Advertisement

pp 1-36 | Cite as

Progress Toward Deep Sequencing-Based Discovery of Stress-Related MicroRNA in Plants and Available Bioinformatics Tools

  • Abdelali Hannoufa
  • Craig Matthews
  • Biruk A. Feyissa
  • Margaret Y. Gruber
  • Muhammad Arshad
Chapter
Part of the Progress in Botany book series

Abstract

MicroRNAs (miRNAs) are small endogenous RNA molecules that regulate gene expression at the posttranscriptional level. Recently, studies have discovered that miRNAs are induced by various stresses, suggesting that miRNAs may be an efficient target to improve crop resilience. Studies that are more recent have demonstrated that the response of miRNAs to stresses stimuli depends on type and level of stress, tissue, and genotype. Stress conditions induce several miRNAs, which alter downstream signaling cascades by regulating target genes and lead to adaptive responses to stress. During the past decade, research was focused on identification of plant miRNAs in response to environmental stressors, dissecting their expression patterns and studying their role in plant stress responses and tolerance. This has been accomplished principally by using next-generation sequencing (NGS) technologies, which have proven to be a powerful tool for this purpose. Altering miRNAs expression resulted in changes in plant growth and development under abiotic stress including cold, drought, salinity, nutrient, high temperature, and heavy metal stress as well as biotic stress such as fungus, bacteria, and virus infection. These findings implicate potential targets for genetic manipulation to improve stress tolerance in plants. This review is aimed to provide updates on recent miRNA research in improving plant resistance to biotic and abiotic stress. Moreover, we discuss availability of computational tools and genomics platforms for identification of stress-related miRNAs in plants.

References

  1. Ambros V (2001) microRNAs: tiny regulators with great potential. Cell 107(7):823–826.  https://doi.org/10.1016/S0092-8674(01)00616-XCrossRefGoogle Scholar
  2. An JY, Lai J, Sajjanhar A, Lehman ML, Nelson CC (2014) miRPlant: an integrated tool for identification of plant miRNA from RNA sequencing data. Bmc Bioinformatics 15:275.  https://doi.org/10.1186/1471-2105-15-275CrossRefGoogle Scholar
  3. Anjali N, Nadiya F, Thomas J, Sabu K (2017) Discovery of microRNAs in cardamom (Elettaria cardamomum Maton) under drought stress. Dataset Papers Sci 2017Google Scholar
  4. Arshad M, Feyissa BA, Amyot L, Aung B, Hannoufa A (2017a) MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13. Plant Sci 258:122–136.  https://doi.org/10.1016/j.plantsci.2017.01.018CrossRefGoogle Scholar
  5. Arshad M, Gruber MY, Wall K, Hannoufa A (2017b) An insight into microRNA156 role in salinity stress responses of alfalfa. Front Plant Sci 8:356.  https://doi.org/10.3389/fpls.2017.00356CrossRefGoogle Scholar
  6. Arshad M, Gruber MY, Hannoufa A (2018) Transcriptome analysis of microRNA156 overexpression alfalfa roots under drought stress. Sci Rep 8(1):9363.  https://doi.org/10.1038/s41598-018-27088-8CrossRefGoogle Scholar
  7. Aung K, Lin S-I, Wu C-C, Huang Y-T, Su C-l, Chiou T-J (2006) pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol 141(3):1000–1011.  https://doi.org/10.1104/pp.106.078063CrossRefGoogle Scholar
  8. Aung B, Gruber MY, Amyot L, Omari K, Bertrand A, Hannoufa A (2015) MicroRNA156 as a promising tool for alfalfa improvement. Plant Biotechnol J 13(6):779–790.  https://doi.org/10.1111/pbi.12308CrossRefGoogle Scholar
  9. Axtell MJ, Bartel DP (2005) Antiquity of microRNAs and their targets in land plants. Plant Cell 17(6):1658–1673.  https://doi.org/10.1105/tpc.105.032185CrossRefGoogle Scholar
  10. Axtell MJ, Meyers BC (2018) Revisiting criteria for plant microRNA annotation in the era of big data. Plant Cell 30(2):272–284Google Scholar
  11. Axtell MJ, Westholm JO, Lai EC (2011) Vive la difference: biogenesis and evolution of microRNAs in plants and animals. Genome Biol 12(4):221.  https://doi.org/10.1186/gb-2011-12-4-221CrossRefGoogle Scholar
  12. Bachmair A, Novatchkova M, Potuschak T, Eisenhaber F (2001) Ubiquitylation in plants: a post-genomic look at a post-translational modification. Trends Plant Sci 6(10):463–470.  https://doi.org/10.1016/S1360-1385(01)02080-5CrossRefGoogle Scholar
  13. Barciszewska-Pacak M, Milanowska K, Knop K, Bielewicz D, Nuc P, Plewka P, Pacak AM, Vazquez F, Karlowski W, Jarmolowki A, Szweykowska-Kulinska Z (2015) Arabidopsis microRNA expression regulation in a wide range of abiotic stress responses. Front Plant Sci 6:410.  https://doi.org/10.3389/fpls.2015.00410CrossRefGoogle Scholar
  14. Baulcombe D (2005) RNA silencing. Trends Biochem Sci 30(6):290–293.  https://doi.org/10.1016/j.tibs.2005.04.012CrossRefGoogle Scholar
  15. Baureithel K, Felix G, Boller T (1994) Specific, high-affinity binding of chitin fragments to tomato cells and membranes – competitive-inhibition of binding by derivatives of chitooligosaccharides and a nod factor of Rhizobium. J Biol Chem 269(27):17931–17938Google Scholar
  16. Bazzini AA, Hopp HE, Beachy RN, Asurmendi S (2007) Infection and coaccumulation of tobacco mosaic virus proteins alter microRNA levels, correlating with symptom and plant development. Proc Natl Acad Sci 104(29):12157Google Scholar
  17. Bernstam VA (1978) Heat effects on protein-biosynthesis. Annu Rev Plant Phys 29:25–46.  https://doi.org/10.1146/annurev.pp.29.060178.000325CrossRefGoogle Scholar
  18. Bigeard J, Colcombet J, Hirt H (2015) Signaling mechanisms in pattern-triggered immunity (PTI). Mol Plant 8(4):521–539.  https://doi.org/10.1016/j.molp.2014.12.022CrossRefGoogle Scholar
  19. Bologna NG, Iselin R, Abriata LA, Sarazin A, Pumplin N, Jay F, Grentzinger T, Dal Peraro M, Voinnet O (2018) Nucleo-cytosolic shuttling of ARGONAUTE1 prompts a revised model of the plant microRNA pathway. Mol Cell 69(4):709–719.e705.  https://doi.org/10.1016/j.molcel.2018.01.007CrossRefGoogle Scholar
