Advertisement

Car–Parrinello Molecular Dynamics Simulations and Biological Systems

  • Jens Thar
  • Werner Reckien
  • Barbara KirchnerEmail author
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 268)

Abstract

The basic concepts of Car–Parrinello molecular dynamics (CPMD) and its application to biological systems are reviewed. In Car–Parrinello simulations the electronic structure is calculated on the fly, i.e., during the course of simulations the potential is adjusted according to the chemical events occurring in the system. This allows for more unbiased simulations of chemical processes, as opposed to classical molecular dynamics, which utilize predefined potentials. In contrast to Born–Oppenheimer molecular dynamics, where the nuclei are propagated under classical equations of motions and where the wave function is calculated in every time step, CPMD maps this two-component classical/quantum system onto a two-component purely classical system. A short introduction into classical mechanics, which provides the equations of motions, is given. DFT will be briefly outlined because it represents the standard method for obtaining the electronic structure during a CPMD simulation. QM/MM approaches, which combine the CPMD method for a core region with a classical description of its environment, are also reviewed. These schemes provide a more reliable description of biological systems, whose properties are strongly influenced by their surroundings. A brief overview over the application of Car–Parrinello simulations to biological systems is provided. Finally, a case study to illustrate some of the basic possibilities of this method is discussed.

Keywords

Chem Phys Local Density Approximation Quantum Mechanical Region Parrinello Molecular Dynamics Quantum Mechanical Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

BOMD

Born–Oppenheimer molecular dynamics

CPMD

Car–Parrinello molecular dynamics

DFT

Density functional theory

GGA

Generalized gradient approximation

HF

Hartree–Fock

LDA

Local density approximation

MD

Molecular dynamics

MM

Molecular mechanics

MP2

Second order Møller–Plesset theory

PP

Pseudopotential

PW

Plane wave

QM/MM

Quantum mechanics/molecular mechanics

TDDFT

Time-dependent density functional theory

WDA

Weighted density approximation

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We gratefully acknowledge the financial support of the DFG priority program SPP 1191 “Ionic Liquids” and the ERA program, which allows productive collaboration under the project “A Modular Approach to Multi-responsive Surfactant/Peptide (SP) and Surfactant/Peptide/Nanoparticle (SPN) Hybrid Materials”. We would furthermore like to acknowledge the financial support from the collaborative research center SFB 624 “Templates” at the University of Bonn. Fruitful discussion with Jürg Hutter, Ursula Röthlisberger, and Markus Reiher are also gratefully acknowledged. JT would like to thank the Fonds der Chemischen Industrie for a Chemiefonds-Stipendium.

