Advertisement

Photochemistry and Photophysics of Coordination Compounds: Copper

  • Nicola Armaroli
  • Gianluca Accorsi
  • François Cardinali
  • Andrea Listorti
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 280)

Abstract

Cu(I) complexes and clusters are the largest class of compounds of relevant photochemical and photophysical interest based on a relatively abundant metal element. Interestingly, Nature has given an essential role to copper compounds in some biological systems, relying on their kinetic lability and versatile coordination environment. Some basic properties of Cu(I) and Cu(II) such as their coordination geometries and electronic levels are compared, pointing out the limited significance of Cu(II) compounds (d 9 configuration) in terms of photophysical properties. Well-established synthetic protocols are available to build up a variety of molecular and supramolecular architectures (e.g. catenanes, rotaxanes, knots, helices, dendrimers, cages, grids, racks, etc.) containing Cu(I)-based centers and exhibiting photo- and electroluminescence as well as light-induced intercomponent processes. By far the largest class of copper complexes investigated to date is that of Cu(I)-bisphenanthrolines ([Cu(NN)2]+) and recent progress in the rationalization of their metal-to-ligand charge-transfer (MLCT) absorption and luminescence properties are critically reviewed, pointing out the criteria by which it is now possible to successfully design highly emissive [Cu(NN)2]+ compounds, a rather elusive goal for a long time. To this end the development of spectroscopic techniques such as light-initiated time-resolved X-ray absorption spectroscopy (LITR-XAS) and femtosecond transient absorption have been rather fruitful since they have allowed us to firmly ground the indirect proofs of the molecular rearrangements following light absorption that had accumulated in the past 20 years. A substantial breakthrough towards highly emissive Cu(I) coordination compounds is constituted by heteroleptic Cu(I) complexes containing both N- and P-coordinating ligands ([Cu(NN)(PP)]+) which may exhibit luminescence quantum yields close to 30% in deaerated CH2Cl2 solution and have been successfully employed as active materials in OLED and LEC optoelectronic devices. Also copper clusters may exhibit luminescence bands of halide-to-metal charge transfer (XMCT) and/or cluster centered (CC) character and they are briefly reviewed along with miscellaneous Cu(I) compounds that recently appeared in the literature, which show luminescence bands ranging from the blue to the red spectral region.

Clusters Copper Electron transfer Energy transfer Luminescence OLED Phenanthroline  

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    US Geological Survey (2006) Mineral Commodity Summaries http://minerals.er.usgs.gov/minerals/pubs/commodity/copper/ , last visited: January 2006
  2. 2.
    Gordon RB, Bertram M, Graedel TE (2006) Proc Natl Acad Sci USA 103:1209–1214 Google Scholar
  3. 3.
    Horvath O (1994) Coord Chem Rev 135:303–324 Google Scholar
  4. 4.
    Sykora J (1997) Coord Chem Rev 159:95–108 Google Scholar
  5. 5.
    Jørgensen CK (1963) Adv Chem Phys 5:33–146 Google Scholar
  6. 6.
    Juris A, Balzani V, Barigelletti F, Campagna S, Belser P, von Zelewsky A (1988) Coord Chem Rev 84:85–277 Google Scholar
  7. 7.
    Lowry MS, Bernhard S (2006) Chem Eur J 12:7970–7977 Google Scholar
  8. 8.
    Balzani V, Juris A, Venturi M, Campagna S, Serroni S (1996) Chem Rev 96:759–833 Google Scholar
  9. 9.
    Roundhill DM (1994) Photochemistry and Photophysics of Metal Complexes. Plenum Press, NY Google Scholar
  10. 10.
    Bignozzi CA, Argazzi R, Kleverlaan CJ (2000) Chem Soc Rev 29:87–96 Google Scholar
  11. 11.
    Balzani V, Ceroni P, Juris A, Venturi M, Campagna S, Puntoriero F, Serroni S (2001) Coord Chem Rev 219:545–572 Google Scholar
  12. 12.