  20. Bonnet E, He Y, Billiau K, Van de Peer Y (2010) TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. Bioinformatics 26(12):1566–1568.  https://doi.org/10.1093/bioinformatics/btq233CrossRefGoogle Scholar
  21. Branscheid A, Sieh D, Pant BD, May P, Devers EA, Elkrog A, Schauser L, Scheible WR, Krajinski F (2010) Expression pattern suggests a role of miR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis. Mol Plant Microbe Interact 23(7):915–926.  https://doi.org/10.1094/Mpmi-23-7-0915CrossRefGoogle Scholar
  22. Budak H, Kantar M, Bulut R, Akpinar BA (2015) Stress responsive miRNAs and isomiRs in cereals. Plant Sci 235:1–13.  https://doi.org/10.1016/j.plantsci.2015.02.008CrossRefGoogle Scholar
  23. Camargo-Ramirez R, Val-Torregrosa B, San Segundo B (2018) MiR858-mediated regulation of flavonoid-specific MYB rranscription factor genes controls resistance to pathogen infection in Arabidopsis. Plant Cell Physiol 59(1):190–204.  https://doi.org/10.1093/pcp/pcx175CrossRefGoogle Scholar
  24. Cao FB, Chen F, Sun HY, Zhang GP, Chen ZH, Wu FB (2014) Genome-wide transcriptome and functional analysis of two contrasting genotypes reveals key genes for cadmium tolerance in barley. BMC Genomics 15:611.  https://doi.org/10.1186/1471-2164-15-611CrossRefGoogle Scholar
  25. Chen HH, Shen ZY, Li PH (1982) Adaptability of crop plants to high-temperature stress. Crop Sci 22(4):719–725.  https://doi.org/10.2135/cropsci1982.0011183X002200040006xCrossRefGoogle Scholar
  26. Chen L, Ren YY, Zhang YY, Xu JC, Sun FS, Zhang ZY, Wang YW (2012a) Genome-wide identification and expression analysis of heat-responsive and novel microRNAs in Populus tomentosa. Gene 504(2):160–165.  https://doi.org/10.1016/j.gene.2012.05.034CrossRefGoogle Scholar
  27. Chen L, Zhang YY, Ren YY, Xu JC, Zhang ZY, Wang YW (2012b) Genome-wide identification of cold-responsive and new microRNAs in Populus tomentosa by high-throughput sequencing. Biochem Biophs Res Commun 417(2):892–896.  https://doi.org/10.1016/j.bbrc.2011.12.070CrossRefGoogle Scholar
  28. Cheng NH, Liu JZ, Liu X, Wu QY, Thompson SM, Lin J, Chang J, Whitham SA, Park S, Cohen JD, Hirschi KD (2011) Arabidopsis monothiol glutaredoxin, AtGRXS17, ss critical for temperature-dependent postembryonic growth and development via modulating auxin response. J Biol Chem 286(23):20398–20406.  https://doi.org/10.1074/jbc.M110.201707CrossRefGoogle Scholar
  29. Chiou T-J, Aung K, Lin S-I, Wu C-C, Chiang S-F, C-l S (2006) Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18(2):412Google Scholar
  30. Cho SH, Coruh C, Axtell MJ (2012) miR156 and miR390 regulate tasiRNA accumulation and developmental timing in Physcomitrella patens. Plant Cell 24(12):4837–4849.  https://doi.org/10.1105/tpc.112.103176CrossRefGoogle Scholar
  31. Cui LG, Shan JX, Shi M, Gao JP, Lin HX (2014) The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. Plant J 80(6):1108–1117.  https://doi.org/10.1111/tpj.12712CrossRefGoogle Scholar
  32. Cui N, Sun X, Sun M, Jia B, Duanmu H, Lv D, Duan X, Zhu Y (2015) Overexpression of OsmiR156k leads to reduced tolerance to cold stress in rice (Oryza Sativa). Mol Breed 35(11):214Google Scholar
  33. Cui XJ, Clark DN, Liu KC, Xu XD, Guo JT, Hu JM (2016) Viral DNA-Dependent induction of innate immune response to hepatitis B virus in immortalized mouse hepatocytes. J Virol 90(1):486–496.  https://doi.org/10.1128/Jvi.01263-15CrossRefGoogle Scholar
  34. Cuperus JT, Fahlgren N, Carrington JC (2011) Evolution and functional diversification of miRNA genes. Plant Cell 23(2):431–442.  https://doi.org/10.1105/tpc.110.082784CrossRefGoogle Scholar
  35. Deng P, Wang L, Cui L, Feng K, Liu F, Du X, Tong W, Nie X, Ji W, Weining S (2015) Global identification of microRNAs and their targets in barley under salinity stress. PLoS One 10(9):e0137990.  https://doi.org/10.1371/journal.pone.0137990CrossRefGoogle Scholar
  36. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the microprocessor complex. Nature 432(7014):231–235.  https://doi.org/10.1038/nature03049CrossRefGoogle Scholar
  37. Ding YF, Ye YY, Jiang ZH, Wang Y, Zhu C (2016) MicroRNA390 is involved in cadmium tolerance and accumulation in rice. Front Plant Sci 7.  https://doi.org/10.3389/fpls.2016.00235
  38. Dolata J, Bajczyk M, Bielewicz D, Niedojadlo K, Niedojadlo J, Pietrykowska H, Walczak W, Szweykowska-Kulinska Z, Jarmolowski A (2016) Salt stress reveals a new role for ARGONAUTE1 in miRNA biogenesis at the transcriptional and posttranscriptional levels. Plant Physiol 172(1):297–312.  https://doi.org/10.1104/pp.16.00830CrossRefGoogle Scholar
  39. Eldem V, Akcay UC, Ozhuner E, Bakir Y, Uranbey S, Unver T (2012) Genome-wide identification of miRNAs responsive to drought in peach (Prunus persica) by high-throughput deep sequencing. PLoS One 7(12):e50298.  https://doi.org/10.1371/journal.pone.0050298CrossRefGoogle Scholar
  40. Fahlgren N, Hill ST, Carrington JC, Carbonell A (2016) P-SAMS: a web site for plant artificial microRNA and synthetic trans-acting small interfering RNA design. Bioinformatics 32(1):157–158.  https://doi.org/10.1093/bioinformatics/btv534CrossRefGoogle Scholar
  41. Ferreira TH, Gentile A, Vilela RD, Costa GGL, Dias LI, Endres L, Menossi M (2012) microRNAs associated with drought response in the bioenergy crop sugarcane (Saccharum spp.). PLoS One 7(10):e46703.  https://doi.org/10.1371/journal.pone.0046703CrossRefGoogle Scholar
  42. Frazier TP, Sun G, Burklew CE, Zhang B (2011) Salt and drought stresses induce the aberrant expression of microRNA genes in tobacco. Mol Biotechnol 49(2):159–165.  https://doi.org/10.1007/s12033-011-9387-5CrossRefGoogle Scholar
  43. Friedlander MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, Rajewsky N (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26(4):407–415.  https://doi.org/10.1038/nbt1394CrossRefGoogle Scholar
  44. Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N (2012) miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 40(1):37–52.  https://doi.org/10.1093/nar/gkr688CrossRefGoogle Scholar
