Photochemistry and Photophysics of Coordination Compounds II pp 143-203

Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 281) | Cite as

Photochemistry and Photophysics of Coordination Compounds: Iridium

  • Lucia Flamigni
  • Andrea Barbieri
  • Cristiana Sabatini
  • Barbara Ventura
  • Francesco Barigelletti

Abstract

Mononuclear Ir(III)-polyimine complexes show outstanding luminescence properties, i.e., high intensities, lifetimes in the μs time range, and emission wavelengths that can be tuned so as to cover a full range of visible colors, from blue to red. We discuss the approaches for the use of ligands that afford control on luminescence features. Emphasis is placed on subfamilies of cyclometalated complexes, whose recent enormous expansion is motivated by their potential for applications, including that as phosphorescent dopants in OLEDs fabrication. The interplay of the different excited states associated with the luminescence, usually of MLCT and/or LC nature, is examined and the possible detrimental role of MC levels toward the luminescence properties is outlined. Ir(III)-polyimine moieties can be incorporated within multicomponent arrays where they can play as photoactive and/or electroactive units in photoinduced energy and electron transfer processes. The field is reviewed with attention to the processes of light collection and conversion into chemical energy.

Iridium complexes Cyclometalating ligands Phosphorescence Electrochemistry Multicomponent arrays OLEDs Photoinduced processes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maestri M, Balzani V, Deuschel-Cornioley C, von Zelewsky A (1992) Adv Photochem 17:1–68 Google Scholar
  2. 2.
    Roundhill DM (1994) Photochemistry and Photophysics of Metal Complexes. Plenum Press, New York Google Scholar
  3. 3.
    Juris A, Balzani V, Barigelletti F, Campagna S, Belser P, Von Zelewsky A (1988) Coord Chem Rev 84:85 Google Scholar
  4. 4.
    Kober EM, Caspar JV, Lumpkin RS, Meyer TJ (1986) J Phys Chem 90:3722–3734 Google Scholar
  5. 5.
    Schanze KS, Macqueen DB, Perkins TA, Cabana LA (1993) Coord Chem Rev 122:63–89 Google Scholar
  6. 6.
    Watts RJ (1991) Comments on Inorganic Chemistry. Gordon and Breach, London 11:303–337 Google Scholar
  7. 7.
    Dixon IM, Collin JP, Sauvage JP, Flamigni L, Encinas S, Barigelletti F (2000) Chem Soc Rev 29:385–391 Google Scholar
  8. 8.
    King KA, Spellane PJ, Watts RJ (1985) J Am Chem Soc 107:1431–1432 Google Scholar
  9. 9.
    Tang CW, Van Slyke SA (1987) Appl Phys Lett 51:913–915 Google Scholar
  10. 10.
    Baldo MA, Thompson ME, Forrest SR (2000) Nature 403:750–753 Google Scholar
  11. 11.
    Adachi C, Baldo MA, Forrest SR, Thompson ME (2000) Appl Phys Lett 77:904–906 Google Scholar
  12. 12.
    Adachi C, Baldo MA, Thompson ME, Forrest SR (2001) J Appl Phys 90:5048–5051 Google Scholar
  13. 13.
    Evans RC, Douglas P, Winscom CJ (2006) Coord Chem Rev 250:2093–2126 Google Scholar
  14. 14.
    Braterman PS, Song JI, Peacock RD (1992) Inorg Chem 31:555–559 Google Scholar
  15. 15.
    Yersin H (2004) Transition Metal and Rare Earth Compounds Iii (Topics in Current Chemistry) 241:1–26 Google Scholar
  16. 16.
    Montalti M, Credi A, Prodi L, Gandolfi MT (2006) Handbook of Photochemistry. Taylor and Francis, Boca Raton, Fl Google Scholar
  17. 17.
    Hamann C, Von Zelewsky A, Neels A, Stoeckli-Evans H (2004) Dalton Trans 402–406 Google Scholar
  18. 18.
    Englman R, Jortner J (1970) Mol Phys 18:145 Google Scholar
  19. 19.
    Goze C, Chambron JC, Heitz V, Pomeranc D, Salom-Roig XJ, Sauvage JP, Morales AF, Barigelletti F (2003) Eur J Inorg Chem 3752–3758 Google Scholar
  20. 20.
    Demas JN, Harris EW, Flynn CM, Diemente D (1975) J Am Chem Soc 97:3838–3839 Google Scholar
  21. 21.