    Grätzel M (2005) Inorg Chem 44:6841–6851 Google Scholar
  13. 13.
    Vos JG, Kelly JM (2006) Dalton Trans pp 4869–4883 Google Scholar
  14. 14.
    Kober EM, Caspar JV, Lumpkin RS, Meyer TJ (1986) J Phys Chem 90:3722–3734 Google Scholar
  15. 15.
    Armaroli N (2001) Chem Soc Rev 30:113–124 Google Scholar
  16. 16.
    Maestri M, Armaroli N, Balzani V, Constable EC, Thompson A (1995) Inorg Chem 34:2759–2767 Google Scholar
  17. 17.
    Lippard SJ, Berg JM (1994) Principles of Bioinorganic Chemistry. University Science Books, Mill Valley, California Google Scholar
  18. 18.
    Holm RH, Kennepohl P, Solomon EI (1996) Chem Rev 96:2239–2314 Google Scholar
  19. 19.
    Colman PM, Freeman HC, Guss JM, Murata M, Norris VA, Ramshaw JAM, Venkatappa MP (1978) Nature 272:319–324 Google Scholar
  20. 20.
    Solomon EI (2006) Inorg Chem 45:8012–8025 Google Scholar
  21. 21.
    Gewirth AA, Solomon EI (1988) J Am Chem Soc 110:3811–3819 Google Scholar
  22. 22.
    Marcus RA, Sutin N (1985) Biochim Biophys Acta 811:265–322 Google Scholar
  23. 23.
    Babcock GT, Wikstrom M (1992) Nature 356:301–309 Google Scholar
  24. 24.
    Gamelin DR, Randall DW, Hay MT, Houser RP, Mulder TC, Canters GW, de Vries S, Tolman WB, Lu Y, Solomon EI (1998) J Am Chem Soc 120:5246–5263 Google Scholar
  25. 25.
    Armaroli N (2003) Photochem Photobiol Sci 2:73–87 Google Scholar
  26. 26.
    Schmittel M, Kalsani V (2005) Top Curr Chem 245:1–53 Google Scholar
  27. 27.
    Sammes PG, Yahioglu G (1994) Chem Soc Rev 23:327–334 Google Scholar
  28. 28.
    Cunningham CT, Moore JJ, Cunningham KLH, Fanwick PE, McMillin DR (2000) Inorg Chem 39:3638–3644 Google Scholar
  29. 29.
    Armaroli N, Balzani V, Barigelletti F, De Cola L, Flamigni L, Sauvage JP, Hemmert C (1994) J Am Chem Soc 116:5211–5217 Google Scholar
  30. 30.
    Dietrich-Buchecker C, Colasson B, Fujita M, Hori A, Geum N, Sakamoto S, Yamaguchi K, Sauvage JP (2003) J Am Chem Soc 125:5717–5725 Google Scholar
  31. 31.
    Frey J, Kraus T, Heitz V, Sauvage JP (2005) Chem Commun, pp 5310–5312 Google Scholar
  32. 32.
    Armaroli N, Balzani V, Collin JP, Gaviña P, Sauvage JP, Ventura B (1999) J Am Chem Soc 121:4397–4408 Google Scholar
  33. 33.
    Weber N, Hamann C, Kern JM, Sauvage JP (2003) Inorg Chem 42:6780–6792 Google Scholar
  34. 34.
    Baranoff E, Griffiths K, Collin JP, Sauvage JP, Ventura B, Flamigni L (2004) New J Chem 28:1091–1095 Google Scholar
  35. 35.
    Kraus T, Budesinsky M, Cvacka JC, Sauvage JP (2006) Angew Chem Int Ed 45:258–261 Google Scholar
  36. 36.
    Dietrich-Buchecker CO, Nierengarten JF, Sauvage JP, Armaroli N, Balzani V, De Cola L (1993) J Am Chem Soc 115:11237–11244 Google Scholar
  37. 37.