  45. Fu R, Zhang M, Zhao Y, He X, Ding C, Wang S, Feng Y, Song X, Li P, Wang B (2017) Identification of salt tolerance-related microRNAs and their targets in maize (Zea mays L.) using high-throughput sequencing and degradome analysis. Front Plant Sci 8:864.  https://doi.org/10.3389/fpls.2017.00864CrossRefGoogle Scholar
  46. Gao N, Qiang XM, Zhai BN, Min J, Shi WM (2015) Transgenic tomato overexpressing ath-miR399d improves growth under abiotic stress conditions. Russ J Plant Physl 62(3):360–366.  https://doi.org/10.1134/S1021443715030061CrossRefGoogle Scholar
  47. Gao RM, Austin RS, Amyot L, Hannoufa A (2016) Comparative transcriptome investigation of global gene expression changes caused by miR156 overexpression in Medicago sativa. BMC Genomics 17:658.  https://doi.org/10.1186/s12864-016-3014-6CrossRefGoogle Scholar
  48. Gao S, Song JB, Wang Y, Yang ZM (2017) An F-box E3 ubiquitin ligase-coding gene AtDIF1 is involved in Arabidopsis salt and drought stress responses in an abscisic acid-dependent manner. Environ Exp Bot 138:21–35.  https://doi.org/10.1016/j.envexpbot.2017.02.013CrossRefGoogle Scholar
  49. Gawad C, Koh W, Quake SR (2016) Single-cell genome sequencing: current state of the science. Nat Rev Genet 17(3):175Google Scholar
  50. Gentile A, Ferreira TH, Mattos RS, Dias LI, Hoshino AA, Carneiro MS, Souza GM, Calsa T, Nogueira RM, Endres L, Menossi M (2013) Effects of drought on the microtranscriptome of field-grown sugarcane plants. Planta 237(3):783–798.  https://doi.org/10.1007/s00425-012-1795-7CrossRefGoogle Scholar
  51. Giacomelli JI, Weigel D, Chan RL, Manavella PA (2012) Role of recently evolved miRNA regulation of sunflower HaWRKY6 in response to temperature damage. New Phytol 195(4):766–773.  https://doi.org/10.1111/j.1469-8137.2012.04259.xCrossRefGoogle Scholar
  52. Granado J, Felix G, Boller T (1995) Perception of fungal sterols in plants (subnanomolar concentrations of ergosterol elicit extracellular alkalinization in tomato cells). Plant Physiol 107(2):485–490Google Scholar
  53. Gu M, Xu K, Chen A, Zhu Y, Tang G, Xu G (2010) Expression analysis suggests potential roles of microRNAs for phosphate and arbuscular mycorrhizal signaling in Solanum lycopersicum. Physiol Plant 138(2):226–237.  https://doi.org/10.1111/j.1399-3054.2009.01320.xCrossRefGoogle Scholar
  54. Guan QM, Lu XY, Zeng HT, Zhang YY, Zhu JH (2013) Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. Plant J 74(5):840–851.  https://doi.org/10.1111/tpj.12169CrossRefGoogle Scholar
  55. Gul Z, Barozai MYK, Din M (2017) In-silico based identification and functional analyses of miRNAs and their targets in Cowpea (Vigna unguiculata L.). Aims Genet 4(2):138–165.  https://doi.org/10.3934/genet.2017.2.138CrossRefGoogle Scholar
  56. Guo M, Chen Y, Du Y, Dong YH, Guo W, Zhai S, Zhang HF, Dong SM, Zhang ZG, Wang YC, Wang P, Zheng XB (2011) The bZIP transcription cactor MoAP1 mediates the oxidative stress response and is critical for pathogenicity of the rice blast fungus Magnaporthe oryzae. PLoS Pathog 7(2):e1001302.  https://doi.org/10.1371/journal.ppat.1001302CrossRefGoogle Scholar
  57. Gupta OP, Permar V, Koundal V, Singh UD, Praveen S (2012) MicroRNA regulated defense responses in Triticum aestivum L. during Puccinia graminis f.sp tritici infection. Mol Biol Rep 39(2):817–824.  https://doi.org/10.1007/s11033-011-0803-5CrossRefGoogle Scholar
  58. Gupta OP, Karkute SG, Banerjee S, Meena NL, Dahuja A (2017) Contemporary understanding of miRNA-based regulation of secondary metabolites biosynthesis in plants. Front Plant Sci 8:374Google Scholar
  59. Han X, Li X, Rigon R, Jin R, Endrizzi S (2015) Soil moisture estimation by assimilating L-band microwave brightness temperature with geostatistics and observation localization. PLoS One 10(1):e0116435.  https://doi.org/10.1371/journal.pone.0116435CrossRefGoogle Scholar
  60. Hanania U, Avni A (1997) High-affinity binding site for ethylene-inducing xylanase elicitor on Nicotiana tabacum membranes. Plant J 12(1):113–120.  https://doi.org/10.1046/j.1365-313X.1997.12010113.xCrossRefGoogle Scholar
  61. He X, Zheng W, Cao F, Wu F (2016) Identification and comparative analysis of the microRNA transcriptome in roots of two contrasting tobacco genotypes in response to cadmium stress. Sci Rep 6:32805.  https://doi.org/10.1038/srep32805CrossRefGoogle Scholar
  62. Hell R, Wirtz M (2011) Molecular piology, piochemistry and pellular physiology of cysteine metabolism in Arabidopsis thaliana. Arabidopsis Book 9:e0154.  https://doi.org/10.1199/tab.0154CrossRefGoogle Scholar
  63. Hivrale V, Zheng Y, Puli COR, Jagadeeswaran G, Gowdu K, Kakani VG, Barakat A, Sunkar R (2016) Characterization of drought- and heat-responsive microRNAs in switchgrass. Plant Sci 242:214–223.  https://doi.org/10.1016/j.plantsci.2015.07.018CrossRefGoogle Scholar
  64. Hobert O (2008) Gene regulation by transcription factors and microRNAs. Science 319(5871):1785–1786.  https://doi.org/10.1126/science.1151651CrossRefGoogle Scholar
  65. Hsieh L-C, Lin S-I, Shih AC-C, Chen J-W, Lin W-Y, Tseng C-Y, Li W-H, Chiou T-J (2009) Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol 151(4):2120Google Scholar
  66. Hu ZR, Liu A, Gitau MM, Huang XB, Chen L, Fu JM (2018) Insights into the microRNA-regulated response of bermudagrass to cold and salt stress. Environ Exp Bot 145:64–74.  https://doi.org/10.1016/j.envexpbot.2017.10.026CrossRefGoogle Scholar
  67. Huang QX, Cheng XY, Mao ZC, Wang YS, Zhao LL, Yan X, Ferris VR, Xu RM, Xie BY (2010a) MicroRNA discovery and analysis of pinewood nematode Bursaphelenchus xylophilus by deep sequencing. PLoS One 5(10):e13271.  https://doi.org/10.1371/journal.pone.0013271CrossRefGoogle Scholar
  68. Huang SQ, Xiang AL, Che LL, Chen S, Li H, Song JB, Yang ZM (2010b) A set of miRNAs from Brassica napus in response to sulphate deficiency and cadmium stress. Plant Biotechnol J 8(8):887–899.  https://doi.org/10.1111/j.1467-7652.2010.00517.xCrossRefGoogle Scholar
  69. Huijser P, Schmid M (2011) The control of developmental phase transitions in plants. Development 138(19):4117–4129.  https://doi.org/10.1242/dev.063511CrossRefGoogle Scholar
  70. Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12(2):99–110.  https://doi.org/10.1038/nrg2936CrossRefGoogle Scholar
