    Herbstein FH (1996) 1,3,5-Benzene-tricarboxylic acid. In: Atwood JL; MacNicol DD, Vögtle F, Lehn JM (eds) Comprehensive Supramolecular Chemistry, Vol 6. Pergamon, New York, p 61 Google Scholar
  51. 51.
    Herbstein FH, Kapon M, Maor I, Reisner GM (1981) Acta Crystallogr B 37:136–142 CrossRefGoogle Scholar
  52. 52.
    De Feyter S, Gasquiere A, Klapper M, Müllen K, De Schryver FC (2003) Nano Lett 3:1485–1488 CrossRefGoogle Scholar
  53. 53.
    De Feyter S, De Schryver FC (2003) Chem Soc Rev 32:139–150 CrossRefGoogle Scholar
  54. 54.
    Rabe JP, Buchholtz S (1991) Science 253:424–427 CrossRefGoogle Scholar
  55. 55.
    Eichhorst-Gerner K, Stabel A, Moessner G, Declerq D, Valiyaveettil S, Enkelmann V, Müllen K, Rabe JP (1996) Angew Chem Int Ed 35:1492–1495 CrossRefGoogle Scholar
  56. 56.
    Lin N, Dmitriev A, Weckesser J, Barth JV, Kern K (2002) Angew Chem Int Ed 41:4779–4783 CrossRefGoogle Scholar
  57. 57.
    Ermer O, Neudörfl J (2001) Chem Eur J 7:4961–4980 CrossRefGoogle Scholar
  58. 58.
    Kolotuchin SV, Fenlon EE, Wilson SR, Loweth CJ, Zimmerman SC (1996) Angew Chem Int Ed 34:2654–2657 CrossRefGoogle Scholar
  59. 59.
    Melendez RE, Sharma CVK, Zaworotko MJ, Bauer C, Rogers RD (1996) Angew Chem Int Ed 35:2213–2215 CrossRefGoogle Scholar
  60. 60.
    Yaghi OM, Li G, Li H (1995) Nature 378:703–706 CrossRefGoogle Scholar
  61. 61.
    Gutschke SOH, Molinier M, Powell AK, Winpenny REP, Wood PT (1996) Chem Commun 823–824 Google Scholar
  62. 62.
    Dmitriev A, Lin N, Weckesser J, Barth JV, Kern K (2002) J Phys Chem B 106:6907–6912 CrossRefGoogle Scholar
  63. 63.
    Griessl S, Lackinger M, Edelwirth M, Hietschold M, Heckl W (2002) Single Molecule 3:25–31 CrossRefGoogle Scholar
  64. 64.
    Feyter S, De Schryver FC (2005) J Phys Chem B 109:4290–4302 CrossRefGoogle Scholar
  65. 65.
    Ishikawa Y, Ohira A, Sakata M, Hirayama C, Kunitake M (2002) Chem Commun 2652–2653 Google Scholar
  66. 66.
    Su GJ, Zhang HM, Wan LJ, Bai CL, Wandlowski T (2004) J Phys Chem B 108:1931–1937 CrossRefGoogle Scholar
  67. 67.
    Li Z, Wang LJ, Han B (2005) Langmuir 21:6915–6928 CrossRefGoogle Scholar
  68. 68.
    Han B, Li Z, Pronkin S, Wandlowski T (2004) Can J Chem 82:1481–1494 CrossRefGoogle Scholar
  69. 69.
    Spillmann H, Dmitriev A, Lin N, Messina P, Barth JV, Kern K (2003) J Am Chem Soc 125:10725–10728 CrossRefGoogle Scholar
  70. 70.
    Wandlowski T (2003) Phase transitions in two-dimensional adlayers at electrode surfaces: Thermodynamics, kinetics and structural aspects. In: Gileadi E, Urbakh M (eds) Encyclopedia of Electrochemistry. Wiley, pp 383–467 Google Scholar
  71. 71.
    Yoshimoto S (2006) Bull Chem Soc Jpn 79:1167–1190 CrossRefGoogle Scholar
  72. 72.
    Wang D, Wan LJ (2007) J Phys Chem C 111:16109–16130 CrossRefGoogle Scholar
  73. 73.
    Dean JA (ed) (1985) Lange's Handbook of Chemistry. Mc Graw–Hill, New York, pp 5–42 Google Scholar
  74. 74.
    Lippel PH, Wilson RJ, Miller MD, Wöll C, Chiang S (1989) Phys Rev Lett 62:171–174 CrossRefGoogle Scholar
  75. 75.
    Chiang S (1997) Chem Rev 97:1083–1096 CrossRefGoogle Scholar
  76. 76.
    Sautet P (1997) Chem Rev 97:1097–1116 CrossRefGoogle Scholar
  77. 77.
    Böhringer M, Morgenstern K, Schneider WD, Berndt R, Mauri F, de Vita A, Car R (1999) Phys Rev Lett 83:324–327 CrossRefGoogle Scholar
  78. 78.
    Yuan HJ, Lu J, Wan LJ, Bai CL (2004) J Phys Chem B 108:11251–11255 CrossRefGoogle Scholar
  79. 79.
    Barth JV, Weckesser J, Trimarchi G, Vladimirova M, de Vita A, Cai C, Brune H, Günter P, Kern K (2002) J Am Chem Soc 124:7991–8000 CrossRefGoogle Scholar
  80. 80.
    Atoderesi T, Blügel S (2005) personal communication Google Scholar
  81. 81.
    Steiner T (2002) Angew Chem 114:50–113 CrossRefGoogle Scholar
  82. 82.
    Griessl SJ, Lackinger M, Jamitzky F, Markert T, Hietschold M, Heckl W (2004) Langmuir 20:9403–9407 CrossRefGoogle Scholar
  83. 83.
