Supramolecular Chirality pp 47-88

Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 265)

Dynamic Helical Structures: Detection and Amplification of Chirality

Chapter

Abstract

A unique feature of dynamic helical, chromophoric macromolecules that enables the detection of a small imbalance in chiral guest molecules through a noncovalent bonding interaction with high cooperativity is described. In sharp contrast to host–guest and supramolecular systems based on small synthetic receptor molecules, the chiral information of nonracemic guest molecules transfers with a significant amplification in a helical polymer as an excess of a single-handed helix, resulting in a highly efficient chirality-sensing system. Helical aggregates with controlled helicity based on small molecules and their chiral amplification and use in chirality sensing are also briefly described in this review.

Chiral amplification Chirality sensing Helical aggregates Helical macromolecules Helix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Saenger W (1984) Principles of nucleic acid structure. Springer, Berlin Heidelberg New York Google Scholar
  2. 2.
    Schulz GE, Schirmer RH (1979) Principles of protein structure. Springer, Berlin Heidelberg New York Google Scholar
  3. 3.
    Okamoto Y, Nakano T (1994) Chem Rev 94:349 Google Scholar
  4. 4.
    Green MM, Peterson NC, Sato T, Teramoto A, Cook R, Lifson S (1995) Science 268:1860 Google Scholar
  5. 5.
    Nakano T, Okamoto Y (2001) Chem Rev 101:4013 Google Scholar
  6. 6.
    Cornelissen JJLM, Rowan AE, Nolte RJM, Sommerdijk NAJM (2001) Chem Rev 101:4039 Google Scholar
  7. 7.
    Fujiki M (2001) Macromol Rapid Commun 22:539 Google Scholar
  8. 8.
    Yashima E, Matsushima T, Okamoto Y (1995) J Am Chem Soc 117:11596 Google Scholar
  9. 9.
    Yashima E, Matsushima T, Okamoto Y (1997) J Am Chem Soc 119:6345 Google Scholar
  10. 10.
    Yashima E (2002) Anal Sci 18:3 Google Scholar
  11. 11.
    Yashima E, Maeda K, Nishimura T (2004) Chem Eur J 10:43 Google Scholar
  12. 12.
    Berova N, Nakanishi K, Woody RW (2000) Circular dichroism: principles and applications, 2nd edn. Wiley, New York Google Scholar
  13. 13.
    Canary JW, Holmes AE, Liu J (2001) Enantiomer 6:181 Google Scholar
  14. 14.
    Tsukube H, Shinoda S (2002) Chem Rev 102:2389 Google Scholar
  15. 15.
    Allenmark S (2003) Chirality 15:409 Google Scholar
  16. 16.
    Hill DJ, Mio MJ, Prince RB, Hughes TS, Moore JS (2001) Chem Rev 101:3893 Google Scholar
  17. 17.
    Rowan AE, Nolte RJM (1998) Angew Chem Int Ed 37:63 Google Scholar
  18. 18.
    Brunsveld L, Folmer BJB, Meijer EW, Sijbesma RP (2001) Chem Rev 101:4071 Google Scholar
  19. 19.
    Schmuck C (2003) Angew Chem Int Ed 42:2448 Google Scholar
  20. 20.
    Mateos-Timoneda MA, Crego-Calama M, Reinhoudt DN (2004) Chem Soc Rev 33:363 Google Scholar
  21. 21.
    Hoeben FJM, Jonkheijm P, Meijer EW, Schenning APHJ (2005) Chem Rev 105:1491 Google Scholar
  22. 22.
    Zhang J, Albelda T, Liu Y, Canary JW (2005) Chirality 17:404 Google Scholar
  23. 23.
    Keizer HM, Sijbesma RP (2005) Chem Soc Rev 34:226 Google Scholar
  24. 24.
    Constable EC (1992) Tetrahedron 48:10013 Google Scholar
  25. 25.
    Lehn J-M (1995) Supramolecular chemistry. Wiley-VCH, Weinheim, Germany Google Scholar
  26. 26.
    Piguet C, Bernardinelli G, Hopfgartner G (1997) Chem Rev 97:2005 Google Scholar
  27. 27.