  71. Inal B, Turktas M, Eren H, Ilhan E, Okay S, Atak M, Erayman M, Unver T (2014) Genome-wide fungal stress responsive miRNA expression in wheat. Planta 240(6):1287–1298.  https://doi.org/10.1007/s00425-014-2153-8CrossRefGoogle Scholar
  72. Iyer NJ, Jia X, Sunkar R, Tang G, Mahalingam R (2012) microRNAs responsive to ozone-induced oxidative stress in Arabidopsis thaliana. Plant Signal Behav 7(4):484–491.  https://doi.org/10.4161/psb.19337CrossRefGoogle Scholar
  73. Jagadeeswaran G, Li YF, Sunkar R (2014) Redox signaling mediates the expression of a sulfate-deprivation-inducible microRNA395 in Arabidopsis. Plant J 77(1):85–96Google Scholar
  74. Jagadeeswaran G, Li YF, Sunkar R (2017) Redox signaling mediates the expression of a sulfate-deprivation-inducible microRNA395 in Arabidopsis. Plant J 90(2):431–431.  https://doi.org/10.1111/tpj.13474CrossRefGoogle Scholar
  75. Jeong DH, Green PJ (2013) The role of rice microRNAs in abiotic stress responses. J Plant Biol 56(4):187–197.  https://doi.org/10.1007/s12374-013-0213-4CrossRefGoogle Scholar
  76. Jha A, Shankar R (2013) miReader: discovering novel miRNAs in species without sequenced genome. PLoS One 8(6):e66857Google Scholar
  77. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329.  https://doi.org/10.1038/nature05286CrossRefGoogle Scholar
  78. Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14(6):787–799.  https://doi.org/10.1016/j.molcel.2004.05.027CrossRefGoogle Scholar
  79. Ju XT, Kou CL, Christie P, Dou ZX, Zhang FS (2007) Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain. Environ Pollut 145(2):497–506.  https://doi.org/10.1016/j.envpol.2006.04.017CrossRefGoogle Scholar
  80. Kawashima CG, Yoshimoto N, Maruyama-Nakashita A, Tsuchiya YN, Saito K, Takahashi H, Dalmay T (2009) Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. Plant J 57(2):313–321.  https://doi.org/10.1111/j.1365-313X.2008.03690.xCrossRefGoogle Scholar
  81. Khaksefidi RE, Mirlohi S, Khalaji F, Fakhari Z, Shiran B, Fallahi H, Rafiei F, Budak H, Ebrahimie E (2015) Differential expression of seven conserved microRNAs in response to abiotic stress and their regulatory network in Helianthus annuus. Front Plant Sci 6:741.  https://doi.org/10.3389/fpls.2015.00741CrossRefGoogle Scholar
  82. Khan Y, Yadav A, Bonthala VS, Muthamilarasan M, Yadav CB, Prasad M (2014) Comprehensive genome-wide identification and expression profiling of foxtail millet [Setaria italica (L.)] miRNAs in response to abiotic stress and development of miRNA database. Plant Cell Tiss Org 118(2):279–292.  https://doi.org/10.1007/s11240-014-0480-xCrossRefGoogle Scholar
  83. Khraiwesh B, Zhu JK, Zhu JH (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. BBA-Gene Regul Mech 1819(2):137–148.  https://doi.org/10.1016/j.bbagrm.2011.05.001CrossRefGoogle Scholar
  84. Kinoshita N, Wang H, Kasahara H, Liu J, Macpherson C, Machida Y, Kamiya Y, Hannah MA, Chua NH (2012) IAA-Ala Resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress. Plant Cell 24(9):3590–3602.  https://doi.org/10.1105/tpc.112.097006CrossRefGoogle Scholar
  85. Kis A, Tholt G, Ivanics M, Várallyay É, Jenes B, Havelda Z (2015) Polycistronic artificial miRNA-mediated resistance to wheat dwarf virus in barley is highly efficient at low temperature. Mol Plant Pathol 17(3):427–437.  https://doi.org/10.1111/mpp.12291CrossRefGoogle Scholar
  86. Klarzynski O, Plesse B, Joubert JM, Yvin JC, Kopp M, Kloareg B, Fritig B (2000) Linear beta-1,3 glucans are elicitors of defense responses in tobacco. Plant Physiol 124(3):1027–1037.  https://doi.org/10.1104/pp.124.3.1027CrossRefGoogle Scholar
  87. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence miRNAs using deep sequencing data. Nucleic Acids Res 42(2014):D68–D73Google Scholar
  88. Kraft JC, Rapp G, Gifford JA, Aschenbrenner SE (2005) Coastal change and archaeological settings in Elis. Hesperia 74(1):1–39Google Scholar
  89. Križnik M, Petek M, Dobnik D, Ramšak Ž, Baebler Š, Pollmann S, Kreuze JF, Žel J, Gruden K (2017) Salicylic acid perturbs sRNA-gibberellin regulatory network in immune response of potato to potato virus Y infection. Front Plant Sci 8:2192.  https://doi.org/10.3389/fpls.2017.02192CrossRefGoogle Scholar
  90. Kruszka K, Pacak A, Swida-Barteczka A, Nuc P, Alaba S, Wroblewska Z, Karlowski W, Jarmolowski A, Szweykowska-Kulinska Z (2014) Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley. J Exp Bot 65(20):6123–6135.  https://doi.org/10.1093/jxb/eru353CrossRefGoogle Scholar
  91. Kumar R (2014) Role of microRNAs in biotic and abiotic stress responses in crop plants. Appl Biochem Biotechnol 174(1):93–115.  https://doi.org/10.1007/s12010-014-0914-2CrossRefGoogle Scholar
  92. Kumar RR, Pathak H, Sharma SK, Kala YK, Nirjal MK, Singh GP, Goswami S, Rai RD (2015) Novel and conserved heat-responsive microRNAs in wheat (Triticum aestivum L.). Funct Integr Genomic 15(3):323–348.  https://doi.org/10.1007/s10142-014-0421-0CrossRefGoogle Scholar
  93. Lan Y, Su N, Shen Y, Zhang R, Wu F, Cheng Z, Wang J, Zhang X, Guo X, Lei C, Wang J (2012) Identification of novel MiRNAs and MiRNA expression profiling during grain development in indica rice. BMC Genomics 3(1):264Google Scholar
  94. Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21(17):4663–4670Google Scholar
  95. Lee BH, Henderson DA, Zhu JK (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17(11):3155–3175.  https://doi.org/10.1105/tpc.105.035568CrossRefGoogle Scholar
  96. Lee HJ, Park YJ, Kwak KJ, Kim D, Park JH, Lim JY, Shin C, Yang K-Y, Kang H (2015) MicroRNA844-guided downregulation of cytidinephosphate diacylglycerol synthase3 (CDS3) mRNA affects the response of Arabidopsis thaliana to bacteria and fungi. Mol Plant Microbe Interact 28(8):892–900.  https://doi.org/10.1094/MPMI-02-15-0028-RCrossRefGoogle Scholar
  97. Lei JK, Sun Y (2014) miR-PREFeR: an accurate, fast and easy-to-use plant miRNA prediction tool using small RNA-Seq data. Bioinformatics 30(19):2837–2839.  https://doi.org/10.1093/bioinformatics/btu380CrossRefGoogle Scholar
