Microwaves in Green and Sustainable Chemistry

Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 266)

Abstract

The various roles of microwave-assisted organic chemistry in green and sustainable chemistry are discussed beginning with the strategies, technologies, and methods that were employed routinely at the time the first reports of microwave applications for organic synthesis appeared. Applications of open-vessel microwave chemistry and closed-vessel microwave chemistry are presented, with sections on solvent-free methods, reactions in high-temperature water, technology for transposing reaction conditions.

Solvent-free Microwave Reactor High-temperature water Reaction Conditions 

Abbreviations

CMR

Continuous microwave reactor

CVMC

Closed-vessel microwave chemistry

GC

Gas chromatography

HPLC

High-performance liquid chromatography

IBD

Iodobenzene diacetate

MBR

Microwave batch reactor

MS

Mass spectrometry

MW

Microwave irradiation

NMR

Nuclear magnetic resonance spectroscopy

OVMC

Open-vessel microwave chemistry

PTC

Phase transfer catalysis

PTFE

Polytetrafluoroethylene

PFA

Perfluoroalkoxy

RX

Alkyl halide

X

Halide

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Szmant HH (1989) Organic Building Blocks for Organic Chemistry. Wiley, New York Google Scholar
  2. 2.
    Blumberg AA (1994) J Chem Educ 71:912 CrossRefGoogle Scholar
  3. 3.
    Garfield S (2000) Mauve. Faber and Faber, London Google Scholar
  4. 4.
    Carson R (1962) Silent Spring. Houghton Mifflin, New York Google Scholar
  5. 5.
    Strauss CR, Scott JL (2001) Chem Ind (London), p 610 Google Scholar
  6. 6.
    McKinnon D (1981) Chem & Eng News 59(24):5 Google Scholar
  7. 7.
    Allen B (2000) Green Chem 2:G56 CrossRefGoogle Scholar
  8. 8.
    Anastas PT, Warner J (1998) Green Chemistry; Theory and Practice. Oxford Science Publications, Oxford Google Scholar
  9. 9.
    Anastas PT, Williamson TC (1998) Green Chemistry: Frontiers in Benign Chemical Syntheses and Processes. Oxford University Press, Oxford Google Scholar
  10. 10.
    Jackson T (1996) Material Concerns: Pollution, Profit and Quality of Life. Routledge, London CrossRefGoogle Scholar
  11. 11.
    Gedye R, Smith F, Westaway K, Ali H, Baldisera L, Laberge L, Rousell J (1996) Tetrahedron Lett 27:279 CrossRefGoogle Scholar
  12. 12.
    Giguere RJ, Bray TL, Duncan SM, Majetich G (1986) Tetrahedron Lett 27:4945 CrossRefGoogle Scholar
  13. 13.
    Roberts BA, Strauss CR (2005) Acc Chem Res 38:563 CrossRefGoogle Scholar
  14. 14.
    Trost BM (1991) Science 254:1471 CrossRefGoogle Scholar
  15. 15.
    Trost BM (1995) Angew Chem, Int Ed Engl 34:259 CrossRefGoogle Scholar
  16. 16.
    Gedye RN, Smith FE, Westaway KC (1988) Can J Chem 66:17 CrossRefGoogle Scholar
  17. 17.
    Loupy A (2002) Microwaves in Organic Synthesis. Wiley, Weinheim CrossRefGoogle Scholar
  18. 18.