    Perret-Aebi LE, von Zelewsky A, Dietrich-Buchecker CD, Sauvage JP (2004) Angew Chem Int Ed 43:4482–4485 Google Scholar
  38. 38.
    Armaroli N, Boudon C, Felder D, Gisselbrecht JP, Gross M, Marconi G, Nicoud JF, Nierengarten JF, Vicinelli V (1999) Angew Chem Int Ed 38:3730–3733 Google Scholar
  39. 39.
    Gumienna-Kontecka E, Rio Y, Bourgogne C, Elhabiri M, Louis R, Albrecht-Gary AM, Nierengarten JF (2004) Inorg Chem 43:3200–3209 Google Scholar
  40. 40.
    Heuft MA, Fallis AG (2002) Angew Chem Int Ed 41:4520–4523 Google Scholar
  41. 41.
    Cardinali F, Mamlouk H, Rio Y, Armaroli N, Nierengarten JF (2004) Chem Commun, pp 1582–1583 Google Scholar
  42. 42.
    Zong RF, Thummel RP (2005) Inorg Chem 44:5984–5986 Google Scholar
  43. 43.
    Ziessel R, Charbonniere L, Cesario M, Prange T, Nierengarten H (2002) Angew Chem Int Ed 41:975–979 Google Scholar
  44. 44.
    Sauvage J-P, Dietrich-Buchecker CO (eds) (1999) Molecular Catenanes, Rotaxanes and Knots. A Journey through the World of Molecular Topology. Wiley-VCH, Weinheim, Germany Google Scholar
  45. 45.
    Jimenez-Molero MC, Dietrich-Buchecker C, Sauvage JP (2002) Chem Eur J 8:1456–1466 Google Scholar
  46. 46.
    Livoreil A, Sauvage JP, Armaroli N, Balzani V, Flamigni L, Ventura B (1997) J Am Chem Soc 119:12114–12124 Google Scholar
  47. 47.
    Sauvage JP (2005) Chem Commun, pp 1507–1510 Google Scholar
  48. 48.
    Bonnet S, Collin JP, Koizumi M, Mobian P, Sauvage JP (2006) Adv Mater 18:1239–1250 Google Scholar
  49. 49.
    Kalsani V, Bodenstedt H, Fenske D, Schmittel M (2005) Eur J Inorg Chem 1841–1849 Google Scholar
  50. 50.
    Schmittel M, Kalsani V, Fenske D, Wiegrefe A (2004) Chem Commun, pp 490–491 Google Scholar
  51. 51.
    Schmittel M, Ammon H, Kalsani V, Wiegrefe A, Michel C (2002) Chem Commun, pp 2566–2567 Google Scholar
  52. 52.
    Kalsani V, Ammon H, Jäckel F, Rabe JP, Schmittel M (2004) Chem-Eur J 10:5481–5492 Google Scholar
  53. 53.
    Schmittel M, Ganz A (1997) Chem Commun, pp 999–1000 Google Scholar
  54. 54.
    Dobson JF, Green BE, Healy PC, Kennard CHL, Pakawatchai C, White AH (1984) Aust J Chem 37:649–659 Google Scholar
  55. 55.
    Coppens P, Vorontsov II, Graber T, Kovalevsky AY, Chen YS, Wu G, Gembicky M, Novozhilova IV (2004) J Am Chem Soc 126:5980–5981 Google Scholar
  56. 56.
    Kovalevsky AY, Gembicky M, Coppens P (2004) Inorg Chem 43:8282–8289 Google Scholar
  57. 57.
    Kovalevsky AY, Gembicky M, Novozhilova IV, Coppens P (2003) Inorg Chem 42:8794–8802 Google Scholar
  58. 58.
    Miller MT, Gantzel PK, Karpishin TB (1998) Angew Chem Int Ed Engl 37:1556–1558 Google Scholar
  59. 59.
    Miller MT, Gantzel PK, Karpishin TB (1998) Inorg Chem 37:2285–2290 Google Scholar
  60. 60.