    Desiraju GR (1995) Angew Chem Int Ed 34:2311–2327 CrossRefGoogle Scholar
  84. 84.
    Sumetskii M, Kornyshev AA (1993) Phys Rev B 48:17493–17506 CrossRefGoogle Scholar
  85. 85.
    Kanter JA, Roelofsen G (1976) Acta Cryst B 32:3328–3331 CrossRefGoogle Scholar
  86. 86.
    Lei SL, Wang C, Yin SX, Wang HN, Xi F, Liu HW, Wan LJ, Bai CL (2001) J Phys Chem B 105:10838–10841 CrossRefGoogle Scholar
  87. 87.
    Herbstein FH, Marsh RE (1977) Acta Cryst B 33:2358–2367 CrossRefGoogle Scholar
  88. 88.
    Chatterjee S, Pedireddi VR, Ranganathan A, Rao CNR (2000) J Mol Struct 520:107–115 CrossRefGoogle Scholar
  89. 89.
    Dale SH, Elsegood MRJ, Richards SJ (2004) Chem Commun 1278–1279 Google Scholar
  90. 90.
    Frederick BG, Chen Q, Leibsle FM, Lee MB, Kitching KJ, Richards NV (1997) Surf Sci 394:1–25 CrossRefGoogle Scholar
  91. 91.
    Arenas JF, Marcos JI (1979) Spectrochim Acta 35A:355–361 Google Scholar
  92. 92.
    Gonzalez-Sanchez F (1957) Spectrochim Acta 12:17–25 CrossRefGoogle Scholar
  93. 93.
    Osawa M (1997) Bull Chem Soc Jpn 70:2861–2880 CrossRefGoogle Scholar
  94. 94.
    Ikezawa Y, Sekiguchi R, Kitazume T (2000) Electrochim Acta 46:731–736 CrossRefGoogle Scholar
  95. 95.
    Noda H, Wan LJ, Osawa M (2001) Phys Chem Chem Phys 3:3336–3342 CrossRefGoogle Scholar
  96. 96.
    Noda H, Ataka K, Wan LJ, Osawa M (1999) Surf Sci 427/428:190–194 CrossRefGoogle Scholar
  97. 97.
    Frederick BG, Ashton MR, Richardson NV, Jones TS (1993) Surf Sci 292:33–46 CrossRefGoogle Scholar
  98. 98.
    Frederick BG, Leibsle FM, Haq S, Richardson NV (1996) Surf Rev Lett 3:1523–1546 CrossRefGoogle Scholar
  99. 99.
    Casarin M, Granozzi G, Sambi M, Tondello E (1994) Surf Sci 307–309:95–100 CrossRefGoogle Scholar
  100. 100.
    Ortega-Lorenzo M, Baddeley CJ, Muryn C, Raval R (2000) Nature 404:376–379 CrossRefGoogle Scholar
  101. 101.
    De Feyter S, Gasquiere A, Abdel-Mottaleb MM, Grim PCM, de Schriver FC, Meiners C, Siffert M, Valiyaveettil S, Müllen K (2000) Acc Chem Res 33:520–531 CrossRefGoogle Scholar
  102. 102.
    Kolotuchin SV, Thiessen PA, Fenton EE, Wilson SR, Loweth CJ, Zimmerman SC (1999) Chem Eur J :2537–2547 Google Scholar
  103. 103.
    Li Z, Han B, Wandlowski T (2008) Electrochim Acta, in preparation Google Scholar
  104. 104.
    Swalen JD, Allara DL, Andrade JD, Chandross EA, Garoff S, Israelachvilli J, McCarthy IJ, Murray R, Pease RF, Rabold JF, Wynne KJ, Yu H (1987) Langmuir 3:932–950 CrossRefGoogle Scholar
  105. 105.
    Iwamoto M, Chen-Xu W (2001) The Physical Properties of Organic Monolayers. World Scientific Publishers, Singapore CrossRefGoogle Scholar
  106. 106.
    Ulman A (1996) Chem Rev 96:1533–1554 CrossRefGoogle Scholar
  107. 107.
    Schreiber F (2004) J Phys Condens Matter 16:R881–R900 CrossRefGoogle Scholar
  108. 108.
    Wilbur J, Whitesides GM (1999) Self-assembly and self-assembled monolayers in micro- and nanofabrication. In: Timp G (ed) Nanotechnology. Springer, New York, pp 331–342 CrossRefGoogle Scholar
  109. 109.
    Nuzzo RG, Allara DL (1983) J Am Chem Soc 105:4481–4483 CrossRefGoogle Scholar
  110. 110.
    Smith RK, Lewis PA, Weiss PS (2004) Prog Surf Sci 75:1–68 CrossRefGoogle Scholar
  111. 111.
    Love JC, Estroff LA, Kribel JK, Nuzzo RG, Whitesides GM (2005) Chem Rev 105:1103–1170 CrossRefGoogle Scholar
  112. 112.
    Mrksich M, Chen CS, Xia Y, Dike LE, Ingber DE, Whitesides GM (1996) Proc Natl Acad Sci USA 93:10775–10778 CrossRefGoogle Scholar
  113. 113.
    Ahn HS, Cuong PD, Park S, Kim YW, Lim JC (2003) Wear 255:819–825 CrossRefGoogle Scholar
  114. 114.
    Zhang J, Chi Q, Kuznetsov AM, Hansen AG, Wackerbarth H, Christensen HEM, Andersen JET, Ulstrup J (2002) J Phys Chem B 106:1131–1152 CrossRefGoogle Scholar
  115. 115.
