Amphidynamic Crystals: Structural Blueprints for Molecular Machines

Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 262)

Abstract

By considering the relation between molecular structure, molecular dynamics, and phase order, we suggest that certain structures should be able to make up supramolecular assemblies with structurally programmed molecular dynamics. Given that the simplest members of these structures should have the elements required to form a rigid lattice with moving parts, we propose the term amphidynamic crystals to describe them. We also suggest that amphidynamic crystals may form the basis of a new class of molecular machines with a function that is based on the collective dynamics of molecules within crystals. These crystalline molecular machines represent an exciting new branch of crystal engineering and materials science. In this chapter, we described current efforts for the construction of crystalline molecular machines designed to respond collectively to mechanic, electric, magnetic, and photonic stimuli, in order to fulfill specific functions. One of the main challenges in their design and construction derives from the picometric precision required for operation within the close-packed, self-assembled environment of crystalline solids. We illustrate here some of the initial advancements in the preparation, crystallization, and dynamic characterization of these interesting systems.

Crystal engineering Dielectric spectroscopy Dynamics in crystals Molecular machines Solid state NMR X-ray diffraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The work described in this chapter was supported by NSF grants DMR0307028, DMR0307028 (Solid state NMR), and DGE0114443 (IGERT Materials Creation Training Program). We thank Marcia Levitus (ASU), Gerardo Zepeda (UNCB IPN, Mexico), Zaira Dominguez (U. Veracruz, Mexico), Carlos Sanrame, Hung Dang, Carlos E. Godinez, Tinh A. V. Khuong, Christopher J. Mortko, and Jose E. Nuñez for many important contributions cited here. We also thank Profs. John Price, Josef Michl, and Laura I. Clarke (now at the North Carolina State University), and Robert D. Horansky from the U. Colorado, Boulder, for on-going joint efforts, valuable discussions, and advice.