    Albrecht M (2001) Chem Rev 101:3457 Google Scholar
  28. 28.
    Tachibana T, Kambara H (1965) J Am Chem Soc 87:3015 Google Scholar
  29. 29.
    Nakashima N, Asakuma S, Kunitake T (1985) J Am Chem Soc 107:509 Google Scholar
  30. 30.
    Fuhrhop JH, Helfrich W (1993) Chem Rev 93:1565 Google Scholar
  31. 31.
    Shimizu T, Masuda M, Minamikawa H (2005) Chem Rev 105:1401 Google Scholar
  32. 32.
    Terech P, Weiss RG (1997) Chem Rev 97:3133 Google Scholar
  33. 33.
    Van Bommel KJC, Friggeri A, Shinkai S (2003) Angew Chem Int Ed 42:980 Google Scholar
  34. 34.
    Messmore BW, Sukerkar PA, Stupp SI (2005) J Am Chem Soc 127:7992 Google Scholar
  35. 35.
    Engelkamp H, Middelbeek S, Nolte RJM (1999) Science 284:785 Google Scholar
  36. 36.
    Fox JM, Katz TJ, Van Elshocht S, Verbiest T, Kauranen M, Persoons A, Thongpanchang T, Krauss T, Brus L (1999) J Am Chem Soc 121:3453 Google Scholar
  37. 37.
    Hill JP, Jin W, Kosaka A, Fukushima T, Ichihara H, Shimomura T, Ito K, Hashizume T, Ishii N, Aida T (2004) Science 304:1481 Google Scholar
  38. 38.
    Jin W, Fukushima T, Niki M, Kosaka A, Ishii N, Aida T (2005) Proc Natl Acad Sci USA 102:10801 Google Scholar
  39. 39.
    Gallivan JP, Schuster GB (1995) J Org Chem 60:2423 Google Scholar
  40. 40.
    Nuckolls C, Katz TJ, Castellanos L (1996) J Am Chem Soc 118:3767 Google Scholar
  41. 41.
    Lovinger AJ, Nuckolls C, Katz TJ (1998) J Am Chem Soc 120:264 Google Scholar
  42. 42.
    Nuckolls C, Katz TJ, Katz G, Collings PJ, Castellanos L (1999) J Am Chem Soc 121:79 Google Scholar
  43. 43.
    Mariani P, Mazabard C, Garbesi A, Spada GP (1989) J Am Chem Soc 111:6369 Google Scholar
  44. 44.
    Bonazzi S, Capobianco M, De Morais MM, Garbesi A, Gottarelli G, Mariani P, Ponzi Bossi MG, Spada GP, Tondelli L (1991) J Am Chem Soc 113:5809 Google Scholar
  45. 45.
    Gottarelli G, Spada GP (2004) Chem Rec 4:39 Google Scholar
  46. 46.
    Andrisano V, Gottarelli G, Masiero S, Heijne EH, Pieraccini S, Spada GP (1999) Angew Chem Int Ed 38:2386 Google Scholar
  47. 47.
    Ciuchi F, Di Nicola G, Franz H, Gottarelli G, Mariani P, Ponzi Bossi MG, Spada GP (1994) J Am Chem Soc 116:7064 Google Scholar
  48. 48.
    Gottarelli G, Mezzina E, Spada GP, Carsughi F, Di Nicola G, Mariani P, Sabatucci A, Bonazzi S (1996) Helv Chim Acta 79:220 Google Scholar
  49. 49.
    Kamikawa Y, Nishii M, Kato T (2004) Chem Eur J 10:5942 Google Scholar
  50. 50.
    Sijbesma RP, Meijer EW (2003) Chem Commun 5 Google Scholar
  51. 51.
    Jeukens CRLPN, Jonkheijm P, Wijnen FJP, Gielen JC, Christianen PCM, Schenning APHJ, Meijer EW, Maan JC (2005) J Am Chem Soc 127:8280 Google Scholar
  52. 52.
    Hoeben FJM, Herz LM, Daniel C, Jonkheijm P, Schenning APHJ, Silva C, Meskers SCJ, Beljonne D, Phillips RT, Friend RH, Meijer EW (2004) Angew Chem Int Ed 43:1976 Google Scholar
  53. 53.