    Armaroli N, De Cola L, Balzani V, Sauvage JP, Dietrich-Buchecker CO, Kern JM (1992) J Chem Soc Faraday Trans 88:553–556 Google Scholar
  61. 61.
    Zgierski MZ (2003) J Chem Phys 118:4045–4051 Google Scholar
  62. 62.
    McMillin DR, Buckner MT, Ahn BT (1977) Inorg Chem 16:943–945 Google Scholar
  63. 63.
    McMillin DR, McNett KM (1998) Chem Rev 98:1201–1219 Google Scholar
  64. 64.
    Scaltrito DV, Thompson DW, O'Callaghan JA, Meyer GJ (2000) Coord Chem Rev 208:243–266 Google Scholar
  65. 65.
    Federlin P, Kern JM, Rastegar A, Dietrich-Buchecker C, Marnot PA, Sauvage JP (1990) New J Chem 14:9–12 Google Scholar
  66. 66.
    Gordon KC, McGarvey JJ (1991) Inorg Chem 30:2986–2989 Google Scholar
  67. 67.
    Armaroli N, Rodgers MAJ, Ceroni P, Balzani V, Dietrich-Buchecker CO, Kern JM, Bailal A, Sauvage JP (1995) Chem Phys Lett 241:555–558 Google Scholar
  68. 68.
    Ichinaga AK, Kirchhoff JR, McMillin DR, Dietrich-Buchecker CO, Marnot PA, Sauvage JP (1987) Inorg Chem 26:4290–4292 Google Scholar
  69. 69.
    Phifer CC, McMillin DR (1986) Inorg Chem 25:1329–1333 Google Scholar
  70. 70.
    Everly RM, McMillin DR (1991) J Phys Chem 95:9071–9075 Google Scholar
  71. 71.
    Cunningham CT, Cunningham KLH, Michalec JF, McMillin DR (1999) Inorg Chem 38:4388–4392 Google Scholar
  72. 72.
    Miller MT, Gantzel PK, Karpishin TB (1999) Inorg Chem 38:3414–3422 Google Scholar
  73. 73.
    Miller MT, Karpishin TB (1999) Inorg Chem 38:5246–5249 Google Scholar
  74. 74.
    Kalsani V, Schmittel M, Listorti A, Accorsi G, Armaroli N (2006) Inorg Chem 45:2061–2067 Google Scholar
  75. 75.
    Gushurst AKI, McMillin DR, Dietrich-Buchecker CO, Sauvage JP (1989) Inorg Chem 28:4070–4072 Google Scholar
  76. 76.
    Goodman MS, Hamilton AD, Weiss J (1995) J Am Chem Soc 117:8447–8455 Google Scholar
  77. 77.
    Amendola V, Boiocchi M, Colasson B, Fabbrizzi L (2006) Inorg Chem 45:6138–6147 Google Scholar
  78. 78.
    Everly RM, McMillin DR (1989) Photochem Photobiol 50:711–716 Google Scholar
  79. 79.
    Chen LX (2005) Annu Rev Phys Chem 56:221–254 Google Scholar
  80. 80.
    Chen LX (2004) Angew Chem Int Ed 43:2886–2905 Google Scholar
  81. 81.
    Chen LX, Jennings G, Liu T, Gosztola DJ, Hessler JP, Scaltrito DV, Meyer GJ (2002) J Am Chem Soc 124:10861–10867 Google Scholar
  82. 82.
    Chen LX, Shaw GB, Novozhilova I, Liu T, Jennings G, Attenkofer K, Meyer GJ, Coppens P (2003) J Am Chem Soc 125:7022–7034 Google Scholar
  83. 83.
    Coppens P (2003) Chem Commun pp 1317–1320 Google Scholar
  84. 84.
    Gunaratne T, Rodgers MAJ, Felder D, Nierengarten JF, Accorsi G, Armaroli N (2003) Chem Commun pp 3010–3011 Google Scholar
  85. 85.
