Advertisement

Rate Equation Approaches to Amplification of Enantiomeric Excess and Chiral Symmetry Breaking

  • Yukio SaitoEmail author
  • Hiroyuki Hyuga
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 284)

Abstract

Theoretical models and rate equations relevant to the Soai reaction are reviewed. It is found thatin production of chiral molecules from an achiral substrate autocatalytic processes can induce either enantiomericexcess (ee) amplification or chiral symmetry breaking. The former means that the final ee value islarger than the initial value but is dependent upon it, whereas the latter means the selection of a uniquevalue of the final ee, independent of the initial value. The ee amplification takes place in an irreversiblereaction such that all the substrate molecules are converted to chiral products and the reaction comes toa halt. Chiral symmetry breaking is possible when recycling processes are incorporated. Reactionsbecome reversible and the system relaxes slowly to a unique final state. The difference between thetwo behaviors is apparent in the flow diagram in the phase space of chiral molecule concentrations. Theee amplification takes place when the flow terminates on a line of fixed points (or a fixed line),whereas symmetry breaking corresponds to the dissolution of the fixed line accompanied by the appearanceof fixed points. The relevance of the Soai reaction to the homochirality in life is also discussed.

Flow trajectory Homochirality Nonlinear autocatalysis Recycling Soai reaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stryer L (1998) Biochemistry. Feeman and Company, New York Google Scholar
  2. 2.
    Pasteur L (1849) Comptes Rendus 28:477 Google Scholar
  3. 3.
    Japp FR (1898) Nature 58:452 CrossRefGoogle Scholar
  4. 4.
    Noyori R (2002) Angew Chem Int Ed 41:2008 CrossRefGoogle Scholar
  5. 5.
    Calvin M (1969) Chemical Evolution. Oxford University Press, Oxford Google Scholar
  6. 6.
    Goldanskii VI, Kuz'min VV (1988) Z Phys Chem (Leipzig) 269:216 Google Scholar
  7. 7.
    Gridnev ID (2006) Chem Lett 35:148 CrossRefGoogle Scholar
  8. 8.
    Pearson K (1898) Nature 58:496 Google Scholar
  9. 9.
    Pearson K (1898) Nature 59:30 CrossRefGoogle Scholar
  10. 10.
    Mills WH (1932) Chem Ind (London) 51:750 CrossRefGoogle Scholar
  11. 11.
    Soai K, Shibata T, Morioka H, Choji K (1995) Nature 378:767 CrossRefGoogle Scholar
  12. 12.
    Soai K, Shibata T, Sato I (2000) Acc Chem Res 33:382 CrossRefGoogle Scholar
  13. 13.
    Soai K, Sato I, Shibata T, Komiya S, Hayashi M, Matsueda Y, Imamura H, Hayase T, Morioka H, Tabira H, Yamamoto J, Kowata Y (2003) Tetrahedron: Asymmetry 14:185 CrossRefGoogle Scholar
  14. 14.
    Gridnev ID, Serafimov JM, Quiney H, Brown JM (2003) Org Biomol Chem 1:3811 CrossRefGoogle Scholar
  15. 15.
    Singleton DA, Vo LK (2003) Org Lett 5:4337 CrossRefGoogle Scholar
  16. 16.
    Frank FC (1953) Biochim Biophys Acta 11:459 CrossRefGoogle Scholar
  17. 17.
    Landau LD, Khalatnikov IM (1954) Dokl Akad Nauk SSSR 96:469 Google Scholar
  18. 18.
    Avetisov V, Goldanskii V (1996) Proc Natl Acad Sci USA 93:11435 CrossRefGoogle Scholar
  19. 19.
    Girard C, Kagan HB (1998) Angew Chem Int Ed 37:2922 CrossRefGoogle Scholar
  20. 20.
    Kondepudi DK, Asakura K (2001) Acc Chem Res 34:946 CrossRefGoogle Scholar
  21. 21.
    Todd MH (2002) Chem Soc Rev 31:211 CrossRefGoogle Scholar
  22. 22.
    Iwamoto K (2002) Phys Chem Chem Phys 4:3975 CrossRefGoogle Scholar
  23. 23.
    Iwamoto K (2003) Phys Chem Chem Phys 5:3616 CrossRefGoogle Scholar
  24. 24.
    Saito Y, Hyuga H (2004) J Phys Soc Jpn 73:33 CrossRefGoogle Scholar
  25. 25.
    Saito Y, Hyuga H (2004) J Phys Soc Jpn 73:1685 CrossRefGoogle Scholar
  26. 26.
    Saito Y, Hyuga H (2005) J Phys Soc Jpn 74:535 CrossRefGoogle Scholar
  27. 27.
    Saito Y, Hyuga H (2005) J Phys Soc Jpn 74:1629 CrossRefGoogle Scholar
  28. 28.
    Saito Y, Hyuga H (2005) Chirality selection models in a closed system. In: Linke AN (ed) Progress in chemical physics research, Chap 3. NOVA, New York, p 65 Google Scholar
  29. 29.
    Shibata R, Saito Y, Hyuga H (2006) Phys Rev 74:026117–1 Google Scholar
  30. 30.
    Sato I, Omiya D, Tsukiyama K, Ogi Y, Soai K (2001) Tetrahedron: Asymmetry 12:1965 CrossRefGoogle Scholar
  31. 31.
    Sato I, Omiya D, Igarashi H, Kato K, Ogi Y, Tsukiyama K, Soai K (2003) Tetrahedron: Asymmetry 14:975 CrossRefGoogle Scholar
  32. 32.
    Blackmond DG, McMillan CR, Ramdeehul S, Shorm A, Brown JM (2001) J Am Chem Soc 123:10103 CrossRefGoogle Scholar
  33. 33.
    Buhse T (2003) Tetrahedron: Asymmetry 14:1055 CrossRefGoogle Scholar
  34. 34.
    Islas JR, Lavabre D, Grevy J-M, Lamoneda RH, Cabrera HR, Micheau J-C, Buhse T (2005) Proc Natl Acad Sci USA 102:13743 CrossRefGoogle Scholar
  35. 35.
    Lente G (2004) J Phys Chem 108:9475 CrossRefGoogle Scholar
  36. 36.
    Lente G (2005) J Phys Chem 109:11058 CrossRefGoogle Scholar
  37. 37.
    Brandenburg A, Multamaki T (2004) Int J Astrobiol 3:209 CrossRefGoogle Scholar
  38. 38.
    Saito Y, Sugimori T, Hyuga H (2007) http://arXiv.org/abs/cond-mat/0612385
  39. 39.
    Sandars PGH (2003) Orig Life Evol Biosph 33:575 CrossRefGoogle Scholar
  40. 40.
    Brandenburg A, Andersen AC, Hofner S, Nilsson M (2005) Orig Life Evol Biosph 35:225 CrossRefGoogle Scholar
  41. 41.
    Plasson R, Bersini H, Commeyras A (2004) Proc Natl Acad Sci USA 101:16733 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Department of PhysicsKeio UniversityYokohamaJapan

Personalised recommendations