  98. Lei KJ, Lin YM, Ren J, Bai L, Miao YC, An GY, Song CP (2016) Modulation of the phosphate-deficient responses by microRNA156 and its targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3 in Arabidopsis. Plant Cell Physiol 57(1).  https://doi.org/10.1093/pcp/pcv197Google Scholar
  99. Leyva-Gonzalez MA, Ibarra-Laclette E, Cruz-Ramirez A, Herrera-Estrella L (2012) Functional and transcriptome analysis reveals an acclimatization strategy for abiotic stress tolerance mediated by Arabidopsis NF-YA family members. PLoS One 7(10):e48138.  https://doi.org/10.1371/journal.pone.0048138CrossRefGoogle Scholar
  100. Li WX, Oono Y, Zhu JH, He XJ, Wu JM, Iida K, Lu XY, Cui XP, Jin HL, Zhu JK (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20(8):2238–2251.  https://doi.org/10.1105/tpc.108.059444CrossRefGoogle Scholar
  101. Li T, Li H, Zhang YX, Liu JY (2011) Identification and analysis of seven H2O2-responsive miRNAs and 32 new miRNAs in the seedlings of rice (Oryza sativa L. ssp indica). Nucleic Acids Res 39(7):2821–2833.  https://doi.org/10.1093/nar/gkq1047CrossRefGoogle Scholar
  102. Li MY, Wang F, Xu ZS, Jiang Q, Ma J, Tan GF, Xiong AS (2014a) High throughput sequencing of two celery varieties small RNAs identifies microRNAs involved in temperature stress response. BMC Genomics 15:242.  https://doi.org/10.1186/1471-2164-15-242CrossRefGoogle Scholar
  103. Li Y, Lu YG, Shi Y, Wu L, Xu YJ, Huang F, Guo XY, Zhang Y, Fan J, Zhao JQ, Zhang HY, Xu PZ, Zhou JM, Wu XJ, Wang PR, Wang WM (2014b) Multiple rice microRNAs are involved in immunity against the blast fungus Magnaporthe oryzae. Plant Physiol 164(2):1077–1092.  https://doi.org/10.1104/pp.113.230052CrossRefGoogle Scholar
  104. Li H, Dong YC, Chang JJ, He J, Chen HJ, Liu QY, Wei CH, Ma JX, Zhang Y, Yang JQ, Zhang X (2016) High-throughput microRNA and mRNA sequencing reveals that microRNAs may be involved in melatonin-mediated cold tolerance in Citrullus lanatus L. Front Plant Sci 7:1231.  https://doi.org/10.3389/fpls.2016.01231CrossRefGoogle Scholar
  105. Li S, Yu X, Lei N, Cheng Z, Zhao P, He Y, Wang W, Peng M (2017a) Genome-wide identification and functional prediction of cold and/or drought-responsive lncRNAs in cassava. Sci Rep 7:45981.  https://doi.org/10.1038/srep45981CrossRefGoogle Scholar
  106. Li Y, Zhao S-L, Li J-L, Hu X-H, Wang H, Cao X-L, Xu Y-J, Zhao Z-X, Xiao Z-Y, Yang N, Fan J, Huang F, Wang W-M (2017b) Osa-miR169 negatively regulates rice immunity against the blast fungus Magnaporthe oryzae. Front Plant Sci 8(2).  https://doi.org/10.3389/fpls.2017.00002
  107. Liu H-H, Tian X, Li Y-J, Wu C-A, Zheng C-C (2008a) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14(5):836–843.  https://doi.org/10.1261/rna.895308CrossRefGoogle Scholar
  108. Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008b) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14(5):836–843.  https://doi.org/10.1261/rna.895308CrossRefGoogle Scholar
  109. Liu J, Yang L, Luan M, Wang Y, Zhang C, Zhang B, Shi J, Zhao F-G, Lan W, Luan S (2015) A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis. Proc Natl Acad Sci 112(47):E6571–E6578.  https://doi.org/10.1073/pnas.1514598112CrossRefGoogle Scholar
  110. Liu T-Y, Huang T-K, Yang S-Y, Hong Y-T, Huang S-M, Wang F-N, Chiang S-F, Tsai S-Y, Lu W-C, Chiou T-J (2016) Identification of plant vacuolar transporters mediating phosphate storage. Nat Commun 7:11095.  https://doi.org/10.1038/ncomms11095 https://www.nature.com/articles/ncomms11095#supplementary-informationCrossRefGoogle Scholar
  111. Liu Z, Wang X, Chen X, Shi G, Bai Q, Xiao K (2018) TaMIR1139: a wheat miRNA responsive to Pi-starvation, acts a critical mediator in modulating plant tolerance to Pi deprivation. Plant Cell Rep.  https://doi.org/10.1007/s00299-018-2313-6Google Scholar
  112. Lu C, Fedoroff N (2000) A mutation in the arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell 12(12):2351–2365.  https://doi.org/10.1105/tpc.12.12.2351CrossRefGoogle Scholar
  113. Lu S, Sun YH, Shi R, Clark C, Li L, Chiang VL (2005) Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17(8):2186–2203.  https://doi.org/10.1105/tpc.105.033456CrossRefGoogle Scholar
  114. Lu SF, Sun YH, Amerson H, Chiang VL (2007) MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. Plant J 51(6):1077–1098.  https://doi.org/10.1111/j.1365-313X.2007.03208.xCrossRefGoogle Scholar
  115. Lv DK, Bai X, Li Y, Ding XD, Ge Y, Cai H, Ji W, Wu NLH, Zhu YM (2010) Profiling of cold-stress-responsive miRNAs in rice by microarrays. Gene 459(1–2):39–47.  https://doi.org/10.1016/j.gene.2010.03.011CrossRefGoogle Scholar
  116. Lv DW, Zhen SM, Zhu GR, Bian YW, Chen GX, Han CX, Yu ZT, Yan YM (2016) High-throughput sequencing reveals H2O2 stress-associated microRNAs and a potential regulatory network in Brachypodium distachyon seedlings. Front Plant Sci 7:1567.  https://doi.org/10.3389/fpls.2016.01567CrossRefGoogle Scholar
  117. Mackowiak SD (2011) Identification of novel and known miRNAs in deep-sequencing data with miRDeep2. Curr Protoc Bioinformatics 36(1):12–10Google Scholar
  118. Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444(2):139–158.  https://doi.org/10.1016/j.abb.2005.10.018CrossRefGoogle Scholar
  119. Mallory AC, Bartel DP, Bartel B (2005) MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17(5):1360–1375.  https://doi.org/10.1105/tpc.105.031716CrossRefGoogle Scholar
  120. Mangrauthia SK, Bhogireddy S, Agarwal S, Prasanth VV, Voleti SR, Neelamraju S, Subrahmanyam D (2017) Genome-wide changes in microRNA expression during short and prolonged heat stress and recovery in contrasting rice cultivars. J Exp Bot 68(9):2399–2412.  https://doi.org/10.1093/jxb/erx111CrossRefGoogle Scholar
  121. Mantovani R (1999) The molecular biology of the CCAAT-binding factor NF-Y. Gene 239(1):15–27.  https://doi.org/10.1016/S0378-1119(99)00368-6CrossRefGoogle Scholar
  122. Maruyama-Nakashita A, Inoue E, Watanabe-Takahashi A, Yamaya T, Takahashi H (2003) Transcriptome profiling of sulfur-responsive genes in Arabidopsis reveals global effects of sulfur nutrition on multiple metabolic pathways. Plant Physiol 132(2):597Google Scholar