    Jonkheijm P, Hoeben FJM, Kleppinger R, van Herrikhuyzen J, Schenning APHJ, Meijer EW (2003) J Am Chem Soc 125:15941 Google Scholar
  54. 54.
    Schenning APHJ, Jonkheijm P, Peeters E, Meijer EW (2001) J Am Chem Soc 123:409 Google Scholar
  55. 55.
    Wurthner F, Chen ZJ, Hoeben FJM, Osswald P, You CC, Jonkheijm P, von Herrikhuyzen J, Schenning APHJ, van der Schoot PPAM, Meijer EW, Beckers EHA, Meskers SCJ, Janssen RAJ (2004) J Am Chem Soc 126:10611 Google Scholar
  56. 56.
    Schenning APHJ, von Herrikhuyzen J, Jonkheijm P, Chen Z, Wurthner F, Meijer EW (2002) J Am Chem Soc 124:10252 Google Scholar
  57. 57.
    Feringa BL, van Delden RA (1999) Angew Chem Int Ed 38:3419 Google Scholar
  58. 58.
    Green MM, Park JW, Sato T, Teramoto A, Lifson S, Selinger RLB, Selinger JV (1999) Angew Chem Int Ed 38:3139 Google Scholar
  59. 59.
    Soai K, Shibata T, Sato I (2000) Acc Chem Res 33:382 Google Scholar
  60. 60.
    Noyori R (2002) Angew Chem Int Ed 41:2008 Google Scholar
  61. 61.
    Green MM, Reidy MP, Johnson RJ, Darling G, Oleary DJ, Willson G (1989) J Am Chem Soc 111:6452 Google Scholar
  62. 62.
    Jha SK, Cheon KS, Green MM, Selinger JV (1999) J Am Chem Soc 121:1665 Google Scholar
  63. 63.
    Green MM, Garetz BA, Munoz B, Chang HP, Hoke S, Cooks RG (1995) J Am Chem Soc 117:4181 Google Scholar
  64. 64.
    Hirschberg JHKK, Brunsveld L, Ramzi A, Vekemans JAJM, Sijbesma RP, Meijer EW (2000) Nature 407:167 Google Scholar
  65. 65.
    Hirschberg JHKK, Koevoets RA, Sijbesma RP, Meijer EW (2003) Chem Eur J 9:4222 Google Scholar
  66. 66.
    Brunsveld L, Vekemans JAJM, Hirschberg JHKK, Sijbesma RP, Meijer EW (2002) Proc Natl Acad Sci USA 99:4977 Google Scholar
  67. 67.
    Palmans ARA, Vekemans JAJM, Havinga EE, Meijer EW (1997) Angew Chem Int Ed Engl 36:2648 Google Scholar
  68. 68.
    Brunsveld L, Lohmeijer BGG, Vekemans JAJM, Meijer EW (2000) Chem Commun 2305 Google Scholar
  69. 69.
    Brunsveld L, Zhang H, Glasbeek M, Vekemans JAJM, Meijer EW (2000) J Am Chem Soc 122:6175 Google Scholar
  70. 70.
    van Gorp JJ, Vekemans JAJM, Meijer EW (2002) J Am Chem Soc 124:14759 Google Scholar
  71. 71.
    Brunsfeld L, Lohmeijer BGG, Vekemans JAJM, Meijer EW (2001) J Inclusion Phenom 41:61 Google Scholar
  72. 72.
    van Gestel J, Palmans ARA, Titulaer B, Vekemans JAJM, Meijer EW (2005) J Am Chem Soc 127:5490 Google Scholar
  73. 73.
    Brunsveld L, Schenning APHJ, Broeren MAC, Janssen HM, Vekemans JAJM, Meijer EW (2000) Chem Lett 292 Google Scholar
  74. 74.
    Lightfoot MP, Mair FS, Pritchard RG, Warren JE (1999) Chem Commun 1945 Google Scholar
  75. 75.