    Felder D, Nierengarten JF, Barigelletti F, Ventura B, Armaroli N (2001) J Am Chem Soc 123:6291–6299 Google Scholar
  86. 86.
    Cody J, Dennisson J, Gilmore J, VanDerveer DG, Henary MM, Gabrielli A, Sherrill CD, Zhang YY, Pan CP, Burda C, Fahrni CJ (2003) Inorg Chem 42:4918–4929 Google Scholar
  87. 87.
    Blaskie MW, McMillin DR (1980) Inorg Chem 19:3519–3522 Google Scholar
  88. 88.
    Williams RM, De Cola L, Hartl F, Lagref JJ, Planeix JM, De Cian A, Hosseini MW (2002) Coord Chem Rev 230:253–261 Google Scholar
  89. 89.
    Siddique ZA, Yamamoto Y, Ohno T, Nozaki K (2003) Inorg Chem 42:6366–6378 Google Scholar
  90. 90.
    Miller MT, Gantzel PK, Karpishin TB (1999) J Am Chem Soc 121:4292–4293 Google Scholar
  91. 91.
    Parker WL, Crosby GA (1989) J Phys Chem 93:5692–5696 Google Scholar
  92. 92.
    Kirchhoff JR, Gamache RE, Blaskie MW, Del Paggio AA, Lengel RK, McMillin DR (1983) Inorg Chem 22:2380–2384 Google Scholar
  93. 93.
    Cardenas DJ, Collin JP, Gaviña P, Sauvage JP, De Cian A, Fischer J, Armaroli N, Flamigni L, Vicinelli V, Balzani V (1999) J Am Chem Soc 121:5481–5488 Google Scholar
  94. 94.
    Flamigni L, Talarico AM, Chambron JC, Heitz V, Linke M, Fujita N, Sauvage JP (2004) Chem-Eur J 10:2689–2699 Google Scholar
  95. 95.
    Armaroli N, Balzani V, Barigelletti F, Decola L, Sauvage JP, Hemmert C (1991) J Am Chem Soc 113:4033–4035 Google Scholar
  96. 96.
    Armaroli N, Balzani V, De Cola L, Hemmert C, Sauvage JP (1994) New J Chem 18:775–782 Google Scholar
  97. 97.
    Dietrich-Buchecker CO, Sauvage JP, Armaroli N, Ceroni P, Balzani V (1996) Angew Chem Int Ed Engl 35:1119–1121 Google Scholar
  98. 98.
    Armaroli N, Diederich F, Dietrich-Buchecker CO, Flamigni L, Marconi G, Nierengarten JF, Sauvage JP (1998) Chem-Eur J 4:406–416 Google Scholar
  99. 99.
    Sandanayaka ASD, Watanabe N, Ikeshita KI, Araki Y, Kihara N, Furusho Y, Ito O, Takata T (2005) J Phys Chem B 109:2516–2525 Google Scholar
  100. 100.
    Li K, Bracher PJ, Guldi DM, Herranz MA, Echegoyen L, Schuster DI (2004) J Am Chem Soc 126:9156–9157 Google Scholar
  101. 101.
    Li K, Schuster DI, Guldi DM, Herranz MA, Echegoyen L (2004) J Am Chem Soc 126:3388–3389 Google Scholar
  102. 102.
    Watanabe N, Kihara N, Furusho Y, Takata T, Araki Y, Ito O (2003) Angew Chem Int Ed 42:681–683 Google Scholar
  103. 103.
    Linke M, Chambron SC, Heitz V, Sauvage SP, Encinas S, Barigelletti F, Flamigni L (2000) J Am Chem Soc 122:11834–11844 Google Scholar
  104. 104.
    Andersson M, Linke M, Chambron JC, Davidsson J, Heitz V, Hammarström L, Sauvage JP (2002) J Am Chem Soc 124:4347–4362 Google Scholar
  105. 105.
    Andersson M, Linke M, Chambron JC, Davidsson J, Heitz V, Sauvage JP, Hammarström L (2000) J Am Chem Soc 122:3526–3527 Google Scholar
  106. 106.