  123. Meng Y, Chen D, Ma X, Mao C, Cao J, Wu P, Chen M (2010) Mechanisms of microRNA-mediated auxin signaling inferred from the rice mutant osaxr. Plant Signal Behav 5(3):252–254Google Scholar
  124. Meng YJ, Shao CG, Chen M (2011) Toward microRNA-mediated gene regulatory networks in plants. Brief Bioinform 12(6):645–659.  https://doi.org/10.1093/bib/bbq091CrossRefGoogle Scholar
  125. Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ, Griffiths-Jones S (2008) Criteria for annotation of plant microRNAs. Plant Cell 20(12):3186–3190Google Scholar
  126. Miller J, Beasley B, Drury C, Larney F, Hao X (2017) Surface soil salinity and soluble salts after 15 applications of composted or stockpiled manure with straw or wood-chips. Compost Sci Util 25(1):36–47.  https://doi.org/10.1080/1065657X.2016.1176968CrossRefGoogle Scholar
  127. Mohanpuria P, Yadav SK (2012) Characterization of novel small RNAs from tea (Camellia sinensis L.). Mol Biol Rep 39(4):3977–3986.  https://doi.org/10.1007/s11033-011-1178-3CrossRefGoogle Scholar
  128. Munusamy P, Zolotarov Y, Meteignier LV, Moffett P, Stromvik MV (2017) De novo computational identification of stress-related sequence motifs and microRNA target sites in untranslated regions of a plant translatome. Sci Rep 7:43861.  https://doi.org/10.1038/srep43861CrossRefGoogle Scholar
  129. Na G, Salt DE (2011) The role of sulfur assimilation and sulfur-containing compounds in trace element homeostasis in plants. Environ Exp Bot 72(1):18–25.  https://doi.org/10.1016/j.envexpbot.2010.04.004CrossRefGoogle Scholar
  130. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDG (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312(5772):436–439.  https://doi.org/10.1126/science.1126088CrossRefGoogle Scholar
  131. Naya L, Paul S, Valdes-Lopez O, Mendoza-Soto AB, Nova-Franco B, Sosa-Valencia G, Reyes JL, Hernandez G (2014) Regulation of copper homeostasis and biotic interactions by microRNA 398b in common bean. PLoS One 9(1):e84416.  https://doi.org/10.1371/journal.pone.0084416CrossRefGoogle Scholar
  132. Nguyen G, Rothstein S, Spangenberg G, Kant S (2015) Role of microRNAs involved in plant response to nitrogen and phosphorous limiting conditions. Front Plant Sci 6(629).  https://doi.org/10.3389/fpls.2015.00629
  133. Nurnberger T, Nennstiel D, Jabs T, Sacks WR, Hahlbrock K, Scheel D (1994) High-affinity binding of a fungal oligopeptide elicitor to parsley plasma-membranes triggers multiple defense responses. Cell 78(3):449–460.  https://doi.org/10.1016/0092-8674(94)90423-5CrossRefGoogle Scholar
  134. Osman H, Vauthrin S, Mikes V, Milat ML, Panabieres F, Marais A, Brunie S, Maume B, Ponchet M, Blein JP (2001) Mediation of elicitin activity on tobacco is assumed by elicitin-sterol complexes. Mol Biol Cell 12(9):2825–2834.  https://doi.org/10.1091/mbc.12.9.2825CrossRefGoogle Scholar
  135. Ou YB, Liu X, Xie CH, Zhang HL, Lin Y, Li M, Song BT, Liu J (2015) Genome-wide identification of microRNAs and their targets in cold-stored potato tubers by deep sequencing and degradome analysis. Plant Mol Biol Rep 33(3):584–597.  https://doi.org/10.1007/s11105-014-0771-8CrossRefGoogle Scholar
  136. Paicu C, Mohorianu I, Stocks M, Xu P, Coince A, Billmeier M, Dalmay T, Moulton V, Moxon S (2017) MiRCat2: accurate prediction of plant and animal microRNAs from next-generation sequencing datasets. Bioinformatics 33(16):2446–2454.  https://doi.org/10.1093/bioinformatics/btx210CrossRefGoogle Scholar
  137. Pan W-J, Tao J-J, Cheng T, Bian X-H, Wei W, Zhang W-K, Ma B, Chen S-Y, Zhang J-S (2016) Soybean miR172a improves salt tolerance and can function as a long-distance signal. Mol Plant 9(9):1337–1340.  https://doi.org/10.1016/j.molp.2016.05.010CrossRefGoogle Scholar
  138. Pérez-Quintero ÁL, Neme R, Zapata A, López C (2010) Plant microRNAs and their role in defense against viruses: a bioinformatics approach. BMC Plant Biol 10(1):138.  https://doi.org/10.1186/1471-2229-10-138CrossRefGoogle Scholar
  139. Poethig RS (2009) Small RNAs and developmental timing in plants. Curr Opin Genet Dev 19(4):374–378.  https://doi.org/10.1016/j.gde.2009.06.001CrossRefGoogle Scholar
  140. Prabu GR, Mandal AK (2010) Computational identification of miRNAs and their target genes from expressed sequence tags of tea (Camellia sinensis). Genomics Proteomics Bioinformatics 8(2):113–121.  https://doi.org/10.1016/S1672-0229(10)60012-5CrossRefGoogle Scholar
  141. Ragupathy R, Ravichandran S, Mahdi MSR, Huang D, Reimer E, Domaratzki M, Cloutier S (2016) Deep sequencing of wheat sRNA transcriptome reveals distinct temporal expression pattern of miRNAs in response to heat, light and UV. Sci Rep 6:39373.  https://doi.org/10.1038/srep39373CrossRefGoogle Scholar
  142. Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20(24):3407–3425Google Scholar
  143. Rajwanshi R, Chakraborty S, Jayanandi K, Deb B, Lightfoot DA (2014) Orthologous plant microRNAs: microregulators with great potential for improving stress tolerance in plants. Theor Appl Genet 127(12):2525–2543.  https://doi.org/10.1007/s00122-014-2391-yCrossRefGoogle Scholar
  144. Remita MA, Lord E, Agharbaoui Z, Leclercq M, Badawi MA, Sarhan F, Diallo AB (2016) A novel comprehensive wheat miRNA database, including related bioinformatics software. Curr Plant Biol 7:31–33Google Scholar
  145. Reyes JL, Chua NH (2007) ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J 49(4):592–606.  https://doi.org/10.1111/j.1365-313X.2006.02980.xCrossRefGoogle Scholar
  146. Rind D, Goldberg R, Hansen J, Rosenzweig C, Ruedy R (1990) Potential evapotranspiration and the likelihood of future drought. J Geophys Res 95(D7):9983–10004.  https://doi.org/10.1029/JD095iD07p09983CrossRefGoogle Scholar
  147. Robert-Seilaniantz A, MacLean D, Jikumaru Y, Hill L, Yamaguchi S, Kamiya Y, Jones JD (2011) The microRNA miR393 re-directs secondary metabolite biosynthesis away from camalexin and towards glucosinolates. Plant J 67(2):218–231.  https://doi.org/10.1111/j.1365-313X.2011.04591.xCrossRefGoogle Scholar