    Kahl JL, Hanck KW, Dearmond K (1978) J Phys Chem 82:540–545 Google Scholar
  22. 22.
    Ohsawa Y, Sprouse S, King KA, Dearmond MK, Hanck KW, Watts RJ (1987) J Phys Chem 91:1047–1054 Google Scholar
  23. 23.
    Ayala NP, Flynn CM, Sacksteder L, Demas JN, Degraff BA (1990) J Am Chem Soc 112:3837–3844 Google Scholar
  24. 24.
    Dedeian K, Djurovich PI, Garces FO, Carlson G, Watts RJ (1991) Inorg Chem 30:1685–1687 Google Scholar
  25. 25.
    Collin JP, Dixon IM, Sauvage JP, Williams JAG, Barigelletti F, Flamigni L (1999) J Am Chem Soc 121:5009–5016 Google Scholar
  26. 26.
    Garces FO, King KA, Watts RJ (1988) Inorg Chem 27:3464–3471 Google Scholar
  27. 27.
    Sprouse S, King KA, Spellane PJ, Watts RJ (1984) J Am Chem Soc 106:6647–6653 Google Scholar
  28. 28.
    Tamayo AB, Alleyne BD, Djurovich PI, Lamansky S, Tsyba I, Ho NN, Bau R, Thompson ME (2003) J Am Chem Soc 125:7377–7387 Google Scholar
  29. 29.
    Huo SQ, Deaton JC, Rajeswaran M, Lenhart WC (2006) Inorg Chem 45:3155–3157 Google Scholar
  30. 30.
    Yang XH, Neher D, Hertel D, Daubler TK (2004) Adv Mater 16:161 Google Scholar
  31. 31.
    Jones RAY (1984) Physical and Mechanistic Organic Chemistry. Cambridge University Press, Cambridge Google Scholar
  32. 32.
    Hay PJ (2002) J Phys Chem A 106:1634–1641 Google Scholar
  33. 33.
    Jung SO, Kang Y, Kim HS, Kim YH, Yang KY, Kwon SK (2003) Bull Korean Chem Soc 24:1521–1524 CrossRefGoogle Scholar
  34. 34.
    Day P, Sanders N (1967) J Chem Soc A 1536 Google Scholar
  35. 35.
    Tsuboyama A, Iwawaki H, Furugori M, Mukaide T, Kamatani J, Igawa S, Moriyama T, Miura S, Takiguchi T, Okada S, Hoshino M, Ueno K (2003) J Am Chem Soc 125:12971–12979 Google Scholar
  36. 36.
    Li J, Djurovich PI, Alleyne BD, Yousufuddin M, Ho NN, Thomas JC, Peters JC, Bau R, Thompson ME (2005) Inorg Chem 44:1713–1727 Google Scholar
  37. 37.
    Vlcek AA, Dodsworth ES, Pietro WJ, Lever ABP (1995) Inorg Chem 34:1906–1913 Google Scholar
  38. 38.
    Slinker J, Bernards D, Houston PL, Abruna HD, Bernhard S, Malliaras GG (2003) Chem Commun 2392–2399 Google Scholar
  39. 39.
    Muegge BD, Richter MM (2004) Anal Chem 76:73–77 Google Scholar
  40. 40.
    Kim JI, Shin IS, Kim H, Lee JK (2005) J Am Chem Soc 127:1614–1615 Google Scholar
  41. 41.
    Mayo EI, Kilsa K, Tirrell T, Djurovich PI, Tamayo A, Thompson ME, Lewis NS, Gray HB (2006) Photochem Photobiol Sci 5:871–873 Google Scholar
  42. 42.
    Goldsmith JI, Hudson WR, Lowry MS, Anderson TH, Bernhard S (2005) J Am Chem Soc 127:7502–7510 Google Scholar
  43. 43.
    Lowry MS, Bernard S (2006) Chem Eur J 12:7970 Google Scholar
  44. 44.
    Adachi C, Baldo MA, Forrest SR, Lamansky S, Thompson ME, Kwong RC (2001) Appl Phys Lett 78:1622–1624 Google Scholar
  45. 45.
    Sajoto T, Djurovich PI, Tamayo A, Yousufuddin M, Bau R, Thompson ME, Holmes RJ, Forrest SR (2005) Inorg Chem 44:7992–8003 Google Scholar
  46. 46.