    Whelan CM, Kinsella M, Ho HM, Maex K (2004) J Electrochem Soc 151:B33–B39 CrossRefGoogle Scholar
  116. 116.
    Finklea HO (1996) Electrochemistry of organized monolayers of thioles and related molecules on electrodes. In: Bard AJ (ed) Electroanal. Chem., Vol 19. Dekker, New York, pp 109–335 Google Scholar
  117. 117.
    Baunach T, Ivanova V, Kolb DM, Boyen HG, Ziemann P, Büttner M, Oelhafen P (2004) Adv Mater 16:2024–2028 CrossRefGoogle Scholar
  118. 118.
    Mantooth BA, Weiss PS (2003) Proc IEEE 91:1785–1802 CrossRefGoogle Scholar
  119. 119.
    Cuniberti G, Fagas G, Richter K (eds) Introduction to Molecular Electronics. Springer, Berlin Google Scholar
  120. 120.
    Nichols R (ed) (2006) Molecular Wires and Nanoscale Conductors – Fundamentals and Applications. Faraday Discuss 131 Google Scholar
  121. 121.
    Salomon A, Cahen D, Lindsay SM, Tomfohr J, Engelkes VB, Frisbie CD (2003) Adv Mater 15:1881–1890 CrossRefGoogle Scholar
  122. 122.
    McCreery RL (2004) Chem Mater 16:4477–4496 CrossRefGoogle Scholar
  123. 123.
    Porter MD, Bright TB, Allara DL, Chidsey CED (1987) J Am Chem Soc 109:3559–3568 CrossRefGoogle Scholar
  124. 124.
    Chidsey CED (1991) Science 251:919–922 CrossRefGoogle Scholar
  125. 125.
    Becka A, Miller C (1992) J Phys Chem 96:2657–2668 CrossRefGoogle Scholar
  126. 126.
    Finklea HO, Handshew DD (1992) J Am Chem Soc 114:3173–3181 CrossRefGoogle Scholar
  127. 127.
    Holmlin RE, Haag R, Chabinyc MI, Ismagilov RF, Cohen AC, Terfort A, Rampi MA, Whitesides GM (2001) J Am Chem Soc 123:5075–5085 CrossRefGoogle Scholar
  128. 128.
    Yang G, Liu G (2003) J Phys Chem B 107:8746–8759 CrossRefGoogle Scholar
  129. 129.
    Li X, He J, Hihath J, Xu B, Lindsay SM, Tao NJ (2006) J Am Chem Soc 126:2135–2141 CrossRefGoogle Scholar
  130. 130.
    Ulman A (2001) Acc Chem Res 34:855–863 CrossRefGoogle Scholar
  131. 131.
    Sikes HD, Smalley JF, Dudek SP, Cook AR, Newton MD, Chidsey CED, Feldberg SW (2001) Science 291:1519–1523 CrossRefGoogle Scholar
  132. 132.
    Azzam JW, Bashir A, Terfort A, Strunskus T, Wöll C (2006) Langmuir 22:3647–3655 CrossRefGoogle Scholar
  133. 133.
    Adams DM, Brus L, Chidsey CED, Creager S, Creutz C, Kagan CR, Kamat PV, Lieberman M, Lindsay S, Marcus RA, Metzger RM, Michel-Beyerle ME, Miller JR, Newton MD, Rollison DR, Sankey O, Schanze KS, Yardely J, Zhu X (2003) J Phys Chem B 107:6668–6697 CrossRefGoogle Scholar
  134. 134.
    Ulman A, Scaringe RP (1992) Langmuir 8:894–897 CrossRefGoogle Scholar
  135. 135.
    Foster JS, Frommer JF (1988) Nature 333:542–545 CrossRefGoogle Scholar
  136. 136.
    Rong HT, Frey S, Yang YJ, Zharnikov M, Buck M, Wühn M, Wöll C, Helmchen G (2001) Langmuir 17:1582–1593 CrossRefGoogle Scholar
  137. 137.
    Heister K, Rong HT, Buck M, Zharnikov M, Grunze M, Johanson LSO (2001) J Phys Chem 105:6888–6894 Google Scholar
  138. 138.
    Azzam W, Cyganik P, Witte G, Buck M, Wöll C (2003) Langmuir 19:8262–8270 CrossRefGoogle Scholar
  139. 139.
    Cyganic P, Buck M (2004) J Am Chem Soc 126:5960–5961 CrossRefGoogle Scholar
  140. 140.
    Cyganik P, Buck M, Azzam W, Wöll C (2004) J Phys Chem B 108:4989–4996 CrossRefGoogle Scholar
  141. 141.
    Cyganik P, Buck M, Wilton-Ely JDET, Wöll C (2005) J Phys Chem B 109:10902–10908 CrossRefGoogle Scholar
  142. 142.
    Long YT, Rong HT, Buck M, Grunze M (2002) J Electroanal Chem 524/525:62–67 CrossRefGoogle Scholar
  143. 143.
    Thom I, Buck M (2005) Surf Sci 581:33–46 CrossRefGoogle Scholar
  144. 144.
    Felgenhauer T, Rong HT, Buck M (2003) J Electroanal Chem 550/551:309–319 CrossRefGoogle Scholar
  145. 145.
    Aguilar-Sanchez R, Su GJ, Homberger M, Simon U, Wandlowski T (2007) J Phys Chem C 111:17409–17419 CrossRefGoogle Scholar
  146. 146.
    Su GJ, Aguilar-Sanchez R, Li Z, Pobelov I, Homberger M, Simon U, Wandlowski T (2007) ChemPhysChem 8:1037–1048 CrossRefGoogle Scholar
  147. 147.