References

  1. 1.
    Car R, Parrinello M (1985) Phys Rev Lett 55:2471 Google Scholar
  2. 2.
    Kirchner B, Reiher M (2002) J Am Chem Soc 124:6206 Google Scholar
  3. 3.
    Kirchner B, Hutter J (2002) Chem Phys Lett 364:497 Google Scholar
  4. 4.
    Kirchner B, Hutter J (2004) J Chem Phys 121:5133 Google Scholar
  5. 5.
    Reiher M, Sellmann D, Hess BA (2001) Theor Chim Acta 106:379 Google Scholar
  6. 6.
    Kirchner B (2005) J Chem Phys 123:204116 Google Scholar
  7. 7.
    Remler DK, Madden PA (1990) Mol Phys 70:921 Google Scholar
  8. 8.
    Marx D, Hutter J (2000) Ab-initio molecular dynamics: Theory and implementation. Modern methods and algorithms in quantum chemistry, Forschungszentrum Juelich, NIC Series 1:301 Google Scholar
  9. 9.
    Tuckerman ME, Martyna GJ (2000) J Phys Chem B 104:159 Google Scholar
  10. 10.
    Tuckerman ME (2002) J Phys Condens Matter 14:1297 Google Scholar
  11. 11.
    Alder BJ, Wainwright TE (1957) J Chem Phys 27:1208 Google Scholar
  12. 12.
    Ermakova E, Solca J, Huber H, Marx D (1995) Chem Phys Lett 246:204 Google Scholar
  13. 13.
    Kirchner B, Ermakova E, Steinebrunner G, Dyson AJ, Huber H (1998) Mol Phys 94:257 Google Scholar
  14. 14.
    Huber H, Dyson A, Kirchner B (1999) Chem Soc Rev 28:121 Google Scholar
  15. 15.
    Kirchner B, Ermakova E, Solca J, Huber H (1998) Chem Eur J 4:379 Google Scholar
  16. 16.
    Allen MP, Tildesley DJ (1987) Computer simulations of liquids. Clarendon, Oxford Google Scholar
  17. 17.
    Frenkel D, Smit B (2002) Understanding molecular simulations. Academic, San Diego CA Google Scholar
  18. 18.
    Edelman A, Arias TA, Smith ST (1998) SIAM J Matrix Anal Appl 20:303 Google Scholar
  19. 19.
    Andersen HC, Allen MP, Bellemans A, Board J, Clarke JHR, Ferrario M, Haile JM, Nosé S, Opheusden JV, Ryckaert JP (1984) Technical report, Rapport d'activité scientifique du CECAM Google Scholar
  20. 20.
    Nosé S (1984) J Chem Phys 81:511 Google Scholar
  21. 21.
    Nosé S (1984) Mol Phys 52:255 Google Scholar
  22. 22.
    Hoover WG (1985) Phys Rev A 31:1695 Google Scholar
  23. 23.
    Hoover WG (1986) Phys Rev A 34:2499 Google Scholar
  24. 24.
    Martyna GJ, Klein ML, Tuckerman ME (1992) J Chem Phys 97:2635 Google Scholar
  25. 25.
    Cho K, Joannopoulos JD (1992) Phys Rev A 45:7089 Google Scholar
  26. 26.
    Hohenberg P, Kohn W (1964) Phys Rev B 136:864 Google Scholar
  27. 27.
    Kohn W, Sham LJ (1965) Phys Rev 140:1133 Google Scholar
  28. 28.
    Roos BO, Widmark PO (eds) (2000) European summerschool in quantum chemistry. Lund University Google Scholar
  29. 29.
    Vosko SH, Wilk L, Nusair M (1980) J Phys 58:1200 Google Scholar
  30. 30.
    Becke AD (1988) J Chem Phys 88:2547 Google Scholar
  31. 31.
    Filatov M, Thiel W (1998) Phys Rev A 57:189 Google Scholar
  32. 32.
    Ahlrichs R, Penco R, Scoles G (1977) Chem Phys 19:119 Google Scholar
  33. 33.
    Andersson Y, Langreth DC, Lundqvist BI (1996) Phys Rev Lett 76:102 Google Scholar