    Lamansky S, Djurovich P, Murphy D, Abdel-Razzaq F, Kwong R, Tsyba I, Bortz M, Mui B, Bau R, Thompson ME (2001) Inorg Chem 40:1704–1711 Google Scholar
  47. 47.
    Lamansky S, Djurovich P, Murphy D, Abdel-Razzaq F, Lee HE, Adachi C, Burrows PE, Forrest SR, Thompson ME (2001) J Am Chem Soc 123:4304–4312 Google Scholar
  48. 48.
    Colombo MG, Brunold TC, Riedener T, Gudel HU, Fortsch M, Burgi HB (1994) Inorg Chem 33:545–550 Google Scholar
  49. 49.
    Grushin VV, Herron N, LeCloux DD, Marshall WJ, Petrov VA, Wang Y (2001) Chem Commun 1494–1495 Google Scholar
  50. 50.
    Ragni R, Plummer EA, Brunner K, Hofstraat JW, Babudri F, Farinola GM, Naso F, De Cola L (2006) J Mater Chem 16:1161–1170 Google Scholar
  51. 51.
    Dedeian K, Shi JM, Shepherd N, Forsythe E, Morton DC (2005) Inorg Chem 44:4445–4447 Google Scholar
  52. 52.
    Coppo P, Plummer EA, De Cola L (2004) Chem Commun 1774–1775 Google Scholar
  53. 53.
    Nam EJ, Kim JH, Kim BO, Kim SM, Park NG, Kim YS, Kim YK, Ha Y (2004) Bull Chem Soc Jpn 77:751–755 Google Scholar
  54. 54.
    Yang CH, Li SW, Chi Y, Cheng YM, Yeh YS, Chou PT, Lee GH, Wang CH, Shu CF (2005) Inorg Chem 44:7770–7780 Google Scholar
  55. 55.
    Mak CSK, Hayer A, Pascu SI, Watkins SE, Holmes AB, Kohler A, Friend RH (2005) Chem Commun 4708–4710 Google Scholar
  56. 56.
    Lo S-C (2006) Chem Mater 5159 Google Scholar
  57. 57.
    Nazeeruddin MK, Humphry-Baker R, Berner D, Rivier S, Zuppiroli L, Graetzel M (2003) J Am Chem Soc 125:8790–8797 Google Scholar
  58. 58.
    Tamayo AB, Garon S, Sajoto T, Djurovich PI, Tsyba IM, Bau R, Thompson ME (2005) Inorg Chem 44:8723–8732 Google Scholar
  59. 59.
    Schaffner-Hamann C, Von Zelewsky A, Barbieri A, Barigelletti F, Muller G, Riehl JP, Neels A (2004) J Am Chem Soc 126:9339–9348 Google Scholar
  60. 60.
    Obara S, Itabashi M, Tamaki S, Tanabe Y, Ishili Y, Nozaki K, Haga M-A (2006) Inorg Chem 45:8907–8921 Google Scholar
  61. 61.
    Wilkinson AJ, Puschmann H, Howard JAK, Foster CE, Williams JAG (2006) Inorg Chem 45:8685–8699 Google Scholar
  62. 62.
    DiMarco G, Lanza M, Pieruccini M, Campagna S (1996) Adv Mater 8:576 Google Scholar
  63. 63.
    Di Marco G, Lanza M, Mamo A, Stefio I, Di Pietro C, Romeo G, Campagna S (1998) Anal Chem 70:5019–5023 Google Scholar
  64. 64.
    Lakowicz JR (1999) Principles of Fluorescence Spectroscopy. Kluwer Academic/Plenum Publishers, New York Google Scholar
  65. 65.
    Flamigni L, Ventura B, Barigelletti F, Baranoff E, Collin JP, Sauvage JP (2005) Eur J Inorg Chem 1312–1318 Google Scholar
  66. 66.
    Demas JN, Harris EW, McBride RP (1977) J Am Chem Soc 99:3547–3551 Google Scholar
  67. 67.
    Gao RM, Ho DG, Hernandez B, Selke M, Murphy D, Djurovich PI, Thompson ME (2002) J Am Chem Soc 124:14828–14829 Google Scholar
  68. 68.
    Abdel-Shafi AA, Beer PD, Mortimer RJ, Wilkinson F (2001) Helv Chim Acta 84:2784–2795 Google Scholar
  69. 69.
    Abdel-Shafi AA, Beer PD, Mortimer RJ, Wilkinson F (2000) PCCP Phys Chem Chem Phys 2:3137–3144 Google Scholar
  70. 70.