    Cavalleri O, Hirstein A, Bucher JP, Kern K (1996) Thin Solid Films 284/285:392–395 CrossRefGoogle Scholar
  148. 148.
    Iwami A, Hobora D, Yamamoto M, Kakiuchi T (2004) J Electronanal Chem 564:77–83 CrossRefGoogle Scholar
  149. 149.
    Frumkin AN, Petrii OA, Damaskin BB (1980) Potential of zero charge. In: Bockris JOM, Conway BE, Yeager E (eds) Comprehensive Treatise of Electrochemistry, Vol 1. Plenum Press, New York, pp 221–290 CrossRefGoogle Scholar
  150. 150.
    Sokolowski J, Czajkowski JM, Turowska M (1990) Electrochim Acta 35:1393–1398 CrossRefGoogle Scholar
  151. 151.
    Cuesta A (2004) Surf Sci 572:11–22 CrossRefGoogle Scholar
  152. 152.
    Kolb DM, Schneider J (1986) Electrochim Acta 31:929–936 CrossRefGoogle Scholar
  153. 153.
    Sondag-Huethhorst JAM, Fokkink LGJ (1992) Langmuir 8:2560–2566 CrossRefGoogle Scholar
  154. 154.
    Sondag-Huethhorst JAM, Fokkink LGJ (1994) J Electroanal Chem 367:49–57 CrossRefGoogle Scholar
  155. 155.
    Becka AM, Miller C (1993) J Phys Chem 97:6233–6239 CrossRefGoogle Scholar
  156. 156.
    Widrig CA, Chung C, Porter MD (1991) J Electroanal Chem 319:335–359 Google Scholar
  157. 157.
    Yang DF, Wilde CP, Morin M (1996) Langmuir 12:6570–6577 CrossRefGoogle Scholar
  158. 158.
    Imbayashi SI, Lida M, Hobara D, Feng ZO, Niki K, Kakiuchi T (1997) J Electroanal Chem 428:33–38 CrossRefGoogle Scholar
  159. 159.
    Chen A, Lipkowski J (1999) J Phys Chem B 103:682–691 CrossRefGoogle Scholar
  160. 160.
    Yang DF, Morin MJ (1997) Electroanal Chem 429:1–5 CrossRefGoogle Scholar
  161. 161.
    Yang DF, Morin MJ (1998) Electroanal Chem 441:173–181 CrossRefGoogle Scholar
  162. 162.
    Retter U, Kant W (1995) Thin Solid Films 256:89–93 CrossRefGoogle Scholar
  163. 163.
    Calvente JJ, Kovacova Z, Sanchez MD, Andreu R, Fawcett WR (1996) Langmuir 12:5696–5703 CrossRefGoogle Scholar
  164. 164.
    Wano H, Uosaki K (2001) Langmuir 17:8224–8228 CrossRefGoogle Scholar
  165. 165.
    Harrison JA, Thirsk HR (1971) The fundamentals of metal deposition. In: Bard AJ (ed) Electroanal. Chem, Vol 5. Dekker, New York, pp 67–121 Google Scholar
  166. 166.
    Wandlowski T (2002) Phase transitions. In: Gileadi E, Urbakh M (eds) Encyclopedia of Electrochemistry, Vol 1. VCH, Weinheim, pp 383–467 Google Scholar
  167. 167.
    Esplandiu MJ, Hageström H, Kolb DM (2001) Langmuir 17:828–838 CrossRefGoogle Scholar
  168. 168.
    Conway BE (1995) Prog Surf Sci 49:331–452 CrossRefGoogle Scholar
  169. 169.
    Wandlowski T, Pronkin S, Berna A, Hara M (2008) in preparation Google Scholar
  170. 170.
    Yang DF, Mazanai HA, Morin M (1997) J Phys Chem B 101:1158–1166 CrossRefGoogle Scholar
  171. 171.
    Ye S, Haba T, Sato Y, Shimazu K, Uosaki K (1999) PhysChemChemPhys 1:3653–3659 Google Scholar
  172. 172.
    Landauer R (1957) IBM J Res Dev 1:223–230 CrossRefGoogle Scholar
  173. 173.
    Bumm LA, Arnold JJ, Dunbar TD, Allara DL, Weiss PS (1999) J Phys Chem B 103:8122–8127 CrossRefGoogle Scholar
  174. 174.
    Rong HT, Frey S, Yang YJ, Zharnikov M, Buck M, Wühn M, Wöll C, Helmchen G (2001) Langmuir 17:1582 CrossRefGoogle Scholar
  175. 175.
    Dawydov AS (ed) (1976) Quantum Mechanics. Pergamon Press, Oxford Google Scholar
  176. 176.
    Wakamatsu S, Fuji S, Akiba U, Fujihira M (2003) Ultramicroscopy 97:19 CrossRefGoogle Scholar
  177. 177.
    Wold DJ, Haag R, Rampi MA, Frisbie CD (2002) J Phys Chem B 106:2813–2816 CrossRefGoogle Scholar
  178. 178.
    Wakamatsu S, Fuji S, Akiba U, Fujihira M (2003) Ultramicroscopy 97:19–26 CrossRefGoogle Scholar
  179. 179.
    Wakamatsu S, Akiba U, Fujihira M (2002) Jpn J Appl Phys 41:4998–5002 CrossRefGoogle Scholar
  180. 180.
    Lüssem B, Müller-Meskamp L, Karthäuser S, Waser R, Homberger M, Simon U (2006) Langmuir 22:3021–3027 CrossRefGoogle Scholar
  181. 181.
    Holmlin RE, Haag R, Chabinyc ML, Ismagilov RF, Cohen AE, Terfort AE, Rampi MA, Whitesides GM (2001) J Am Chem Soc 123:5075–5085 CrossRefGoogle Scholar
  182. 182.