    Kappe CO, Stadler A (2005) Microwaves in Organic and Medicinal Chemistry. Wiley, Weinheim CrossRefGoogle Scholar
  19. 19.
    Loupy A, Bram G, Sansoulet J (1992) New J Chem 16:233 Google Scholar
  20. 20.
    Gutierrez E, Loupy A, Bram G, Ruiz-Hitzky E (1989) Tetrahedron Lett 30:945 CrossRefGoogle Scholar
  21. 21.
    Bram G, Loupy A, Majdoub M (1990) Synthetic Commun 20:125 CrossRefGoogle Scholar
  22. 22.
    Villemin D, Labiad B, Ouhilal Y (1989) Chem Ind (London), p 607 Google Scholar
  23. 23.
    Villemin D, Ben Alloum A (1990) Synth Commun 20:925 CrossRefGoogle Scholar
  24. 24.
    Ben Alloum A, Labiad B, Villemin D (1989) Chem Commun, p 386 Google Scholar
  25. 25.
    Latouche R, Texier-Boullet F, Hamelin J (1991) Tetrahedron Lett 32:1179 CrossRefGoogle Scholar
  26. 26.
    Pilard J-F, Klein B, Texier-Boullet F, Hamelin J (1992) Synlett, p 219 Google Scholar
  27. 27.
    Varma RS, Varma M, Chatterjee AK (1993) J Chem Soc Perkin Trans I, p 999 Google Scholar
  28. 28.
    Varma RS, Lamture JB, Varma M (1993) Tetrahedron Lett 34:3029 CrossRefGoogle Scholar
  29. 29.
    Bose AK, Manhas MS, Ghosh M, Shah M, Raju VS, Bari SS, Newaz SN, Banik BK, Chaudhary AG, Baraket KJ (1991) J Org Chem 56:6968 CrossRefGoogle Scholar
  30. 30.
    Banik BK, Manhas MS, Kaluza Z, Barakat KJ, Bose AK (1992) Tetrahedron Lett 33:3603 CrossRefGoogle Scholar
  31. 31.
    Alvarez C, Delgado F, García O, Medina S, Márquez C (1991) Synth Commun 21:619 CrossRefGoogle Scholar
  32. 32.
    Delgado F, Alvarez C, García O, Penieres G, Márquez C (1991) Synth Commun 21:2137 CrossRefGoogle Scholar
  33. 33.
    Loupy A, Petit A, Hamelin J, Texier-Boullet F, Jacquault P, Mathé D (1998) Synthesis, p 1213 Google Scholar
  34. 34.
    Varma RS (1999) Green Chem 1:43 CrossRefGoogle Scholar
  35. 35.
    Varma RS (2001) Pure Appl Chem 73:193 CrossRefGoogle Scholar
  36. 36.
    Diaz-Ortiz A, de la Hoz A, Langa F (2000) Green Chem 2:165 CrossRefGoogle Scholar
  37. 37.
    Fubini B, Otero Arean C (1999) Chem Soc Rev 28:373 CrossRefGoogle Scholar
  38. 38.
    Ricard M, Villemin D (1984) Tetrahedron Lett 25:1059 CrossRefGoogle Scholar
  39. 39.
    Varma RS, Kumar D, Liesen PJ (1998) J Chem Soc Perkin Trans I, p 4093 Google Scholar
  40. 40.
    Varma RS (2002) Tetrahedron 58:1235 CrossRefGoogle Scholar
  41. 41.
    Csiba M, Cléophax J, Loupy A, Malthête J, Gero S (1993) Tetrahedron Lett 34:1787 CrossRefGoogle Scholar
  42. 42.
    Varma RS, Saini RK, Dahiya R (1997) Tetrahedron Lett 38:7823 CrossRefGoogle Scholar
  43. 43.
    Varma RS, Saini RK (1998) Tetrahedron Lett 39:1481 CrossRefGoogle Scholar
  44. 44.
    Varma RS, Dahiya R (1997) Tetrahedron Lett 38:2043 CrossRefGoogle Scholar
  45. 45.
    Laszlo P (1986) Acc Chem Res 19:121 CrossRefGoogle Scholar
  46. 46.
    Cornelius A, Laszlo P (1994) Synlett, p 155 Google Scholar
  47. 47.