    Abdel-Shafi AA, Wilkinson F (2002) PCCP Phys Chem Chem Phys 4:248–254 Google Scholar
  71. 71.
    Glusac KD, Jiang SJ, Schanze KS (2002) Chem Commun 2504–2505 Google Scholar
  72. 72.
    Negres RA, Gong X, Ostrowski JC, Bazan GC, Moses D, Heeger AJ (2003) Phys Rev B 68:1–8 Google Scholar
  73. 73.
    Gong X, Ostrowski JC, Moses D, Bazan GC, Heeger AJ (2003) Adv Funct Mater 13:439–444 Google Scholar
  74. 74.
    Zhu WG, Liu CZ, Su LJ, Yang W, Yuan M, Cao Y (2003) J Mater Chem 13:50–55 Google Scholar
  75. 75.
    Holder E, Marin V, Kozodaev D, Meier MAR, Lohmeijer BGG, Schubert US (2005) Macromol Chem Phys 206:989–997 Google Scholar
  76. 76.
    Chen XW, Liao JL, Liang YM, Ahmed MO, Tseng HE, Chen SA (2003) J Am Chem Soc 125:636–637 Google Scholar
  77. 77.
    Kessler C (1999) Nonradioactive Labeling and Detection of Biomolecules. Springer, Berlin Heidelberg New York Google Scholar
  78. 78.
    Sammes PG, Yahioglu G (1996) Nat Prod Rep 13:1–28 Google Scholar
  79. 79.
    Lo KKW, Chung CK, Lee TKM, Lui LH, Tsang KHK, Zhu NY (2003) Inorg Chem 42:6886–6897 Google Scholar
  80. 80.
    Lo KKW, Chan JSW, Lui LH, Chung CK (2004) Organometallics 23:3108–3116 Google Scholar
  81. 81.
    Lo KKW, Chung CK, Ng DCM, Zhu NY (2002) New J Chem 26:81–88 Google Scholar
  82. 82.
    Lo KKW, Hui WK, Chung CK, Tsang KHK, Ng DCM, Zhu NY, Cheung KK (2005) Coordin Chem Rev 249:1434–1450 Google Scholar
  83. 83.
    Lo KKW, Li CK, Lau JSY (2005) Organometallics 24:4594–4601 Google Scholar
  84. 84.
    Lo KKW, Lee TKM (2004) Inorg Chem 43:5275–5282 Google Scholar
  85. 85.
    Lo KKW, Hui WK (2005) Inorg Chem 44:1992–2002 Google Scholar
  86. 86.
    Flamigni L, Barigelletti F, Armaroli N, Collin JP, Dixon IM, Sauvage JP, Williams JAG (1999) Coordin Chem Rev 192:671–682 Google Scholar
  87. 87.
    Flamigni L, Marconi G, Dixon IM, Collin JP, Sauvage JP (2002) J Phys Chem B 106:6663–6671 Google Scholar
  88. 88.
    Sauvage JP, Collin JP, Chambron JC, Guillerez S, Coudret C, Balzani V, Barigelletti F, De Cola L, Flamigni L (1994) Chem Rev 94:993–1019 Google Scholar
  89. 89.
    Baranoff E, Collin JP, Flamigni L, Sauvage JP (2004) Chem Soc Rev 33:147–155 Google Scholar
  90. 90.
    Leslie W, Batsanov AS, Howard JAK, Williams JAG (2004) Dalton Trans 623–631 Google Scholar
  91. 91.
    Leslie W, Poole RA, Murray PR, Yellowlees LJ, Beeby A, Williams JAG (2004) Polyhedron 23:2769–2777 Google Scholar
  92. 92.
    Mamo A, Stefio I, Parisi MF, Credi A, Venturi M, DiPietro C, Campagna S (1997) Inorg Chem 36:5947–5950 Google Scholar
  93. 93.
    Bexon AJS, Williams JAG (2005) C R Chim 8:1326–1335 Google Scholar
  94. 94.
    Wilkinson AJ, Goeta AE, Foster CE, Williams JAG (2004) Inorg Chem 43:6513–6515 Google Scholar
  95. 95.
    Polson M, Fracasso S, Bertolasi V, Ravaglia M, Scandola F (2004) Inorg Chem 43:1950–1956 Google Scholar
  96. 96.
    Polson M, Ravaglia M, Fracasso S, Garavelli M, Scandola F (2005) Inorg Chem 44:1282–1289 Google Scholar
  97. 97.