    Sachs SB, Dudek SP, Hsung RP, Sita LR, Smalley JF, Newton MD, Feldberg SW, Chidsey CED (1997) J Am Chem Soc 119:10563–10564 CrossRefGoogle Scholar
  183. 183.
    Cui XD, Zarate X, Tomfohr J, Sankey OF, Primak A, Moore AL, Moore TA, Gust D, Harris G, Lindsay SM (2002) Nanotechnology 13:5 CrossRefGoogle Scholar
  184. 184.
    Wold DJ, Frisbie CD (2001) J Am Chem Soc 123:5549–5556 CrossRefGoogle Scholar
  185. 185.
    Davis JJ, Wang N, Morgan A, Zhang TT, Zhao JW (2006) Faraday Discuss 131:167–179 CrossRefGoogle Scholar
  186. 186.
    Meszaros G, Li C, Pobelov I, Wandlowski T (2007) Nanotechnology 18:424004 CrossRefGoogle Scholar
  187. 187.
    Simmons JG (1963) J Appl Phys 34:1793–1800 CrossRefGoogle Scholar
  188. 188.
    Datta S, Tian W, Hong SH, Reifenberger R, Henderson JL, Kubiak CP (1997) Phys Rev Lett 79:2530–2533 CrossRefGoogle Scholar
  189. 189.
    Haag R, Rampi MA, Holmlin RE, Whitesides GM (1999) J Am Chem Soc 121:7895–7906 CrossRefGoogle Scholar
  190. 190.
    Aviram A, Ratner MA (1974) Chem Phys Lett 29:277–283 CrossRefGoogle Scholar
  191. 191.
    Tao NJ (2006) Nat Nanotechnol 1:173–181 CrossRefGoogle Scholar
  192. 192.
    Chen F, Hihath J, Huang Z, Li X, Tao N (2007) Annu Rev Phys Chem 58:535–564 CrossRefGoogle Scholar
  193. 193.
    Donhauser ZJ, Mantooth BA, Kelly KF, Bumm LA, Monnell JD, Tapleton JJ, Price DW Jr, Rawlett AM, Allara DL, Tour JM, Weiss PS (2001) Science 292:2303–2307 CrossRefGoogle Scholar
  194. 194.
    Andres RP, Datta S, Janes DB, Kubiak CP, Reifenbeger R (2001) The design, fabrication and electronic properties of self-assembled molecular nanostructures. In: Nalwa HS (ed) Handbook of Nanostructured Materials and Nanotechnology, Vol 3. AP, New York, p 180 Google Scholar
  195. 195.
    Gimzewski JK, Joachim C (1999) Science 283:1683–1688 CrossRefGoogle Scholar
  196. 196.
    Lu X, Hipps KW, Wang XD, Mazur U (1996) J Am Chem Soc 118:7197–7202 CrossRefGoogle Scholar
  197. 197.
    Scudiero L, Barlow DE, Hipps KW (2000) J Phys Chem B 104:11899–11905 CrossRefGoogle Scholar
  198. 198.
    Scudiero L, Barlow DE, Mazur U, Hipps KW (2001) J Am Chem Soc 123:4073–4080 CrossRefGoogle Scholar
  199. 199.
    Scudiero L, Barlow DE, Hipps KW (2002) J Phys Chem B 106:996–1003 CrossRefGoogle Scholar
  200. 200.
    Repp J, Meyer G, Paavilainen S, Olsson FE, Persson M (2006) Science 312:1196–1199 CrossRefGoogle Scholar
  201. 201.
    Temirov R, Lassise A, Anders B, Tautz FS (2008) Nanotechnology 19:065401 CrossRefGoogle Scholar
  202. 202.
    Wold DJ, Haag R, Rampi MA, Frisbie CD (2002) J Phys Chem B 106:2813–2816 CrossRefGoogle Scholar
  203. 203.
    Cui XD, Primak A, Zarate X, Tomfohr J, Sankey OF, Moore AL, Moore TA, Gust D, Harris G, Lindsay SM (2001) Science 294:571–574 CrossRefGoogle Scholar
  204. 204.
    Fan F-RF, Yang J, Cai L, Price DW Jr, Dirk SM, Kosynkin DV, Yao Y, Rawlett AM, Tour JM, Bard AJ (2002) J Am Chem Soc 124:5550–5560 CrossRefGoogle Scholar
  205. 205.
    Xu B, Tao NJ (2003) Science 301:1221–1223 CrossRefGoogle Scholar
  206. 206.
    Huang Z, Chen F, D'Agosta R, Bennett PA, Ventra MD, Tao N (2007) Nat Nanotechnol 2:698–703 CrossRefGoogle Scholar
  207. 207.
    Tao NJ (1996) Phys Rev Lett 76:4066–4069 CrossRefGoogle Scholar
  208. 208.
    Li C, Pobelov I, Wandlowski T, Bagrets A, Arnold A, Evers F (2008) J Am Chem Soc 130:318–326 CrossRefGoogle Scholar
  209. 209.
    Seferos DS, Trammell SA, Bazan GC, Kushmerick JG (2005) Proc Natl Acad Sci USA 102:8821–8825 CrossRefGoogle Scholar
  210. 210.
    Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM (1997) Science 278:252–254 CrossRefGoogle Scholar
  211. 211.
    Kergueris C, Bourgoin J-P, Palacin S, Esteve D, Urbina C, Magoga M, Joachim C (1999) Phys Rev B 59:12505–12513 CrossRefGoogle Scholar
  212. 212.