  34. 34.
    Kamiya M, Tsuneda T, Hirao K (2002) J Chem Phys 117:6010 Google Scholar
  35. 35.
    Grimme S (2004) J Comput Chem 25:1463 Google Scholar
  36. 36.
    Wu Q, Yang W (2002) J Chem Phys 116:515 Google Scholar
  37. 37.
    Zimmerli U, Parrinello M, Koumoutsakos P (2004) J Chem Phys 120:2693 Google Scholar
  38. 38.
    Seifert G, Kohler T, Tenne R (2002) J Phys Chem B 106:2497 Google Scholar
  39. 39.
    Johnson ER, Becke AD (2005) J Chem Phys 123:024101 Google Scholar
  40. 40.
    Lundqvist BI, Andersson Y, Shao H, Chan S, Langreth DC (1995) Int J Quantum Chem 56:247 Google Scholar
  41. 41.
    Rushton PP, Tozer DJ, Clark SJ (2002) Phys Rev B 65:23503 Google Scholar
  42. 42.
    von Lilienfeld OA, Tavernelli I, Röthlisberger U (2004) Phys Rev Lett 93:153004 Google Scholar
  43. 43.
    Szabo A, Ostlund NS (1996) Modern quantum chemistry. Dover, New York, USA Google Scholar
  44. 44.
    Jensen F (2002) Introduction to computational chemistry. Wiley, Chichester Google Scholar
  45. 45.
    Kirchner B, Huber H, Steinebrunner G, Dreizler H, Grabow J-U, Merke I (1997) Z Naturforsch 52a:297 Google Scholar
  46. 46.
    Feibelman PJ (1987) Phys Rev B 35:2626 Google Scholar
  47. 47.
    Jaffe JE, Hess AC (1996) J Chem Phys 105:10983 Google Scholar
  48. 48.
    Kudin KN, Scuseria GE (2000) Phys Rev B 61:16440 Google Scholar
  49. 49.
    Saunders VR, Dovesi R, Roetti C, Orlando R, Zicovich-Wilson CM, Harrison NM, Doll K, Civalleri B, Bush I, D'Arco Ph, Llunell M (2003) CRYSTAL2003 user's manual. University of Torino Google Scholar
  50. 50.
    Lippert G, Hutter J, Parrinello M (1997) Mol Phys 92:477 Google Scholar
  51. 51.
    Lippert G, Hutter J, Parrinello M (1999) Theor Chem Acc 103:124 Google Scholar
  52. 52.
  53. 53.
    Fuchs M, Scheffler M (1999) Comput Phys Commun 119:67 Google Scholar
  54. 54.
    Hamann DR, Schlüter M, Chiang C (1979) Phys Rev Lett 43:1494 Google Scholar
  55. 55.
    Martin RM (2004) Electronic Structure. Cornell University Press, Cambridge Google Scholar
  56. 56.
    Bachelet GB, Hamann DR, Schlüter M (1982) Phys Rev B 26:4199 Google Scholar
  57. 57.
    Kleinman L, Bylander DM (1982) Phys Rev Lett 48:1425 Google Scholar
  58. 58.
    Goedecker S, Teter M, Hutter J (1996) Phys Rev B 54:1703 Google Scholar
  59. 59.
    Hartwigsen C, Goedecker S, Hutter J (1998) Phys Rev B 58:3641 Google Scholar
  60. 60.
    Payne MC, Joannopoulos JD, Allan DC, Teter MP, Vanderbilt DH (1986) Phys Rev Lett 56:2656 Google Scholar
  61. 61.
    Pulay P, Fogorasi G (2004) Phys Rev Lett 386:272 Google Scholar
  62. 62.
    Pastore G, Smargiassi E, Buda F (1991) Phys Rev A 44:6334 Google Scholar
  63. 63.
    Galli G, Parrinello M (1992) Phys Rev Lett 69:3547 Google Scholar
  64. 64.
    Tagney P (2006) J Chem Phys 124:044111 Google Scholar
  65. 65.
    Chester GV (1961) Adv Phys 10:357 Google Scholar
  66. 66.
    Bloechl PE, Parrinello M (1992) Phys Rev B 45:9413 Google Scholar
  67. 67.