    Varma RS, Dahiya R, Saini RK (1997) Tetrahedron Lett 38:7029 CrossRefGoogle Scholar
  48. 48.
    Varma RS, Saini RK, Dahiya R (1998) J Chem Res (S), p 120 Google Scholar
  49. 49.
    Varma RS, Saini RK, Meshram HM (1997) Tetrahedron Lett 38:6525 CrossRefGoogle Scholar
  50. 50.
    Varma RS, Saini RK (1997) Tetrahedron Lett 38:4337 CrossRefGoogle Scholar
  51. 51.
    Erb WT, Jones JR, Lu S-Y (1999) J Chem Res (S), p 728 Google Scholar
  52. 52.
    Elander N, Jones JR, Lu S-Y, Stone-Elander S (2000) Chem Soc Rev 29:239 CrossRefGoogle Scholar
  53. 53.
    Fodor-Csorba K, Galli G, Holly S, Gacs-Baitz E (2002) Tetrahedron Lett 43:4337 CrossRefGoogle Scholar
  54. 54.
    Varma RS, Dahiya R (1998) Tetrahedron 54:6293 CrossRefGoogle Scholar
  55. 55.
    Tanaka K (2003) Solvent-Free Organic Synthesis. Wiley, Weinheim CrossRefGoogle Scholar
  56. 56.
    Vidal T, Petit A, Loupy A, Gedye RN (2000) Tetrahedron 56:5473 CrossRefGoogle Scholar
  57. 57.
    Perreux L, Loupy A, Volatron F (2002) Tetrahedron 58:2155 CrossRefGoogle Scholar
  58. 58.
    Perreux L, Loupy A, Delmotte M (2003) Tetrahedron 59:2185 CrossRefGoogle Scholar
  59. 59.
    Varma RS, Namboodiri VV (2001) Chem Commun, p 643 Google Scholar
  60. 60.
    Deetlefs M, Seddon KR (2003) Green Chem 5:181 CrossRefGoogle Scholar
  61. 61.
    Vo Thanh G, Pegot B, Loupy A (2004) Eur J Org Chem, p 1112 Google Scholar
  62. 62.
    Varma RS (2003) In: Rogers R, Seddon KR (eds) Ionic Liquids as Green Solvents Progress and Prospects. ACS Symposium Series 856. Am Chem Soc, Washington, p 82 CrossRefGoogle Scholar
  63. 63.
    Namboodiri VV, Varma RS (2002) Tetrahedron Lett 43:5381 CrossRefGoogle Scholar
  64. 64.
    Kim YJ, Varma RS (2005) J Org Chem 70:7882 CrossRefGoogle Scholar
  65. 65.
    Varma RS (1999) J Heterocycl Chem 36:1565 CrossRefGoogle Scholar
  66. 66.
    Kappe CO, Kumar D, Varma RS (1999) Synthesis, p 1799 Google Scholar
  67. 67.
    Varma RS, Kumar D (1999) Tetrahedron Lett 40:7665 CrossRefGoogle Scholar
  68. 68.
    Ju Y, Li C-J, Varma RS (2004) QSAR Comb Sci 23:891 CrossRefGoogle Scholar
  69. 69.
    Varma RS, Dahiya R (1998) J Org Chem 63:8038 CrossRefGoogle Scholar
  70. 70.
    Varma RS, Kumar D, Liesen PJ (1998) J Chem Soc Perkin Trans I, p 4093 Google Scholar
  71. 71.
    Ješelnik M, Varma RS, Polanc S, Kočevar M (2001) Chem Commun, p 1716 Google Scholar
  72. 72.
    Loupy A, Pettit A, Bogdal D (2002) In: Loupy A (ed) Microwaves in Organic Synthesis. Wiley, Weinheim, p 147 CrossRefGoogle Scholar
  73. 73.
    Bose AK, Manhas MS, Banik BK, Robb EW (1994) Res Chem Intermed 20:1 CrossRefGoogle Scholar
  74. 74.
    Baghurst DR, Mingos DMP (1992) Chem Commun, p 674 Google Scholar
  75. 75.
    Gabriel C, Gabriel S, Grant EH, Halstead BSJ, Mingos DMP (1998) Chem Soc Rev 27:213 CrossRefGoogle Scholar
  76. 76.
    Dabirmanesh Q, Roberts RMG (1993) J Organomet Chem 460:C28 CrossRefGoogle Scholar