    Reichert J, Ochs R, Beckmann D, Weber HB, Mayor M, V Löhneysen H (2002) Phys Rev Lett 88:176804 CrossRefGoogle Scholar
  213. 213.
    Gonzalez MT, Wu S, Huber R, Van der Molen SJ, Schönenberger C, Calame M (2006) Nano Lett 6:2238–2242 CrossRefGoogle Scholar
  214. 214.
    Huber R, Gonzalez MT, Wu S, Langer M, Grunder S, Horhoiu V, Mayor M, Bryce MR, Wang C, Jitchati R, Schönenberger C, Calame M (2008) J Am Chem Soc 130:1080–1084 CrossRefGoogle Scholar
  215. 215.
    Lörtscher E, Ciszek JW, Tour J, Riel H (2006) Small 2:973–977 CrossRefGoogle Scholar
  216. 216.
    Park J, Pasupathy AN, Goldsmith JI, Chang C, Yaish Y, Petta JR, Rinkoski M, Sethna JP, Abruna HD, McEuen PL, Ralph DC (2002) Nature 417:722–725 CrossRefGoogle Scholar
  217. 217.
    Van der Zant HSJ, Osorio EA, Poot M, O'Neill K (2006) Phys Stat Sol B 243:3408–3412 CrossRefGoogle Scholar
  218. 218.
    Chen J, Reed MA, Rawlett AM, Tour JM (1999) Science 286:1550–1552 CrossRefGoogle Scholar
  219. 219.
    Tran E, Duati M, Whitesides GM, Rampi MA (2006) Faraday Discuss 131:197–203 CrossRefGoogle Scholar
  220. 220.
    White HS, Kittlesen GP, Wrighton MS (1984) J Am Chem Soc 106:5375–5377 CrossRefGoogle Scholar
  221. 221.
    Meulenkamp EA (1999) J Phys Chem B 103:7831–7838 CrossRefGoogle Scholar
  222. 222.
    Krüger M, Buitelaar MR, Nussbaumer T, Schönenberger C, Forro L (2001) Appl Phys Lett 78:1292–1293 CrossRefGoogle Scholar
  223. 223.
    Rosenblatt S, Yaish Y, Park J, Gore J, Sazonova V, McEuen PL (2002) Nano Lett 2:869–872 CrossRefGoogle Scholar
  224. 224.
    Corni S (2007) IEEE Trans Nanotechnol 6:561–570 CrossRefGoogle Scholar
  225. 225.
    He H, Zhu J, Tao NJ, Nagahara LA, Amlani I, Tsui R (2001) J Am Chem Soc 123:7730–7731 CrossRefGoogle Scholar
  226. 226.
    He HX, Li XL, Tao NJ, Nagahara LA, Amlani I, Tsui R (2003) Phys Rev B 68:045302 CrossRefGoogle Scholar
  227. 227.
    Chen F, He J, Nuckolls C, Roberts T, Klare JE, Lindsay S (2005) Nano Lett 5:503–506 CrossRefGoogle Scholar
  228. 228.
    Haiss W, Van Zalinge H, Higgins SJ, Bethell D, Höbenreich H, Schiffrin DJ, Nichols RJ (2003) J Am Chem Soc 125:15294–15295 CrossRefGoogle Scholar
  229. 229.
    Alessandrini A, Salerno M, Frabboni S, Facci P (2005) Appl Phys Lett 86:133902 CrossRefGoogle Scholar
  230. 230.
    Albrecht T, Guckian A, Ulstrup J, Vos JG (2005) Nano Lett 5:1451–1455 CrossRefGoogle Scholar
  231. 231.
    Li Z, Han B, Meszaros G, Pobelov I, Wandlowski T, Blaszczyk A, Mayor M (2006) Faraday Discuss 131:121–143 CrossRefGoogle Scholar
  232. 232.
    Xu B, Xiao X, Yang X, Zang L, Tao N (2005) J Am Chem Soc 127:2386–2387 CrossRefGoogle Scholar
  233. 233.
    Li X, Hihath J, Chen F, Masuda T, Zang L, Tao N (2007) J Am Chem Soc 129:11535–11542 CrossRefGoogle Scholar
  234. 234.
    Li C, Mishchenko A, Li Z, Pobelov I, Wandlowski T, Li XQ, Würthner F, Bagrets A, Evers F (2008) J Phys Condens Matter 20:374122 CrossRefGoogle Scholar
  235. 235.
    Yoshimoto S, Tada A, Suto K, Narita R, Itaya K (2003) Langmuir 19:672–677 CrossRefGoogle Scholar
  236. 236.
    Li Z, Pobelov I, Han B, Wandlowski T, Blaszczyk A, Mayor M (2007) Nanotechnology 18:044018 CrossRefGoogle Scholar
  237. 237.
    Haiss W, Albrecht T, Van Zalinge H, Higgins SJ, Bethell D, Höbenreich H, Schiffrin DJ, Nichols RJ, Kuznetsov AM, Zhang J, Chi Q, Ulstrup J (2007) J Phys Chem B 111:6703–6712 CrossRefGoogle Scholar
  238. 238.
    He J, Chen F, Lindsay S, Nuckolls C (2007) Appl Phys Lett 90:072112 CrossRefGoogle Scholar
  239. 239.
    Xu BQ, Li XL, Xiao XY, Sakaguchi H, Tao NJ (2005) Nano Lett 5:1491–1495 CrossRefGoogle Scholar
  240. 240.
    Albrecht T, Guckian A, Kuznetsov AM, Vos JG, Ulstrup J (2006) J Am Chem Soc 128:17132–17138 CrossRefGoogle Scholar
  241. 241.
    Albrecht T, Moth-Poulsen K, Christensen JB, Hjelm J, Bjørnholm T, Ulstrup J (2006) J Am Chem Soc 128:6574–6575 CrossRefGoogle Scholar
  242. 242.