    Tagney P, Scandolo S (2002) J Chem Phys 116:14 Google Scholar
  68. 68.
    Warshel A, Levitt M (1976) J Mol Biol 103:227 Google Scholar
  69. 69.
    Antes I, Thiel W (1999) J Phys Chem A 103:9290 Google Scholar
  70. 70.
    Zhang YK, Lee TS, Yang WT (1999) J Chem Phys 110:46 Google Scholar
  71. 71.
    Reuter N, Dejaegere A, Maigret B, Karplus M (2000) J Phys Chem A 104:1720 Google Scholar
  72. 72.
    Monard G, Loos M, Thery V, Baka K (1996) Int J Quantum Chem 58:153 Google Scholar
  73. 73.
    Kairys V, Jensen JH (2000) J Phys Chem A 104:6656 Google Scholar
  74. 74.
    Murphy RB, Philipp DM, Friesner RB (2000) J Comput Chem 21:1442 Google Scholar
  75. 75.
    Laio A, VandeVondele J, Röthlisberger U (2002) J Chem Phys 116:6941 Google Scholar
  76. 76.
    Eichinger M, Tavan P, Hutter J, Parrinello M (1999) J Chem Phys 110:10452 Google Scholar
  77. 77.
    Biswas PK, Gogonea V (2005) J Chem Phys 123:164114 Google Scholar
  78. 78.
    Woo TK, Cavallo L, Ziegler T (1998) Theor Chem Acc 100:307 Google Scholar
  79. 79.
    Sagnella DE, Laasonen K, Klein ML (1196) Biophys J 71:1172 Google Scholar
  80. 80.
    Dal M Peraro, Alber F, Carloni P (2001) Eur Biophys J 30:75 Google Scholar
  81. 81.
    Ivanov I, Klein ML (2002) J Am Chem Soc 124:13380 Google Scholar
  82. 82.
    Doerksen RJ, Chen B, Klein ML (2003) Chem Phys Lett 380:150 Google Scholar
  83. 83.
    Colombo MC, Guidoni L, Laio A, Magistrato A, Maurer P, Piana S, Röhrig U, Spiegel K, Sulpizi M, Vande Vondele J, Zumstein M, Röthlisberger U (2002) Chimia 56:13 Google Scholar
  84. 84.
    Carloni P, Röthlisberger U, Parrinello M (2002) Acc Chem Res 35:455 Google Scholar
  85. 85.
    Gaigeot MP, Sprik M (2003) J Phys Chem B 107:10344 Google Scholar
  86. 86.
    Buda F, de Groot HJM, Bifone A (1996) Phys Rev Lett 77:4474 Google Scholar
  87. 87.
    Bifone A, de Groot HJM, Buda F (1997) Pure and Appl Chem 69:2105 Google Scholar
  88. 88.
    La Penna G, Buda F, Bifone A, de Groot HJM (1998) Chem Phys Lett 294:447 Google Scholar
  89. 89.
    Bifone A, de Groot HJM, Buda F (1997) J Phys Chem B 101:2954 Google Scholar
  90. 90.
    Röhrig UF, Guidoni L, Röthlisberger U (2005) Comput Phys Commun 6:1836 Google Scholar
  91. 91.
    Röhrig UF, Guidoni L, Laio A, Frank I, Röthlisberger U (2004) J Am Chem Soc 126:15328 Google Scholar
  92. 92.
    Rousseau R, Kleinschmidt V, Schmitt UW, Marx D (2004) Phys Chem Chem Phys 6:1848 Google Scholar
  93. 93.
    Rousseau R, Kleinschmidt V, Schmitt UW, Marx D (2004) Angew Chem Int Ed Engl 43:4804 Google Scholar
  94. 94.
    Whitfield TW, Martyna GJ, Allison S, Bates SP, Jason C (2005) Chem Phys Lett 414:210 Google Scholar
  95. 95.
    Jensen MO, Röthlisberger U, Rovira C (2005) Biophys J 89:1744 Google Scholar
  96. 96.
    Hugosson HW, Laio A, Maurer P, Röthlisberger U (2006) J Comput Chem 27:672 Google Scholar
  97. 97.
    Ensing B, De Vivo M, Liu Z, Moore P, Klein ML (2006) Acc Chem Res 39:73 Google Scholar
  98. 98.