    Wilson AJ, Masuda M, Sijbesma RP, Meijer EW (2005) Angew Chem Int Ed 44:2275 Google Scholar
  76. 76.
    de Jong JJD, Lucas LN, Kellogg RM, van Esch JH, Feringa BL (2004) Science 304:278 Google Scholar
  77. 77.
    de Jong JJD, Tiemersma-Wegman TD, van Esch JH, Feringa BL (2005) J Am Chem Soc 127:13804 Google Scholar
  78. 78.
    Fenniri H, Deng BL, Ribbe AE (2002) J Am Chem Soc 124:11064 Google Scholar
  79. 79.
    Fenniri H, Deng BL, Ribbe AE, Hallenga K, Jacob J, Thiyagarajan P (2002) Proc Natl Acad Sci USA 99:6487 Google Scholar
  80. 80.
    Onouchi H, Maeda K, Yashima E (2001) J Am Chem Soc 123:7441 Google Scholar
  81. 81.
    Onouchi H, Kashiwagi D, Hayashi K, Maeda K, Yashima E (2004) Macromolecules 37:5495 Google Scholar
  82. 82.
    Yashima E, Maeda Y, Okamoto Y (1996) Chem Lett 955 Google Scholar
  83. 83.
    Yashima E, Maeda Y, Matsushima T, Okamato Y (1997) Chirality 9:593 Google Scholar
  84. 84.
    Maeda K, Okada S, Yashima E, Okamoto Y (2001) J Polym Sci, Part A: Polym Chem 39:3180 Google Scholar
  85. 85.
    Yashima E, Nimura T, Matsushima T, Okamoto Y (1996) J Am Chem Soc 118:9800 Google Scholar
  86. 86.
    Kawamura H, Maeda K, Okamoto Y, Yashima E (2001) Chem Lett 58 Google Scholar
  87. 87.
    Morino K, Watase N, Maeda K, Yashima E (2004) Chem Eur J 10:4703 Google Scholar
  88. 88.
    Nonokawa R, Yashima E (2003) J Am Chem Soc 125:1278 Google Scholar
  89. 89.
    Nonokawa R, Oobo M, Yashima E (2003) Macromolecules 36:6599 Google Scholar
  90. 90.
    Nonokawa R, Yashima E (2003) J Polym Sci, Part A: Polym Chem 41:1004 Google Scholar
  91. 91.
    Sakurai S, Kuroyanagi K, Nonokawa R, Yashima E (2004) J Polym Sci, Part A: Polym Chem 42:5838 Google Scholar
  92. 92.
    Manning GS (1979) Acc Chem Res 12:443 Google Scholar
  93. 93.
    Saito MA, Maeda K, Onouchi H, Yashima E (2000) Macromolecules 33:4616 Google Scholar
  94. 94.
    Nagai K, Maeda K, Takeyama Y, Sakajiri K, Yashima E (2005) Macromolecules 38:5444 Google Scholar
  95. 95.
    Yashima E, Goto H, Okamoto Y (1998) Polym J 30:69 Google Scholar
  96. 96.
    Maeda K, Goto H, Yashima E (2001) Macromolecules 34:1160 Google Scholar
  97. 97.
    Tabei J, Nomura R, Sanda F, Masuda T (2003) Macromolecules 36:8603 Google Scholar
  98. 98.
    Ishikawa M, Maeda K, Yashima E (2002) J Am Chem Soc 124:7448 Google Scholar
  99. 99.
    Yashima E, Maeda K, Yamanaka T (2000) J Am Chem Soc 122:7813 Google Scholar
  100. 100.
    Schlitzer DS, Novak BM (1998) J Am Chem Soc 120:2196 Google Scholar
  101. 101.
    Maeda K, Yamamoto N, Okamoto Y (1998) Macromolecules 31:5924 Google Scholar
  102. 102.
    Sakai R, Satoh T, Kakuchi R, Kaga H, Kakuchi T (2003) Macromolecules 36:3709 Google Scholar
  103. 103.
    Sakai R, Satoh T, Kakuchi R, Kaga H, Kakuchi T (2004) Macromolecules 37:3996 Google Scholar
  104. 104.
    Green MM, Khatri C, Peterson NC (1993) J Am Chem Soc 115:4941 Google Scholar
  105. 105.
    Dellaportas P, Jones RG, Holder SJ (2002) Macromol Rapid Commun 23:99 Google Scholar
  106. 106.