    Flamigni L, Armaroli N, Barigelletti F, Chambron JC, Sauvage JP, Solladié N (1999) New J Chem 23:1151–1158 Google Scholar
  107. 107.
    Chambron JC, Harriman A, Heitz V, Sauvage JP (1993) J Am Chem Soc 115:6109–6114 Google Scholar
  108. 108.
    Chambron JC, Harriman A, Heitz V, Sauvage JP (1993) J Am Chem Soc 115:7419–7425 Google Scholar
  109. 109.
    Holler M, Cardinali F, Mamlouk H, Nierengarten JF, Gisselbrecht JP, Gross M, Rio Y, Barigelletti F, Armaroli N (2006) Tetrahedron 62:2060–2073 Google Scholar
  110. 110.
    Rio Y, Enderlin G, Bourgogne C, Nierengarten JF, Gisselbrecht JP, Gross M, Accorsi G, Armaroli N (2003) Inorg Chem 42:8783–8793 Google Scholar
  111. 111.
    Clifford JN, Accorsi G, Cardinali F, Nierengarten JF, Armaroli N (2006) C R Chim 9:1005–1013 Google Scholar
  112. 112.
    Flamigni L, Heitz V, Sauvage JP (2006) Struct Bond 121:217–261 CrossRefGoogle Scholar
  113. 113.
    Cunningham KL, McMillin DR (1998) Inorg Chem 37:4114–4119 Google Scholar
  114. 114.
    Cunningham KL, Hecker CR, McMillin DR (1996) Inorg Chim Acta 242:143–147 Google Scholar
  115. 115.
    Ruthkosky M, Kelly CA, Castellano FN, Meyer GJ (1998) Coord Chem Rev 171:309–322 Google Scholar
  116. 116.
    Ruthkosky M, Castellano FN, Meyer GJ (1996) Inorg Chem 35:6406–6412 Google Scholar
  117. 117.
    Castellano FN, Ruthkosky M, Meyer GJ (1995) Inorg Chem 34:3–4 Google Scholar
  118. 118.
    Meskers SCJ, Dekkers H, Rapenne G, Sauvage JP (2000) Chem-Eur J 6:2129–2134 Google Scholar
  119. 119.
    Buckner MT, McMillin DR (1978) J Chem Soc-Chem Commun, pp 759–761 Google Scholar
  120. 120.
    Cuttell DG, Kuang SM, Fanwick PE, McMillin DR, Walton RA (2002) J Am Chem Soc 124:6–7 Google Scholar
  121. 121.
    McCormick T, Jia WL, Wang SN (2006) Inorg Chem 45:147–155 Google Scholar
  122. 122.
    Tsukuda T, Nakamura A, Arai T, Tsubomura T (2006) Bull Chem Soc Jpn 79:288–290 Google Scholar
  123. 123.
    Armaroli N, Accorsi G, Holler M, Moudam O, Nierengarten JF, Zhou Z, Wegh RT, Welter R (2006) Adv Mater 18:1313–1316 Google Scholar
  124. 124.
    Yang L, Feng JK, Ren AM, Zhang M, Ma YG, Liu XD (2005) Eur J Inorg Chem 1867–1879 Google Scholar
  125. 125.
    Howell SL, Gordon KC (2004) J Phys Chem A 108:2536–2544 Google Scholar
  126. 126.
    Kuang SM, Cuttell DG, McMillin DR, Fanwick PE, Walton RA (2002) Inorg Chem 41:3313–3322 Google Scholar
  127. 127.
    Englman R, Jortner J (1970) Mol Phys 18:145–164 Google Scholar
  128. 128.
    Rader RA, McMillin DR, Buckner MT, Matthews TG, Casadonte DJ, Lengel RK, Whittaker SB, Darmon LM, Lytle FE (1981) J Am Chem Soc 103:5906–5912 Google Scholar
  129. 129.