    Huber T, Torda AE, van Gunsteren WF (1994) J Comput-Aided Mol Design 8:695 Google Scholar
  99. 99.
    Iannuzzi M, Laio A, Parrinello M (2003) Phys Rev Lett 90:238302 Google Scholar
  100. 100.
    Rovira C, Ballone P, Parrinello M (1997) Chem Phys Lett 271:247 Google Scholar
  101. 101.
    Rovira C, Parrinello M (1998) Int J Quantum Chem 70:387 Google Scholar
  102. 102.
    Rovira C, Kunc K, Hutter J, Ballone P, Parrinello M (1998) Int J Quantum Chem 69:31 Google Scholar
  103. 103.
    Rovira C, Parrinello M (1999) Chem Eur J 5:250 Google Scholar
  104. 104.
    Rovira C, Parrinello M (2000) Int J Quantum Chem 80:1172 Google Scholar
  105. 105.
    Rovira C, Schulze B, Eichinger M, Evanseck JD, Parrinello M (2001) J Biol Chem 81:435 Google Scholar
  106. 106.
    Rovira C (2003) J Phys Condens Matter 15:1809 Google Scholar
  107. 107.
    De Angelis F, Jarzecki AA, Car R, Spiro TG (2005) J Phys Chem B 109:3065 Google Scholar
  108. 108.
    De Santis L, Carloni P (1999) Proteins 37:611 Google Scholar
  109. 109.
    Alber F, Carloni P (2000) Protein Sci 9:2535 CrossRefGoogle Scholar
  110. 110.
    Piana S, Carloni P (2000) Proteins 39:26 Google Scholar
  111. 111.
    Piana S, Sebastiani D, Carloni P, Parrinello M (2001) J Am Chem Soc 123:8730 Google Scholar
  112. 112.
    Piana S, Carloni P, Parrinello M (2002) J Mol Biol 319:567 Google Scholar
  113. 113.
    Piana S, Bucher D, Carloni P, Röthlisberger U (2004) J Phys Chem B 108:11139 Google Scholar
  114. 114.
    Röthlisberger U, Carloni P (1999) Int J Quantum Chem 73:209 Google Scholar
  115. 115.
    Röthlisberger U, Carloni P, Doclo K, Parrinello M (2000) J Biol Inorg Chem 5:236 Google Scholar
  116. 116.
    Tilocca A, Gamba A, Vanoni MA, Fois E (2002) Biochemistry 41:14111 Google Scholar
  117. 117.
    Cavalli A, Carloni P (2002) J Am Chem Soc 2002:3763 Google Scholar
  118. 118.
    Klein CDP, Schiffmann R, Folkers G, Piana S, Röthlisberger U (2003) J Biol Chem 278:47862 Google Scholar
  119. 119.
    Magistrato A, DeGrado WF, Laio A, Röthlisberger U, Vande Vondele J, Klein ML (2003) J Phys Chem B 107:4182 Google Scholar
  120. 120.
    Papoian GA, DeGrado WF, Klein ML (2003) J Am Chem Soc 125:560 Google Scholar
  121. 121.
    Dal Peraro M, Llarrull LL, Röthlisberger U, Vila AJ, Carloni P (2004) J Am Chem Soc 126:12661 Google Scholar
  122. 122.
    Raugei S, Cascella M, Carloni P (2004) J Am Chem Soc 126:15730 Google Scholar
  123. 123.
    Boero M, Tateno M, Tenkura K, Oshiyama A (2005) J Chem Theory Comput 1:925 Google Scholar
  124. 124.
    Ivanov I, Klein ML (2005) J Am Chem Soc 127:4010 Google Scholar
  125. 125.
    Kirchner B, Reiher M, Hille A, Hutter J, Hess BA. (2005) Chem Eur J 11:574 Google Scholar
  126. 126.
    Gossens C, Tavernelli I, Röthlisberger U (2005) Chimia 59:81 Google Scholar
  127. 127.
    Alagona G, Campanile S, Ghio C, Molin D (2005) J Molec Struct, THEOCHEM 729:131 Google Scholar
  128. 128.
    Biarnes X, Nieto J, Planas A, Rovira C (2006) J Biol Chem 281:1432 Google Scholar