  77. 77.
    Strauss CR, Trainor RW (1995) Aust J Chem 48:1665 CrossRefGoogle Scholar
  78. 78.
    Cablewski T, Faux AF, Strauss CR (1994) J Org Chem 59:3408 CrossRefGoogle Scholar
  79. 79.
    Raner K, Strauss C, Constable D, Somlo P (1992) J Microwave Power Electromag Energy 26:195 Google Scholar
  80. 80.
    Raner KD, Strauss CR, Trainor RW, Thorn JS (1995) J Org Chem 60:2456 CrossRefGoogle Scholar
  81. 81.
    Strauss CR (2002) In: Clark J, Macquarrie D (eds) Handbook of Green Chemistry & Technology. Blackwell, London, p 397 CrossRefGoogle Scholar
  82. 82.
    Bagnell L, Cablewski T, Strauss CR (1999) Chem Commun 283 Google Scholar
  83. 83.
    An J, Bagnell L, Cablewski T, Strauss CR, Trainor RW (1997) J Org Chem 62:2505 CrossRefGoogle Scholar
  84. 84.
    Strauss CR, Trainor RW (1996) In: Takeoka GR, Teranishi R, Williams PJ, Kobayashi A (eds) Biotechnology for Improved Foods and Flavors. ACS Symposium Series 637. Am Chem Soc, Washington, DC, p 272 Google Scholar
  85. 85.
    Bagnell L, Cablewski T, Strauss CR, Trainor RW (1996) J Org Chem 61:7355 CrossRefGoogle Scholar
  86. 86.
    Kremsner JM, Kappe CO (2005) Eur J Org Chem 3672 Google Scholar
  87. 87.
    Strauss CR, Trainor RW (1998) Aust J Chem 51:703 CrossRefGoogle Scholar
  88. 88.
    Ju Y, Varma RS (2004) Green Chem 6:219 CrossRefGoogle Scholar
  89. 89.
    Ju Y, Varma RS (2005) Org Lett 7:2409 CrossRefGoogle Scholar
  90. 90.
    Ju Y, Varma RS (2005) Tetrahedron Lett 46:6011 CrossRefGoogle Scholar
  91. 91.
    Ju Y, Varma RS (2006) J Org Chem 71:135 CrossRefGoogle Scholar
  92. 92.
    Varma RS, Naicker KP, Kumar D (1999) J Mol Catal A: Chem 149:153 CrossRefGoogle Scholar
  93. 93.
    Sheldon RA (1994) CHEMTECH 24(3):38 Google Scholar
  94. 94.
    Sheldon RA (1992) Chem Ind (London), p 903 Google Scholar
  95. 95.
    Okochi H, Kajimoto T, Arai Y, Igawa M (1996) Bull Chem Soc Jpn 69:3355 CrossRefGoogle Scholar
  96. 96.
    Strauss CR (1999) Aust J Chem 52:83 CrossRefGoogle Scholar
  97. 97.
    Bagnell L, Bliese M, Cablewski T, Strauss CR, Tsanaktsidis J (1997) Aust J Chem 50:921 CrossRefGoogle Scholar
  98. 98.
    Larhed M, Lindeberg G, Hallberg A (1996) Tetrahedron Lett 37:8219 CrossRefGoogle Scholar
  99. 99.
    Larhed M, Hallberg A (1996) J Org Chem 61:9582 CrossRefGoogle Scholar
  100. 100.
    Kappe CO (2004) Angew Chem, Int Ed 43:6250 CrossRefGoogle Scholar
  101. 101.
    Lidstrom P, Tierney J, Watthey B, Westman J (2001) Tetrahedron 57:9225 CrossRefGoogle Scholar
  102. 102.
    Larhed M, Moberg C, Hallberg A (2002) Acc Chem Res 35:717 CrossRefGoogle Scholar
  103. 103.
    Gronnow MJ, White RJ, Clark JH, Macquarrie DJ (2005) Org Process Res Dev 9:516 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.CSIRO Molecular & Health TechnologiesClaytonAustralia
  2. 2.US Environmental Protection AgencyCincinnatiUSA

Personalised recommendations