  148. Rogers K, Chen X (2013) Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25(7):2383–2399.  https://doi.org/10.1105/tpc.113.113159CrossRefGoogle Scholar
  149. Ruiz-Ferrer V, Voinnet O (2009) Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 60:485–510.  https://doi.org/10.1146/annurev.arplant.043008.092111CrossRefGoogle Scholar
  150. Sahu S, Rao AR, Bansal KC, Muthusamy SK, Chinnusamy V (2016) Genome-wide analysis and identification of abiotic stress responsive transcription factor family genes and miRNAs in bread wheat (Triticum aestivum L.) Genomic study of bread wheat. 2016 International conference on bioinformatics and systems biology (BSB)Google Scholar
  151. Sailaja B, Anjum N, Prasanth VV, Sarla N, Subrahmanyam D, Voleti SR, Viraktamath BC, Mangrauthia SK (2014) Comparative study of susceptible and tolerant genotype reveals efficient recovery and root system contributes to heat stress tolerance in rice. Plant Mol Biol Rep 32(6):1228–1240.  https://doi.org/10.1007/s11105-014-0728-yCrossRefGoogle Scholar
  152. Schommer C, Palatnik JF, Aggarwal P, Chetelat A, Cubas P, Farmer EE, Nath U, Weigel D (2008) Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol 6(9):1991–2001.e230.  https://doi.org/10.1371/journal.pbio.0060230CrossRefGoogle Scholar
  153. Segonzac C, Zipfel C (2011) Activation of plant pattern-recognition receptors by bacteria. Curr Opin Microbiol 14(1):54–61.  https://doi.org/10.1016/j.mib.2010.12.005CrossRefGoogle Scholar
  154. Shu YJ, Liu Y, Li W, Song LL, Zhang J, Guo CH (2016) Genome-wide investigation of microRNAs and their targets in response to freezing stress in Medicago sativa L., based on high-throughput sequencing. G3 (Bethesda) 6(3):755–765.  https://doi.org/10.1534/g3.115.025981CrossRefGoogle Scholar
  155. Smertenko A, Draber P, Viklicky V, Opatrny Z (1997) Heat stress affects the organization of microtubules and cell division in Nicotiana tabacum cells. Plant Cell Environ 20(12):1534–1542.  https://doi.org/10.1046/j.1365-3040.1997.d01-44.xCrossRefGoogle Scholar
  156. Smith TF, Waterman MS (1981) Comparison of biosequences. Adv Appl Math 2(4):482–489Google Scholar
  157. Song JB, Gao S, Sun D, Li H, Shu XX, Yang ZM (2013) miR394 and LCR are involved in Arabidopsis salt and drought stress responses in an abscisic acid-dependent manner. BMC Plant Biol 13(1):210.  https://doi.org/10.1186/1471-2229-13-210CrossRefGoogle Scholar
  158. Song GQ, Zhang RZ, Zhang SJ, Li YL, Gao J, Han XD, Chen ML, Wang J, Li W, Li GY (2017) Response of microRNAs to cold treatment in the young spikes of common wheat. BMC Genomics 18:212.  https://doi.org/10.1186/s12864-017-3556-2CrossRefGoogle Scholar
  159. Soto-Suarez M, Baldrich P, Weigel D, Rubio-Somoza I, San Segundo B (2017) The Arabidopsis miR396 mediates pathogen-associated molecular pattern-triggered immune responses against fungal pathogens. Sci Rep 7:44898.  https://doi.org/10.1038/srep44898CrossRefGoogle Scholar
  160. Stief A, Brzezinka K, Lamke J, Baurle I (2014) Epigenetic responses to heat stress at different time scales and the involvement of small RNAs. Plant Signal Behav 9(10):e970430.  https://doi.org/10.4161/15592316.2014.970430CrossRefGoogle Scholar
  161. Sun J, Zhou M, Mao ZT, Li CX (2012) Characterization and evolution of microRNA genes derived from repetitive elements and duplication events in plants. PLoS One 7(4):e34092.  https://doi.org/10.1371/journal.pone.0034092CrossRefGoogle Scholar
  162. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16(8):2001–2019.  https://doi.org/10.1105/tpc.104.022830CrossRefGoogle Scholar
  163. Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065.  https://doi.org/10.1105/tpc.106.180960 Erratum in 18(9):2415CrossRefGoogle Scholar
  164. Sunkar R, Zhou XF, Zheng Y, Zhang WX, Zhu JK (2008) Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol 8:25.  https://doi.org/10.1186/1471-2229-8-25CrossRefGoogle Scholar
  165. Takahashi H, Watanabe-Takahashi A, Smith FW, Blake-Kalff M, Hawkesford MJ, Saito K (2000) The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana. Plant J 23(2):171–182Google Scholar
  166. Taylor RS, Tarver JE, Hiscock SJ, Donoghue PC (2014) Evolutionary history of plant microRNAs. Trends Plant Sci 19(3):175–182Google Scholar
  167. Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7(11):847–859.  https://doi.org/10.1038/nrm2020CrossRefGoogle Scholar
  168. Teixeira EI, Fischer G, van Velthuizen H, Walter C, Ewert F (2013) Global hot-spots of heat stress on agricultural crops due to climate change. Agric For Meteorol 170:206–215.  https://doi.org/10.1016/j.agrformet.2011.09.002CrossRefGoogle Scholar
  169. Thomashow MF (2010) Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol 154(2):571–577.  https://doi.org/10.1104/pp.110.161794CrossRefGoogle Scholar
  170. Tong AZ, Yuan Q, Wang S, Peng JJ, Lu YW, Zheng HY, Lin L, Chen HR, Gong YF, Chen JP, Yan F (2017) Altered accumulation of osa-miR171b contributes to rice stripe virus infection by regulating disease symptoms. J Exp Bot 68(15):4357–4367.  https://doi.org/10.1093/jxb/erx230CrossRefGoogle Scholar
  171. Tseng KC, Chiang-Hsieh YF, Pai H, Chow CN, Lee SC, Zheng HQ, Kuo PL, Li GZ, Hung YC, Lin NS, Chang WC (2018) microRPM: a microRNA prediction model based only on plant small RNA sequencing data. Bioinformatics 34(7):1108–1115Google Scholar
  172. Tyagi A, Nigam D, Solanke AU, Singh NK, Sharma TR, Gaikwad K (2018) Genome-wide discovery of tissue-specific miRNA s in clusterbean (Cyamopsis tetragonoloba) indicates their association with galactomannan biosynthesis. Plant Biotechnol J 16(6):1241–1257Google Scholar
  173. Unamba CIN, Nag A, Sharma RK (2015) Next generation sequencing technologies: the doorway to the unexplored genomics of non-model plants. Front Plant Sci 6:1074.  https://doi.org/10.3389/fpls.2015.01074CrossRefGoogle Scholar
  174. Valdes-Lopez O, Yang SS, Aparicio-Fabre R, Graham PH, Reyes JL, Vance CP, Hernandez G (2010) MicroRNA expression profile in common bean (Phaseolus vulgaris) under nutrient deficiency stresses and manganese toxicity. New Phytol 187(3):805–818.  https://doi.org/10.1111/j.1469-8137.2010.03320.xCrossRefGoogle Scholar