  129. 129.
    Vidossich P, Carloni P (2006) J Phys Chem B 110:1437 Google Scholar
  130. 130.
    Giannozzi P, De Angelis F, Car R (2004) J Phys Chem 120:5903 Google Scholar
  131. 131.
    Hutter J, Carloni P, Parrinello M (1996) J Am Chem Soc 118:8710 Google Scholar
  132. 132.
    Carloni P, Sprik M, Andreoni W (2000) J Phys Chem B 104:823 Google Scholar
  133. 133.
    Frigyes D, Alber F, Pomgor S, Carloni P (2001) J Molec Struct, THEOCHEM 574:39 Google Scholar
  134. 134.
    Mundy CJ, Colvin ME, Quong AA (2002) J Phys Chem B 106:10063 Google Scholar
  135. 135.
    Sulpizi M, Folkers G, Röthlisberger U, Carloni P, Scapozza L (2002) Quant Struct Act Relat 21:173 Google Scholar
  136. 136.
    Sulpizi M, Laio A, Vande Vondele J, Cattaneo A, Röthlisberger U, Carloni P (2003) Proteins 52:212 Google Scholar
  137. 137.
    Spiegel K, Röthlisberger U, Carloni P (2004) J Phys Chem B 108:2699 Google Scholar
  138. 138.
    Gervasio FL, Laio A, Iannuzi M, Parrinello M (2004) Chem Eur J 10:4846 Google Scholar
  139. 139.
    Wu Y, Mundy CJ, Colvin ME, Car R (2004) J Phys Chem A 108:2922 Google Scholar
  140. 140.
    Gervasio FL, Laio A, Parrinello M, Boero M (2005) Phys Rev Lett 94:158103 Google Scholar
  141. 141.
    Spiegel K, Röthlisberger U, Carloni P (2006) J Phys Chem B 110:3647 Google Scholar
  142. 142.
    Blöchl PE (1994) Phys Rev B 50:17953 Google Scholar
  143. 143.
    Ionescu AR, Berces A, Zgierski MZ, Whitfield DM, Nukada T (2005) J Phys Chem A 109:8096 Google Scholar
  144. 144.
    Molteni C, Parrinello M (1998) J Am Chem Soc 120:2168 Google Scholar
  145. 145.
    Rovira C, Kunc K, Parrinello M (2002) Inorg Chem 41:4810 Google Scholar
  146. 146.
    Semialjac M, Schröder D, Schwarz H (2003) Chem Eur J 9:4396 Google Scholar
  147. 147.
    Entel P, Kadau K, Adeagbo WA, Sugihara M, Rollmann G, Zayak AT, Kreth M (2004) Lecture Notes Phys 642:177 Google Scholar
  148. 148.
    Bühl M (2005) Inorg Chem 44:6277 Google Scholar
  149. 149.
    Stubbs JM, Marx D (2005) Chem Eur J 11:2651 Google Scholar
  150. 150.
    Hammond PS, Wu Y, Harris R, Minehardt TJ, Car R, Schmitt JD (2005) J Comput-Aided Mol Des 19:1 Google Scholar
  151. 151.
    Pophristic V, Veparala S, Ivanov I, Liu Z, Klein ML, De Grado WF (2006) J Phys Chem B 110:3517 Google Scholar
  152. 152.
    Frank I, Hutter J, Marx D, Parrinello M (1998) J Chem Phys 108:4060 Google Scholar
  153. 153.
    Molteni C, Frank I, Parrinello M (2001) Comput Mater Sci 20:311 Google Scholar
  154. 154.
    Bittner ER, Kosov DS (1999) J Chem Phys 110:6645 Google Scholar
  155. 155.
    Doltsinis NL, Marx D (2002) Phys Rev Lett 88:166402 Google Scholar
  156. 156.
    Hutter J (2003) J Chem Phys 118:3928 Google Scholar
  157. 157.
    Odelius M, Laikov D, Hutter J (2003) J Molec Struct, THEOCHEM, 630:163 Google Scholar
  158. 158.
    Tavernelli I, Röhrig UF, Röthlisberger U (2005) Mol Phys 103:963 Google Scholar
  159. 159.