    Barigelletti F, Belser P, Von Zelewsky A, Juris A, Balzani V (1985) J Phys Chem 89:3680–3684 Google Scholar
  98. 98.
    Juris A, Barigelletti F, Balzani V, Belser P, Von Zelewsky A (1985) Inorg Chem 24:202–206 Google Scholar
  99. 99.
    Barigelletti F, Juris A, Balzani V, Belser P, Von Zelewsky A (1986) J Phys Chem 90:5190–5193 Google Scholar
  100. 100.
    Meyer TJ (1986) Pure Appl Chem 58:1193–1206 Google Scholar
  101. 101.
    Barigelletti F, Juris A, Balzani V, Belser P, Von Zelewsky A (1987) J Phys Chem 91:1095–1098 Google Scholar
  102. 102.
    Kawanishi Y, Kitamura N, Tazuke S (1989) Inorg Chem 28:2968–2975 Google Scholar
  103. 103.
    Meyer TJ (1989) Account Chem Res 22:163–170 Google Scholar
  104. 104.
    Ryu CK, Schmehl RH (1989) J Phys Chem 93:7961–7966 Google Scholar
  105. 105.
    Balzani V, Barigelletti F, De Cola L (1990) Top Curr Chem 158:31–71 Google Scholar
  106. 106.
    Lumpkin RS, Kober EM, Worl LA, Murtaza Z, Meyer TJ (1990) J Phys Chem 94:239–243 Google Scholar
  107. 107.
    Wang R, Vos JG, Schmehl RH, Hage R (1992) J Am Chem Soc 114:1964–1970 Google Scholar
  108. 108.
    Caspar JV, Meyer TJ (1983) Inorg Chem 22:2444–2453 Google Scholar
  109. 109.
    Caspar JV, Meyer TJ (1983) J Am Chem Soc 105:5583–5590 Google Scholar
  110. 110.
    Durham B, Caspar JV, Nagle JK, Meyer TJ (1982) J Am Chem Soc 104:4803–4810 Google Scholar
  111. 111.
    Hager GD, Crosby GA (1975) J Am Chem Soc 97:7031–7037 Google Scholar
  112. 112.
    Barigelletti F, Sandrini D, Maestri M, Balzani V, Von Zelewsky A, Chassot L, Jolliet P, Maeder U (1988) Inorg Chem 27:3644–3647 Google Scholar
  113. 113.
    Barigelletti F, De Cola L, Balzani V, Belser P, Von Zelewsky A, Vvgtle F, Ebmeyer F, Grammenudi S (1989) J Am Chem Soc 111:4662–4668 Google Scholar
  114. 114.
    Sudhakar M, Djurovich PI, Hogen-Esch TE, Thompson ME (2003) J Am Chem Soc 125:7796–7797 Google Scholar
  115. 115.
    Chen FC, He GF, Yang Y (2003) Appl Phys Lett 82:1006–1008 Google Scholar
  116. 116.
    Sun YR, Giebink NC, Kanno H, Ma BW, Thompson ME, Forrest SR (2006) Nature 440:908–912 Google Scholar
  117. 117.
    Nonoyama M (1974) Bull Chem Soc Jpn 47:767–768 Google Scholar
  118. 118.
    Carlson GA, Djurovich PI, Watts RJ (1993) Inorg Chem 32:4483–4484 Google Scholar
  119. 119.
    Bettington S, Tavasli M, Bryce MR, Batsanov AS, Thompson AL, Al Attar HA, Dias FB, Monkman AP (2006) J Mater Chem 16:1046–1052 Google Scholar
  120. 120.
    Cavazzini M, Pastorelli P, Quici S, Loiseau R, Campagna S (2005) Chem Commun 5266–5268 Google Scholar
  121. 121.
    Lafolet F, Welter S, Popovic Z, De Cola L (2005) J Mater Chem 15:2820–2828 Google Scholar
  122. 122.
    Plummer EA, Hofstraat JW, De Cola L (2003) Dalton Trans 2080–2084 Google Scholar
  123. 123.
    Neve F, Crispini A, Serroni S, Loiseau F, Campagna S (2001) Inorg Chem 40:1093–1101 Google Scholar
  124. 124.
    Vandiemen JH, Hage R, Haasnoot JG, Lempers HEB, Reedijk J, Vos JG, De Cola L, Barigelletti F, Balzani V (1992) Inorg Chem 31:3518–3522 Google Scholar
  125. 125.