    Palmer CEA, McMillin DR, Kirmaier C, Holten D (1987) Inorg Chem 26:3167–3170 Google Scholar
  130. 130.
    Tsubomura T, Takahashi N, Saito K, Tsukuda T (2004) Chem Lett 33:678–679 Google Scholar
  131. 131.
    Saito K, Arai T, Takahashi N, Tsukuda T, Tsubomura T (2006) Dalton Trans pp 4444–4448 Google Scholar
  132. 132.
    Tsubomura T, Enoto S, Endo S, Tamane T, Matsumoto K, Tsukuda T (2005) Inorg Chem 44:6373–6378 Google Scholar
  133. 133.
    Jia WL, McCormick T, Tao Y, Lu JP, Wang SN (2005) Inorg Chem 44:5706–5712 Google Scholar
  134. 134.
    Slinker J, Bernards D, Houston PL, Abruna HD, Bernhard S, Malliaras GG (2003) Chem Commun, pp 2392–2399 Google Scholar
  135. 135.
    Schubert EF, Kim JK (2005) Science 308:1274–1278 Google Scholar
  136. 136.
    Bolink HJ, Cappelli L, Coronado E, Gavina P (2005) Inorg Chem 44:5966–5968 Google Scholar
  137. 137.
    Holder E, Langeveld BMW, Schubert US (2005) Adv Mater 17:1109–1121 Google Scholar
  138. 138.
    Zhang QS, Zhou QG, Cheng YX, Wang LX, Ma DG, Jing XB, Wang FS (2004) Adv Mater 16:432–436 Google Scholar
  139. 139.
    Che GB, Su ZS, Li WL, Chu B, Li MT, Hu ZZ, Zhang ZQ (2006) Appl Phys Lett 89:103511 Google Scholar
  140. 140.
    Zhang QS, Zhou QG, Cheng YX, Wang LX, Ma DG, Jing XB, Wang FS (2006) Adv Funct Mater 16:1203–1208 Google Scholar
  141. 141.
    Ma YG, Che CM, Chao HY, Zhou XM, Chan WH, Shen JC (1999) Adv Mater 11:852–857 Google Scholar
  142. 142.
    Raston CL, White AH (1976) J Chem Soc Dalton Trans 21:2153–2156 Google Scholar
  143. 143.
    Vitale M, Ford PC (2001) Coord Chem Rev 219:3–16 Google Scholar
  144. 144.
    Hardt HD, Pierre A (1973) Z Anorg Allg Chem 402:107 Google Scholar
  145. 145.
    Ford PC, Cariati E, Bourassa J (1999) Chem Rev 99:3625–3647 Google Scholar
  146. 146.
    Eitel E, Oelkrug D, Hiller W, Strahle J (1980) Z Naturforsch (B) 35:1247–1253 Google Scholar
  147. 147.
    Kyle KR, Ryu CK, DiBenedetto JA, Ford PC (1991) J Am Chem Soc 113:2954–2965 Google Scholar
  148. 148.
    Rath NP, Holt EM, Tanimura K (1986) J Chem Soc-Dalton Trans pp 2303–2310 Google Scholar
  149. 149.
    Araki H, Tsuge K, Sasaki Y, Ishizaka S, Kitamura N (2005) Inorg Chem 44:9667–9675 Google Scholar
  150. 150.
    Cotton FA, Feng XJ, Timmons DJ (1998) Inorg Chem 37:4066–4069 Google Scholar
  151. 151.
    De Angelis F, Fantacci S, Sgamellotti A, Cariati E, Ugo R, Ford PC (2006) Inorg Chem 45:10576–10584 Google Scholar
  152. 152.
    Yam VWW, Lo KKW, Wong KMC (1999) J Organomet Chem 578:3–30 Google Scholar
  153. 153.
    Yam VWW (2002) Acc Chem Res 35:555–563 Google Scholar
  154. 154.
    Yam VWW, Choi SWK, Chan CL, Cheung KK (1996) Chem Commun, pp 2067–2068 Google Scholar
  155. 155.