    Molteni C, Frank I, Parrinello M (1999) J Am Chem Soc 121:12177 Google Scholar
  160. 160.
    Sulpizi M, Carloni P, Hutter J, Röthlisberger U (2003) Phys Chem Chem Phys 5:4798 Google Scholar
  161. 161.
    Sulpizi M, Röhrig UF, Hutter J, Röthlisberger U (2005) Int J Quantum Chem 101:671 Google Scholar
  162. 162.
    Langer H, Doltsinis NL (2003) J Chem Phys 118:5400 Google Scholar
  163. 163.
    Langer H, Doltsinis NL, Marx D (2005) Comput Phys Commun 6:1734 Google Scholar
  164. 164.
    Langer H, Doltsinis NL (2004) Phys Chem Chem Phys 6:2742 Google Scholar
  165. 165.
    Moret ME, Tapavicza E, Guidoni L, Röhrig UF, Sulpizi M, Tavernelli I, Röthlisberger U (2005) Chimia 59:493 Google Scholar
  166. 166.
    Reiher M, Kirchner B, Hutter J, Sellmann D, Hess BA (2004) Chem Eur J 10:4443 Google Scholar
  167. 167.
    Einsle O, Tezcan FA, Andrade SLA, Schmid B, Yoshida M, Howard JB, Rees DC (2002) Science 297:1696 Google Scholar
  168. 168.
    Leigh GJ (ed) (2002) Nitrogen fixation at the millenium. Elsevier, Amsterdam Google Scholar
  169. 169.
    Hinnemann B, Nørskov JK (2004) J Am Chem Soc 126:3920 Google Scholar
  170. 170.
    Hinnemann B, Nørskov JK (2003) J Am Chem Soc 125:1466 Google Scholar
  171. 171.
    Dance I (2003) Chem Commun 3:324 Google Scholar
  172. 172.
    Schimpl J, Petrilli HM, Blöchl PE (2003) J Am Chem Soc 124:15772 Google Scholar
  173. 173.
    Huniar U, Ahlrichs R, Coucouvanis D (2004) J Am Chem Soc 126:2588 Google Scholar
  174. 174.
    Yandulov DV, Schrock RR (2003) Science 301:76 Google Scholar
  175. 175.
    Sellmann D, Utz J, Blum N, Heinemann FW (1999) Coord Chem Rev 190–192:607 Google Scholar
  176. 176.
    Sellmann D, Fürsattel A, Sutter J (2000) Coord Chem Rev 200–202:541 Google Scholar
  177. 177.
    Reiher M, Hess BA (2004) Adv Inorg Chem 56:55 Google Scholar
  178. 178.
    Sellmann D, Hille A, Heinemann FW, Moll M, Rösler A, Sutter J, Brehm G, Reiher M, Hess BA, Schneider S (2003) Inorg Chim Acta 348:194 Google Scholar
  179. 179.
    Sellmann D, Hille A, Rösler A, Heinemann F, Moll M, Brehm G, Schneider S, Reiher M, Hess BA, Bauer W (2004) Chem Eur J 10:819 Google Scholar
  180. 180.
    Reiher M, Hess BA (2002) Chem Eur J 8:5332 Google Scholar
  181. 181.
    Sellmann D, Hautsch B, Rösler A, Heinemann FW (2001) Angew Chem Int Ed Engl 40:1505 Google Scholar
  182. 182.
    Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Phys Rev B 58:7260 Google Scholar
  183. 183.
    Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD (1992) Rev Mod Phys 64:1045 Google Scholar
  184. 184.
    Bockstedte M, Kley A, Neugebauer J, Scheffler M (1997) Comput Phys Commun 107:187 Google Scholar
  185. 185.
    NWChem: developed and distributed by Pacific Northwest National Labaratory, USA Google Scholar
  186. 186.
    Kresse G, Furthmüller J (1996) Phys Rev B 54:169 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Institute for Physical and Theoretical ChemistryBonnGermany

Personalised recommendations