    Tsuboyama A, Takiguchi T, Okada S, Osawa M, Hoshino M, Ueno K (2004) Dalton Trans 1115–1116 Google Scholar
  126. 126.
    Ortmans I, Didier P, Kirsch-Demesmaeker A (1995) Inorg Chem 34:3695–3704 Google Scholar
  127. 127.
    Vogler LM, Scott B, Brewer KJ (1993) Inorg Chem 32:898–903 Google Scholar
  128. 128.
    Serroni S, Juris A, Campagna S, Venturi M, Denti G, Balzani V (1994) J Am Chem Soc 116:9086–9091 Google Scholar
  129. 129.
    Welter S, Lafolet F, Cecchetto E, Vergeer F, De Cola L (2005) Chem Phys Chem 6:2417–2427 Google Scholar
  130. 130.
    Coppo P, Duati M, Kozhevnikov VN, Hofstraat JW, De Cola L (2005) Angew Chem Int Ed 44:1806–1810 Google Scholar
  131. 131.
    Haider JM, Williams RM, De Cola L, Pikramenou Z (2003) Angew Chem Int Ed 42:1830–1833 Google Scholar
  132. 132.
    Baranoff E, Griffiths K, Collin JP, Sauvage JP, Ventura B, Flamigni L (2004) New J Chem 28:1091–1095 Google Scholar
  133. 133.
    Arm KJ, Williams JAG (2006) Dalton Trans 2172–2174 Google Scholar
  134. 134.
    Pawlowski V, Kunkely H, Vogler A (2004) J Photochem Photobiol A-Chem 161:95–97 Google Scholar
  135. 135.
    Flamigni L, Baranoff E, Collin JP, Sauvage JP (2006) Chem-Eur J 12:6592–6606 Google Scholar
  136. 136.
    Namdas EB, Ruseckas A, Samuel IDW, Lo SC, Burn PL (2004) J Phys Chem B 108:1570–1577 Google Scholar
  137. 137.
    Tavasli M, Bettington S, Bryce MR, Al Attar HA, Dias FB, King S, Monkman AP (2005) J Mater Chem 15:4963–4970 Google Scholar
  138. 138.
    Evans NR, Devi LS, Mak CSK, Watkins SE, Pascu SI, Kohler A, Friend RH, Williams CK, Holmes AB (2006) J Am Chem Soc 128:6647–6656 Google Scholar
  139. 139.
    Bridgewater JS, Vogler LM, Molnar SM, Brewer KJ (1993) Inorg Chim Acta 208:179–188 Google Scholar
  140. 140.
    Molnar SM, Nallas G, Bridgewater JS, Brewer KJ (1994) J Am Chem Soc 116:5206–5210 Google Scholar
  141. 141.
    Baranoff E, Dixon IM, Collin JP, Sauvage JP, Ventura B, Flamigni L (2004) Inorg Chem 43:3057–3066 Google Scholar
  142. 142.
    Dixon IM, Collin JP, Sauvage JP, Barigelletti F, Flamigni L (2000) Angew Chem Int Ed 39:1292 Google Scholar
  143. 143.
    Flamigni L, Dixon IM, Collin JP, Sauvage JP (2000) Chem Commun 2479–2480 Google Scholar
  144. 144.
    Dixon IM, Collin JP, Sauvage JP, Flamigni L (2001) Inorg Chem 40:5507–5517 Google Scholar
  145. 145.
    Flamigni L, Barigelletti F, Armaroli N, Collin JP, Sauvage JP, Williams JAG (1998) Chem-Eur J 4:1744–1754 Google Scholar
  146. 146.
    Flamigni L, Barigelletti F, Armaroli N, Ventura B, Collin JP, Sauvage JP, Williams JAG (1999) Inorg Chem 38:661–667 Google Scholar
  147. 147.
    Baranoff E, Barigelletti F, Bonnet S, Collin JP, Flamigni L, Mobian P, Sauvage JP (2006) Struct Bond DOI: 10.1007/1430 Google Scholar
  148. 148.
    Marcus RA, Sutin N (1985) Biochim Biophys Acta 811:265–322 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Lucia Flamigni
    • 1
  • Andrea Barbieri
    • 1
  • Cristiana Sabatini
    • 1
  • Barbara Ventura
    • 1
  • Francesco Barigelletti
    • 1
  1. 1.Istituto per la Sintesi Organica e la FotoreattivitàConsiglio Nazionale delle RicercheBolognaItaly

Personalised recommendations