References

  1. 1.
    Mish FC (ed) (1991) Webster's Ninth New Collegiate Dictionary. Merriam-Webster, Inc., Springfield, MA Google Scholar
  2. 2.
    Garcia-Garibay MA (2005) Proc Nat Acad Sci 102:10771 CrossRefGoogle Scholar
  3. 3.
    McQuarrie DA, Simon JD (1997) Physical Chemistry: A Molecular Approach. University Science Books, Sausalito, CA Google Scholar
  4. 4.
    Burkert U, Allinger NL (1982) Molecular Mechanics. American Chemical Society, Washington, DC Google Scholar
  5. 5.
    Mislow K (1988) Chemtracts: Org Chem 2:151 Google Scholar
  6. 6.
    Feynman RP (1960) Eng and Sci 23:22 Google Scholar
  7. 7.
    Howard J (2001) Mechanics of Motor Proteins and the Cytoskeleton. Sinauer, Sunderland, MA Google Scholar
  8. 8.
    Shilwa M (ed) (2003) Molecular Motors. Wiley, Weinheim Google Scholar
  9. 9.
    Gimzewski JK, Joachim C, Schlittler RR, Langlais V, Johannsen I (1998) Science 281:531 CrossRefGoogle Scholar
  10. 10.
    Mislow K (1976) Acc Chem Res 9:26 CrossRefGoogle Scholar
  11. 11.
    Kawada Y, Iwamura H (1983) J Am Chem Soc 105:1449–1459 CrossRefGoogle Scholar
  12. 12.
    Kelly TR, Bowyer MC, Bhaskar KV, Bebbington D, Garcia A, Lang F, Kim MH, Jette MP (1994) J Am Chem Soc 116:3657 Google Scholar
  13. 13.
    Bedard TC, Moore J (1995) J Am Chem Soc 107:10662 Google Scholar
  14. 14.
    Balzani C, Gomez-Lopez M, Stoddart JF (1998) Acc Chem Res 31:405 Google Scholar
  15. 15.
    Shima T, Hampel F, Gladysz JA (2004) Angew Chem Int Ed 43:5537 Google Scholar
  16. 16.
    Kottas GS, Clarke LI, Horinek D, Michl J (2005) Chem Rev 105:1281 CrossRefGoogle Scholar
  17. 17.
    Sauvage J-P (2001) Structure and Bonding, vol 99. Springer, Berlin Heidelberg New York Google Scholar
  18. 18.
    Astumian RD (1997) Science 276:917 CrossRefGoogle Scholar
  19. 19.
    Astumian RD (2000) Phil Trans R Soc Lond B 355:511 CrossRefGoogle Scholar
  20. 20.
    Astumian RD (2001) Scientific American 285:56 CrossRefGoogle Scholar
  21. 21.
    Garcia-Garibay MA (1998) Curr Opinion in Solid State and Material Science 3/4:399 Google Scholar
  22. 22.
    Dunitz JD (1979) X-Ray Analysis and the Structure of Organic Molecules. Cornell University Press, Ithaca, NY Google Scholar
  23. 23.
    Kitaigorodskii AI (1973) Molecular Crystals and Molecules. Academic Press, New York Google Scholar
  24. 24.
    Burns G (1985) Solid State Physics. Academic Press, New York Google Scholar
  25. 25.
    Zallen R (1983) The Physics of Amorphous Solids. Wiley, New York Google Scholar
  26. 26.
    Gray GW, Winsor PA (1974) Liquid Crystals and Plastic Crystals. Ellis Horwood, Chichester Google Scholar
  27. 27.
    Parsonage NG, Staveley LAK (1978) Disorder in Molecular Solids-II. Oxford University Press, Oxford, p 605–716 Google Scholar
  28. 28.
    Morgan SO (1940) Ann New York Acad Sci 40:357 Google Scholar
  29. 29.
    Collings PJ, Hird M (1997) Introduction to Liquid Crystals. Taylor and Francis, London Google Scholar
  30. 30.
    Orville-Thomas JW (ed) (1974) Internal Rotation in Molecules. Wiley, New York Google Scholar
  31. 31.
    Mizushima S (1954) Structure of Molecules and Internal Rotation. Academic Press, New York Google Scholar
  32. 32.
    Moro GT (1996) J Phys Chem 100:16419 CrossRefGoogle Scholar
  33. 33.
    Beer PD, Gale PA, Smith DK (1999) Supermolecular Chemistry. Oxford University Press, New York Google Scholar
  34. 34.
    Raymo FM, Stoddart JF (2001) In: Feringa BL (ed) Molecular Switches. Wiley, Weinheim, p 219–248 Google Scholar
  35. 35.
    Palmer LC, Rebek JR (2004) Org Biomol Chem 2:3051 CrossRefGoogle Scholar
  36. 36.
    Hartgerink JD, Zubarev ER, Stupp SI (2002) Curr Opinion in Solid State and Material Science 5:355 Google Scholar
  37. 37.
    Kottas GS, Clarke LI, Horinek D, Michl J (2005) Chem Rev 105:1281 CrossRefGoogle Scholar
  38. 38.
    Rozenbaum VM, Ogenko VM (1988) Soviet Physics-Solid State 30:1753 Google Scholar
  39. 39.
    Sipachev VA, Khaikin LS, Grikina OE, Nikitin VS, Traettberg M (2000) J Mol Struct 523:1–22 CrossRefGoogle Scholar
  40. 40.
    Fyfe CA (1983) Solid State NMR for Chemists. C.F.C Press, Guelph, Ontario Google Scholar
  41. 41.
    Pines A, Gibby MG, Waugh JS (1973) J Chem Phys 59:569 CrossRefGoogle Scholar
  42. 42.
    Taylor RE (2004) Concepts Magn Reson Part A 22:37 Google Scholar
  43. 43.
    Alemany LB, Grant DM, Alger TD, Pugmire RJ (1983) J Am Chem Soc 105:6697 Google Scholar