    Majidi MR, Kane-Maguire LAP, Wallace GG (1995) Polymer 36:3597 Google Scholar
  107. 107.
    Arnt L, Tew GN (2004) Macromolecules 37:1283 Google Scholar
  108. 108.
    Nakashima H, Koe JR, Torimitsu K, Fujiki M (2001) J Am Chem Soc 123:4847 Google Scholar
  109. 109.
    Inai Y, Tagawa K, Takasu A, Hirabayashi T, Oshikawa T, Yamashita M (2000) J Am Chem Soc 122:11731 Google Scholar
  110. 110.
    Inai Y, Ousaka N, Okabe T (2003) J Am Chem Soc 125:8151 Google Scholar
  111. 111.
    Okamoto Y, Matsuda M, Nakano T, Yashima E (1993) Polym J 25:391 Google Scholar
  112. 112.
    Okamoto Y, Matsuda M, Nakano T, Yashima E (1994) J Polym Sci, Part A: Polym Chem 32:309 Google Scholar
  113. 113.
    Maeda K, Matsuda M, Nakano T, Okamoto Y (1995) Polym J 27:141 Google Scholar
  114. 114.
    Obata K, Kabuto C, Kira M (1997) J Am Chem Soc 119:11345 Google Scholar
  115. 115.
    Ikeda C, Yoon ZS, Park M, Inoue H, Kim D, Osuka A (2005) J Am Chem Soc 127:534 Google Scholar
  116. 116.
    Gellman SH (1998) Acc Chem Res 31:173 Google Scholar
  117. 117.
    Prince RB, Barnes SA, Moore JS (2000) J Am Chem Soc 122:2758 Google Scholar
  118. 118.
    Prince RB, Moore JS, Brunsveld L, Meijer EW (2001) Chem Eur J 7:4150 Google Scholar
  119. 119.
    Brunsveld L, Meijer EW, Prince RB, Moore JS (2001) J Am Chem Soc 123:7978 Google Scholar
  120. 120.
    Inouye M, Waki M, Abe H (2004) J Am Chem Soc 126:2022 Google Scholar
  121. 121.
    Maurizot V, Dolain C, Huc I (2005) Eur J Org Chem 1293 Google Scholar
  122. 122.
    Berl V, Huc I, Khoury RG, Krische MJ, Lehn JM (2000) Nature 407:720 Google Scholar
  123. 123.
    Maeda K, Morino K, Yashima E (2003) Macromol Symp 201:135 Google Scholar
  124. 124.
    Yashima E, Maeda Y, Okamoto Y (1998) J Am Chem Soc 120:8895 Google Scholar
  125. 125.
    Yashima E, Maeda K, Sato O (2001) J Am Chem Soc 123:8159 Google Scholar
  126. 126.
    Morino K, Maeda K, Yashima E (2003) Macromolecules 36:1480 Google Scholar
  127. 127.
    Yashima E, Maeda K, Okamoto Y (1999) Nature 399:449 Google Scholar
  128. 128.
    Maeda K, Morino K, Okamoto Y, Sato T, Yashima E (2004) J Am Chem Soc 126:4329 Google Scholar
  129. 129.
    Miyagawa T, Furuko A, Maeda K, Katagiri H, Furusho Y, Yashima E (2005) J Am Chem Soc 127:5018 Google Scholar
  130. 130.
    Maeda K, Matsushita Y, Ezaka M, Yashima E (2005) Chem Commun 4152 Google Scholar
  131. 131.
    Furusho Y, Kimura T, Mizuno Y, Aida T (1997) J Am Chem Soc 119:5267 Google Scholar
  132. 132.
    Bellacchio E, Lauceri R, Gurrieri S, Scolaro LM, Romeo A, Purrello R (1998) J Am Chem Soc 120:12353 Google Scholar
  133. 133.
    Sugasaki A, Ikeda M, Takeuchi M, Robertson A, Shinkai S (1999) J Chem Soc, Perkin Trans 1 3259 Google Scholar
  134. 134.
    Rivera JM, Craig SL, Martin T, Rebek J Jr (2000) Angew Chem Int Ed 39:2130 Google Scholar
  135. 135.