    Chan CL, Cheung KK, Lam WH, Cheng ECC, Zhu N, Choi SWK, Yam VWW (2006) Chem-Asian J 1–2:273 Google Scholar
  156. 156.
    Dias HVR, Diyabalanage HVK, Eldabaja MG, Elbjeirami O, Rawashdeh-Omary MA, Omary MA (2005) J Am Chem Soc 127:7489–7501 Google Scholar
  157. 157.
    Che CM, Xia BH, Huang JS, Chan CK, Zhou ZY, Cheung KK (2001) Chem-Eur J 7:3998–4006 Google Scholar
  158. 158.
    Kharenko OA, Kennedy DC, Demeler B, Maroney MJ, Ogawa MY (2005) J Am Chem Soc 127:7678–7679 Google Scholar
  159. 159.
    Wei QH, Yin GQ, Zhang LY, Shi LX, Mao ZW, Chen ZN (2004) Inorg Chem 43:3484–3491 Google Scholar
  160. 160.
    Baxter CW, Higgs AC, Jones AC, Parsons S, Bailey PJ, Tasker PA (2002) J Chem Soc Dalton Trans 4395–4401 Google Scholar
  161. 161.
    Peng R, Li D, Wu T, Zhou XP, Ng SW (2006) Inorg Chem 45:4035–4046 Google Scholar
  162. 162.
    He X, Lu CZ, Wu CD, Chen LJ (2006) Eur J Inorg Chem, pp 2491–2503 Google Scholar
  163. 163.
    Riesgo EC, Hu YZ, Bouvier F, Thummel RP, Scaltrito DV, Meyer GJ (2001) Inorg Chem 40:3413–3422 Google Scholar
  164. 164.
    Riesgo EC, Hu YZ, Thummel RP (2003) Inorg Chem 42:6648–6654 Google Scholar
  165. 165.
    Zhang XM, Tong ML, Gong ML, Lee HK, Luo L, Li KF, Tong YX, Chen XM (2002) Chem-Eur J 8:3187–3194 Google Scholar
  166. 166.
    Zheng SL, Zhang JP, Chen XM, Huang ZL, Lin ZY, Wong WT (2003) Chem-Eur J 9:3888–3896 Google Scholar
  167. 167.
    Kunkely H, Vogler A (2003) Inorg Chem Commun 6:543–545 Google Scholar
  168. 168.
    Pawlowski V, Knor G, Lennartz C, Vogler A (2005) Eur J Inorg Chem 3167–3171 Google Scholar
  169. 169.
    Kinoshita I, Hamazawa A, Nishioka T, Adachi H, Suzuki H, Miyazaki Y, Tsuboyama A, Okada S, Hoshino M (2003) Chem Phys Lett 371:451–457 Google Scholar
  170. 170.
    Song DT, Jia WL, Wu G, Wang SN (2005) Dalton Trans pp 433–438 Google Scholar
  171. 171.
    Zhao SB, Wang RY, Wang SN (2006) Inorg Chem 45:5830–5840 Google Scholar
  172. 172.
    Fournier E, Lebrun F, Drouin M, Decken A, Harvey PD (2004) Inorg Chem 43:3127–3135 Google Scholar
  173. 173.
    Omary MA, Rawashdeh-Omary MA, Diyabalanage HVK, Rasika Dias HV (2003) Inorg Chem 42:8612–8614 Google Scholar
  174. 174.
    Tsuboyama A, Okada S, Takiguchi T, Igawa S, Kamatani J, Furugori M, Canon KK (2005) JP Patent n. US Patent 2005014024 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Nicola Armaroli
    • 1
  • Gianluca Accorsi
    • 1
  • François Cardinali
    • 1
  • Andrea Listorti
    • 1
  1. 1.Molecular Photoscience Group, Istituto per la Sintesi Organica e la FotoreattivitàConsiglio Nazionale delle RicercheBolognaItaly

Personalised recommendations