  44. 44.
    Friebolin H (1998) Basic One- and Two-Dimensional NMR Spectroscopy,3rd ed. Wiley, Weinheim Google Scholar
  45. 45.
    Line shape simulations were carried out with the program: g-NMR(2003). Adept Scientific, Bethesda Google Scholar
  46. 46.
    Hoatson GL, Vold RL (1994) NMR Basic Princ and Prog 32:1 Google Scholar
  47. 47.
    Mantsch HH, Saito H, Smith ICP (1977) Progr NMR Spect 11:211 Google Scholar
  48. 48.
    Greenfield MS, Ronemus AD, Vold RL, Vold RR, Ellis PD, Raidy TE (1987) J Magn Reson 72:89 Google Scholar
  49. 49.
    Redfield AG (1965) Adv Mag Resonance 1:1 Google Scholar
  50. 50.
    Torchia DA, Szabo A (1982) J Mag Res 49:107–121 Google Scholar
  51. 51.
    Kubo R, Tomita K (1954) Phys Soc Japan 9:888 Google Scholar
  52. 52.
    Godinez CE, Zepeda G, Garcia-Garibay MA (2002) J Am Chem Soc 124:4701 CrossRefGoogle Scholar
  53. 53.
    Eliel EL, Wilen SH (1994) Stereochemistry of Organic Compounds. Wiley, New York Google Scholar
  54. 54.
    Saebo S, Almlof J, Boggs JE, Stark JG (1989) Theochem 59:361 Google Scholar
  55. 55.
    Abramenkov AV, Almenningen A, Cyvin BN, Cyvin SJ, Jonvik T, Khaikin LS, Roemming C, Vilkov LV (1988) Acta Chem Scand A42:674 Google Scholar
  56. 56.
    Sipachev VA, Khaikin LS, Grikina OE, Nikitin VS, Traettberg M (2000) J Mol Struct 523:1 CrossRefGoogle Scholar
  57. 57.
    Godinez CE, Zepeda G, Mortko CJ, Dang H, Garcia-Garibay MA (2004) J Org Chem 69:1652 CrossRefGoogle Scholar
  58. 58.
    Godinez CE, Garcia-Garibay MA (2005) Unpublished results Google Scholar
  59. 59.
    Scudder M, Dance I (1998) J Chem Soc, Dalton Trans:329 Google Scholar
  60. 60.
    Dance I, Scudder M (1998) New Journal of Chemistry 22:481 CrossRefGoogle Scholar
  61. 61.
    Dominguez Z, Dang H, Strouse MJ, Garcia-Garibay MA (2001) J Am Chem Soc 124:2398–2399 Google Scholar
  62. 62.
    Sonogashira K, Tohda Y, Hagihara N (1975) Tetrahedron Lett:4467 Google Scholar
  63. 63.
    Bernstein J (2002) Polymorphism in Organic Chemistry. Oxford University Press, Oxford Google Scholar
  64. 64.
    Dominguez Z, Dang H, Strouse MJ, Garcia-Garibay MA (2002) J Am Chem Soc 124:7719 Google Scholar
  65. 65.
    Toda F, Ward DL, Hart H (1981) Tetrahedron Lett 22:3861 Google Scholar
  66. 66.
    McNicol DD, Toda F, Bishop R (1996) Comprehensive Supramolecular Chemistry. Pergamon, Oxford Google Scholar
  67. 67.
    Karlen SD, Garcia-Garibay MA (2005) Chem Commun 189 Google Scholar
  68. 68.
    Khuong T-AV, Nuñez JE, Campos LM, Farfán N, Dang H, Karlen SD, Garcia-Garibay MA (2005) Crys Growt Des (in press) Google Scholar
  69. 69.
    Corradini P (1973) Chem Ind 55:122 Google Scholar
  70. 70.
    McCrone WC (1963) In: Fox D, Labes MM, Wesseberger A (eds) Physics and Chemistry of the Organic Solid State, vol 1. Wiley, New York, p 725 Google Scholar
  71. 71.
    Giron D (1995) Thermochimica Acta 248:1 CrossRefGoogle Scholar
  72. 72.
    Finocchiaro P, Gust D, Mislow K (1973) J Am Chem Soc 95:8172–8173 Google Scholar
  73. 73.
    Blount JF, Finocchiaro P, Gust D, Mislow K (1973) J Am Chem Soc 95:7019 CrossRefGoogle Scholar
  74. 74.
    Breen PJ, Bernstein ER, Secor HV, Seeman JI (1989) J Am Chem Soc 111:1958 CrossRefGoogle Scholar
  75. 75.
    Kumar VSS, Addlagata A, Nangia A, Robinson WT, Broder CK, Mondal R, Evans IR, Howard JAK, Alen FH (2002) Angew Chem Int Ed 41:3848–3851 Google Scholar
  76. 76.
    Khuong T-AV, Zepeda G, Ruiz R, Khan SI, Garcia-Garibay MA (2004) Cryst Growth Des 4:15 CrossRefGoogle Scholar
  77. 77.
    Wehrle M, Hellmann GP, Spiess HW (1987) Colloid and Polymer Science 265:815 CrossRefGoogle Scholar
  78. 78.
    Godinez CE (2001) M.S. Thesis, University of California, Los Angeles Google Scholar
  79. 79.
    Dominguez Z, Khuong T-AV, Dang H, Sanrame CN, Nunez JE, Garcia-Garibay MA (2003) J Am Chem Soc 125:8827 Google Scholar
  80. 80.
    Vainshtein BK, Fridkin VM, Indenbom VL (1982) Structure of Crystals. Springer, Berlin Heidelberg New York Google Scholar
  81. 81.
    Ortiz R (1993) Ph.D. Thesis, University of California, Los Angeles Google Scholar
  82. 82.
    Karlen SD, Ortiz R, Chapman OL, Garcia-Garibay MA (2005) J Am Chem Soc 127:6554 CrossRefGoogle Scholar
  83. 83.
    Horansky RD, Clarke LI, Price JC, Khuong T-AV, Jarowski PD, Garcia-Garibay MA (2005) Phys Rev B 72:014302 CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesUSA

Personalised recommendations