    Prins LJ, De Jong F, Timmerman P, Reinhoudt DN (2000) Nature 408:181 Google Scholar
  136. 136.
    Kubo Y, Ohno T, Yamanaka J, Tokita S, Iida T, Ishimaru Y (2001) J Am Chem Soc 123:12700 Google Scholar
  137. 137.
    Ishi-i T, Crego-Calama M, Timmerman P, Reinhoudt DN, Shinkai S (2002) J Am Chem Soc 124:14631 Google Scholar
  138. 138.
    Prins LJ, Verhage JJ, de Jong F, Timmerman P, Reinhoudt DN (2002) Chem Eur J 8:2302 Google Scholar
  139. 139.
    Purrello R (2003) Nat Mater 2:216 Google Scholar
  140. 140.
    Ziegler M, Davis AV, Johnson DW, Raymond KN (2003) Angew Chem Int Ed 42:665 Google Scholar
  141. 141.
    Lauceri R, Raudino A, Scolaro LM, Micali N, Purrello R (2002) J Am Chem Soc 124:894 Google Scholar
  142. 142.
    Lauceri R, Purrello R (2005) Supramol Chem 17:61 Google Scholar
  143. 143.
    Onouchi H, Miyagawa T, Furuko A, Maeda K, Yashima E (2005) J Am Chem Soc 127:2960 Google Scholar
  144. 144.
    Ishikawa M, Maeda K, Mitsutsuji Y, Yashima E (2004) J Am Chem Soc 126:732 Google Scholar
  145. 145.
    Goto H, Zhang HQ, Yashima E (2003) J Am Chem Soc 125:2516 Google Scholar
  146. 146.
    Morino K, Oobo M, Yashima E (2005) Macromolecules 38:3461 Google Scholar
  147. 147.
    Maeda K, Hatanaka K, Yashima E (2004) Mendeleev Commun 231 Google Scholar
  148. 148.
    Proni G, Spada GP (2001) Enantiomer 6:171 Google Scholar
  149. 149.
    Huck NPM, Jager WF, deLange B, Feringa BL (1996) Science 273:1686 Google Scholar
  150. 150.
    Green MM, Zanella S, Gu H, Sato T, Gottarelli G, Jha SK, Spada GP, Schoevaars AM, Feringa B, Teramoto A (1998) J Am Chem Soc 120:9810 Google Scholar
  151. 151.
    Maeda K, Takeyama Y, Sakajiri K, Yashima E (2004) J Am Chem Soc 126:16284 Google Scholar
  152. 152.
    Lupas A (1996) Trends Biochem Sci 21:375 Google Scholar
  153. 153.
    Burkhard P, Stetefeld J, Strelkov SV (2001) Trends Cell Biol 11:82 Google Scholar
  154. 154.
    Maeda K, Ishikawa M, Yashima E (2004) J Am Chem Soc 126:15161 Google Scholar
  155. 155.
    Nilsson KPR, Rydberg J, Baltzer L, Inganäs O (2004) Proc Natl Acad Sci USA 101:11197 Google Scholar
  156. 156.
    Nilsson KPR, Rydberg J, Baltzer L, Inganäs O (2003) Proc Natl Acad Sci USA 100:10170 Google Scholar
  157. 157.
    Nilsson KPR, Inganäs O (2003) Nat Mater 2:419 Google Scholar
  158. 158.
    Cornelissen JJLM, Fischer M, Sommerdijk NAJM, Nolte RJM (1998) Science 280:1427 Google Scholar
  159. 159.
    Saxena A, Guo GQ, Fujiki M, Yang YG, Ohira A, Okoshi K, Naito M (2004) Macromolecules 37:3081 Google Scholar
  160. 160.
    Ichimura K (2000) Chem Rev 100:1847 Google Scholar

Copyright information

Authors and Affiliations

  1. 1.Department of Molecular Design and EngineeringGraduate School of Engineering, Nagoya UniversityNagoyaJapan
  2. 2.Yashima Super-Structured Helix Project, Exploratory Research for Advanced Technology (ERATO)Japan Science and Technology Agency (JST)NagoyaJapan

Personalised recommendations