    Visoly-Fisher I, Daie K, Terazono Y, Herrero C, Fungo F, Otero L, Durantini E, Silber JJ, Sereno L, Gust D, Moore TA, Moore AL, Lindsay SM (2006) Proc Natl Acad Sci USA 103:8686–8690 CrossRefGoogle Scholar
  243. 243.
    Xiao X, Nagahara LA, Rawlett AM, Tao N (2005) J Am Chem Soc 127:9235–9240 CrossRefGoogle Scholar
  244. 244.
    He J, Fu Q, Lindsay S, Ciszek JW, Tour JM (2006) J Am Chem Soc 128:14828–14835 CrossRefGoogle Scholar
  245. 245.
    Wassel RA, Credo GM, Fuierer RR, Feldheim DL, Gorman CB (2004) J Am Chem Soc 126:295–300 CrossRefGoogle Scholar
  246. 246.
    Xiao X, Brune D, He J, Lindsay S, Gorman CB, Tao N (2006) Chem Phys 326:138–143 CrossRefGoogle Scholar
  247. 247.
    Chi Q, Farver O, Ulstrup J (2005) Proc Natl Acad Sci USA 102:16203–16208 CrossRefGoogle Scholar
  248. 248.
    Alessandrini A, Corni S, Facci P (2006) PhysChemChemPhys 8:4383–4397 Google Scholar
  249. 249.
    Chi Q, Zhang J, Jensen PS, Christensen HEM, Ulstrup J (2006) Faraday Discuss 131:181–195 CrossRefGoogle Scholar
  250. 250.
    Leary E, Higgins SJ, Van Zalinge H, Haiss W, Nichols RJ (2007) Chem Commun 3939–3941 Google Scholar
  251. 251.
    Chen F, Li X, Hihath J, Huang Z, Tao N (2006) J Am Chem Soc 128:15874–15881 CrossRefGoogle Scholar
  252. 252.
    Venkataraman L, Park YS, Whalley AC, Nuckolls C, Hybertsen MS, Steigerwald ML (2007) Nano Lett 7:502–506 CrossRefGoogle Scholar
  253. 253.
    Kuznetsov AM, Medvedev IG, Ulstrup J (2007) J Chem Phys 127:104708 CrossRefGoogle Scholar
  254. 254.
    Huang Z, Chen F, Bennett PA, Tao N (2007) J Am Chem Soc 129:13225–13231 CrossRefGoogle Scholar
  255. 255.
    Zhang J, Chi Q, Kuznetsov AM, Hansen AG, Wackerbarth H, Christensen HEM, Andersen JET, Ulstrup J (2002) J Phys Chem B 106:1131–1152 CrossRefGoogle Scholar
  256. 256.
    Schmickler W, Widrig C (1992) J Electroanal Chem 336:213–221 CrossRefGoogle Scholar
  257. 257.
    Schmickler W (1993) Surf Sci 295:43–56 CrossRefGoogle Scholar
  258. 258.
    Schmickler W, Tao N (1997) Electrochim Acta 42:2809–2815 CrossRefGoogle Scholar
  259. 259.
    Kuznetsov AM, Ulstrup J (1991) Chem Phys 157:25–33 CrossRefGoogle Scholar
  260. 260.
    Kuznetsov AM, Ulstrup J (1994) Surf Coat Technol 67:193–200 CrossRefGoogle Scholar
  261. 261.
    Kuznetsov AM, Ulstrup J (2000) J Phys Chem A 104:11531–11540 CrossRefGoogle Scholar
  262. 262.
    Zhang J, Kuznetsov AM, Ulstrup J (2003) J Electroanal Chem 541:133–146 CrossRefGoogle Scholar
  263. 263.
    Zhang J, Chi Q, Albrecht T, Kuznetsov AM, Grubb M, Hansen AG, Wackerbarth H, Welinder AC, Ulstrup J (2005) Electrochim Acta 50:3143–3159 CrossRefGoogle Scholar
  264. 264.
    Schmickler W (1995) Surf Sci 335:416–421 CrossRefGoogle Scholar
  265. 265.
    Nitzan A (2001) Annu Rev Phys Chem 52:681–750 CrossRefGoogle Scholar
  266. 266.
    Kuznetsov AM, Schmickler W (2002) Chem Phys 282:371–377 CrossRefGoogle Scholar
  267. 267.
    McCreery RL (2004) Chem Mater 16:4477–4496 CrossRefGoogle Scholar
  268. 268.
    Wang W, Lee T, Reed MA (2004) J Phys Chem B 108:18398–18407 CrossRefGoogle Scholar
  269. 269.
    Pobelov I, Li Z, Wandlowski T (2008) J Am Chem Soc 10, in press Google Scholar
  270. 270.
    Ulrich J, Esrail D, Pontius W, Venkataraman L, Millar D, Doerrer LH (2006) J Phys Chem B 110:2462–2466 CrossRefGoogle Scholar
  271. 271.
    Jang SY, Reddy P, Majumdar A, Segalman RA (2006) Nano Lett 6:2362–2367 CrossRefGoogle Scholar
  272. 272.
    Fujihira M, Suzuki M, Fujii S, Nishikawa A (2006) PhysChemChemPhys 8:3876–3884 Google Scholar
  273. 273.
    Sek S, Misicka A, Swiatek K, Maicka E (2006) J Phys Chem 110:19671–19677 Google Scholar
  274. 274.
    Wierzbinski E, Slowinski K (2006) Langmuir 22:5205–5208 CrossRefGoogle Scholar
  275. 275.
    Li X, He J, Hihath J, Xu B, Lindsay SM, Tao NJ (2006) J Am Chem Soc 128:2135–2141 CrossRefGoogle Scholar
  276. 276.
    Xu XB, Xiao XY, Tao NJ (2003) J Am Chem Soc 125:16164–16165 CrossRefGoogle Scholar
  277. 277.
    Haiss W, Nichols RJ, V. Zalinge H, Higgins SJ, Bethell D, Schiffrin D (2004) J Phys Chem Chem Phys 6:4330–4337 CrossRefGoogle Scholar
  278. 278.
    Venkataraman L, Klare JE, Nuckolls C, Hybertsen MS, Steigerwald ML (2006) Nature 442:904–907 CrossRefGoogle Scholar
  279. 279.
    Wan WY, Lee T, Reed MA (2003) Phys Rev B 68:0354161 CrossRefGoogle Scholar
  280. 280.
    Slowinski K, Chamberlain RV, Miller CJ, Majda M (1997) J Am Chem Soc 119:11910–11919 CrossRefGoogle Scholar
  281. 281.
    York RL, Nguyen PT, Slowinski K (2003) J Am Chem Soc 125:5948–5953 CrossRefGoogle Scholar
  282. 282.
    Chidsey CED (1991) Science 251:919–922 CrossRefGoogle Scholar
  283. 283.
    Smalley JF, Feldberg SW, Chidsey CED, Linford MR, Newton MN, Liu YP (1995) J Phys Chem 99:13141–13149 CrossRefGoogle Scholar
  284. 284.
    Di Ventra M, Pantelides ST, Lang ND (2000) Appl Phys Lett 76:3448 CrossRefGoogle Scholar
  285. 285.
    Di Ventra M, Lang ND, Pantelides ST (2002) Chem Phys 281:189 CrossRefGoogle Scholar
  286. 286.
    Michaelis L, Hill ES (1933) J Gen Physiol 16:859–873 CrossRefGoogle Scholar
  287. 287.
    Bird CL, Kuhn AT (1981) Chem Soc Rev 10:49–82 CrossRefGoogle Scholar
  288. 288.
    Monk PMS (1998) The Viologens. John Wiley and Sons, Chichester Google Scholar
  289. 289.
    Long HCD, Buttry DA (1990) Langmuir 6:1319–1322 CrossRefGoogle Scholar
  290. 290.
    Long HCD, Buttry DA (1992) Langmuir 8:2491–2496 CrossRefGoogle Scholar
  291. 291.
    Sagara T, Kaba N, Komatsu M, Uchida M, Nakashima N (1998) Electrochim Acta 143:2183–2193 CrossRefGoogle Scholar
  292. 292.
    Alvarado RJ, Mukherjee J, Pacsial EJ, Alexander D, Raymo FM (2005) J Phys Chem B 109:6164–6173 CrossRefGoogle Scholar
  293. 293.
    Gittins DI, Bethell D, Schiffrin DJ, Nichols RJ (2000) Nature 408:67–69 CrossRefGoogle Scholar
  294. 294.
    Lahav M, Heleg-Shabtai V, Wasserman J, Katz E, Willner I, Dürr H, Hu YZ, Bossmann SH (2000) J Am Chem Soc 122:11480–11487 CrossRefGoogle Scholar
  295. 295.
    Akiyama T, Inoue K, Kuwahara Y, Niidome Y, Terasaki N, Nitahara S, Yamada S (2005) Langmuir 21:793–796 CrossRefGoogle Scholar
  296. 296.
    Han B, Li Z, Wandlowski T, Blaszczyk A, Mayor M (2007) J Phys Chem C 111:13855–13863 CrossRefGoogle Scholar
  297. 297.
    Haiss W, Van Zalinge H, Höbenreich H, Bethell D, Schiffrin DJ, Higgins SJ, Nichols RJ (2004) Langmuir 20:7694–7702 CrossRefGoogle Scholar
  298. 298.
    Haiss W, Nichols RJ, Higgins SJ, Bethell D, Höbenreich H, Schiffrin DJ (2004) Faraday Discuss 125:179–194 CrossRefGoogle Scholar
  299. 299.
    Bagrets A, Arnold A, Evers F (2008) J Am Chem Soc 130:9013–9018 CrossRefGoogle Scholar
  300. 300.
    Zhang J, Kuznetsov AM, Medvedev IG, Chi Q, Albrecht T, Jensen PS, Ulstrup J (2008) Chem Rev 108:2737–2791 CrossRefGoogle Scholar
  301. 301.
    Albrecht T, Moth-Poulsen K, Christensen JB, Guckian A, Bjørnholm T, Vos JG, Ulstrup J (2006) Faraday Discuss 131:265–279 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Bo Han
    • 1
    • 3
  • Zhihai Li
    • 1
  • Chen Li
    • 1
    • 2
  • Ilya Pobelov
    • 1
  • Guijin Su
    • 2
    • 4
  • Rocio Aguilar-Sanchez
    • 2
    • 5
  • Thomas Wandlowski
    • 1
    • 2
    Email author
  1. 1.Institute of Chemistry and BiochemistryUniversity of BerneBerneSwitzerland
  2. 2.Research Center Jülich, Institute of Bio- and Nanosystems 3JülichGermany
  3. 3.SKF Engineering and Research CenterMT NieuwegeinThe Netherlands
  4. 4.Research Center for Eco-Environmental Sciences, State Key Laboratoryof Environmental Chemistryand EcotoxicologyChinese Academy of SciencesBeijingP.R. China
  5. 5.Laboratorio de Electroquimica, Facultad de Ciencias QuimicasUniversidad Autonoma de PueblaPueblaMexico

Personalised recommendations