  175. Vitsios DM, Kentepozidou E, Quintais L, Benito-Gutiérrez E, van Dongen S, Davis MP, Enright AJ (2017) Mirnovo: genome-free prediction of microRNAs from small RNA sequencing data and single-cells using decision forests. Nucleic Acids Res 45(21):e177Google Scholar
  176. Vizarova G (1968) Study of the level of the indole type of growth regulators in barley during the pathogenesis of the powdery mildew (Erysiphe graminis f. sp. hordei Marchal). Biologia (Bratisl) 23(1):89–94Google Scholar
  177. Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136(4):669–687.  https://doi.org/10.1016/j.cell.2009.01.046CrossRefGoogle Scholar
  178. Wang L, Zhang Q (2017) Boosting rice yield by fine-tuning SPL gene expression. Trends Plant Sci 22(8):643–646.  https://doi.org/10.1016/j.tplants.2017.06.004CrossRefGoogle Scholar
  179. Wang C, Huang W, Ying YH, Li S, Secco D, Tyerman S, Whelan J, Shou HX (2012a) Functional characterization of the rice SPX-MFS family reveals a key role of OsSPX-MFS1 in controlling phosphate homeostasis in leaves. New Phytol 196(1):139–148.  https://doi.org/10.1111/j.1469-8137.2012.04227.xCrossRefGoogle Scholar
  180. Wang Y, Sun FL, Cao H, Peng HR, Ni ZF, Sun QX, Yao YY (2012b) TamiR159 directed wheat TaGAMYB cleavage and its involvement in anther development and heat response. PLoS One 7(11):e48445.  https://doi.org/10.1371/journal.pone.0048445CrossRefGoogle Scholar
  181. Wang M, Wang QL, Zhang BH (2013) Response of miRNAs and their targets to salt and drought stresses in cotton (Gossypium hirsutum L.). Gene 530(1):26–32.  https://doi.org/10.1016/j.gene.2013.08.009CrossRefGoogle Scholar
  182. Wang QS, Liu N, Yang XY, Tu LL, Zhang XL (2016) Small RNA-mediated responses to low- and high-temperature stresses in cotton. Sci Rep 6:35558.  https://doi.org/10.1038/srep35558CrossRefGoogle Scholar
  183. Wang Y, Branicky R, Noe A, Hekimi S (2018) Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol 217(6):1915–1928.  https://doi.org/10.1083/jcb.201708007CrossRefGoogle Scholar
  184. Wei BG, Yang LS (2010) A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem J 94(2):99–107.  https://doi.org/10.1016/j.microc.2009.09.014CrossRefGoogle Scholar
  185. Wei XC, Zhang XH, Yao QJ, Yuan YX, Li XX, Wei F, Zhao YY, Zhang Q, Wang ZY, Jiang WS, Zhang XW (2015) The miRNAs and their regulatory networks responsible for pollen abortion in Ogura-CMS Chinese cabbage revealed by high-throughput sequencing of miRNAs, degradomes, and transcriptomes. Front Plant Sci 6:894.  https://doi.org/10.3389/fpls.2015.00894CrossRefGoogle Scholar
  186. Wu MT, Wallner SJ (1985) Effect of temperature on freezing and heat-stress tolerance of cultured plant-cells. Cryobiology 22(2):191–195.  https://doi.org/10.1016/0011-2240(85)90174-9CrossRefGoogle Scholar
  187. Wu J, Wang L, Wang S (2017) MicroRNAs associated with drought response in the pulse crop common bean (Phaseolus vulgaris L.). Gene 628:78–86.  https://doi.org/10.1016/j.gene.2017.07.038CrossRefGoogle Scholar
  188. Xie FL, Xiao P, Zhang BH (2011) Target-align: a tool for plant microRNA target identification. In Vitro Cell Dev Biol-Animal 47:S71–S72Google Scholar
  189. Xie FL, Xiao P, Chen DL, Xu L, Zhang BH (2012) miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol 80(1):75–84.  https://doi.org/10.1007/s11103-012-9885-2CrossRefGoogle Scholar
  190. Xie FL, Wang QL, Sun RR, Zhang BH (2015) Deep sequencing reveals important roles of microRNAs in response to drought and salinity stress in cotton. J Exp Bot 66(3):789–804.  https://doi.org/10.1093/jxb/eru437CrossRefGoogle Scholar
  191. Xin M, Wang Y, Yao Y, Xie C, Peng H, Ni Z, Sun Q (2010) Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biol 10:123.  https://doi.org/10.1186/1471-2229-10-123CrossRefGoogle Scholar
  192. Xu L, Wang Y, Zhai LL, Xu YY, Wang LJ, Zhu XW, Gong YQ, Yu RG, Limera C, Liu LW (2013) Genome-wide identification and characterization of cadmium-responsive microRNAs and their target genes in radish (Raphanus sativus L.) roots. J Exp Bot 64(14):4271–4287.  https://doi.org/10.1093/jxb/ert240CrossRefGoogle Scholar
  193. Yang X, Li L (2011) miRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants. Bioinformatics 27(18):2614–2615Google Scholar
  194. Yang ZM, Chen J (2013) A potential role of microRNAs in plant response to metal toxicity. Metallomics 5(9):1184–1190.  https://doi.org/10.1039/c3mt00022bCrossRefGoogle Scholar
  195. Yang CH, Li DY, Mao DH, Liu X, Ji CJ, Li XB, Zhao XF, Cheng ZK, Chen CY, Zhu LH (2013) Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant Cell Environ 36(12):2207–2218.  https://doi.org/10.1111/pce.12130CrossRefGoogle Scholar
  196. Yin ZJ, Li Y, Han XL, Shen FF (2012) Genome-wide profiling of miRNAs and other small non-coding RNAs in the Verticillium dahliae-inoculated cotton roots. PLoS One 7(4):e35765.  https://doi.org/10.1371/journal.pone.0035765CrossRefGoogle Scholar
  197. Yongsheng Y, Huacai W, Sadia H, Xiaoying C, Rongxiang F (2014) MiR444a has multiple functions in the rice nitrate-signaling pathway. Plant J 78(1):44–55.  https://doi.org/10.1111/tpj.12446CrossRefGoogle Scholar
  198. Yu X, Wang H, Lu YZ, de Ruiter M, Cariaso M, Prins M, van Tunen A, He YK (2012) Identification of conserved and novel microRNAs that are responsive to heat stress in Brassica rapa. J Exp Bot 63(2):1025–1038.  https://doi.org/10.1093/jxb/err337CrossRefGoogle Scholar
  199. Yu H, Zhang Y, Moss BL, Bargmann BOR, Wang R, Prigge M, Nemhauser JL, Estelle M (2015) Untethering the TIR1 auxin receptor from the SCF complex increases its stability and inhibits auxin response. Nat Plants 1:14030.  https://doi.org/10.1038/nplants.2014.30 https://www.nature.com/articles/nplants201430#supplementary-informationCrossRefGoogle Scholar
  200. Yu D, Tang Z, Shao C, Ma X, Xiang T, Fan Z, Wang H, Meng Y (2017) Investigating microRNA-mediated regulation of the nascent nuclear transcripts in plants: a bioinformatics workflow. Brief Bioinform.  https://doi.org/10.1093/bib/bbx069
  201. Zabala G, Campos E, Varala KK, Bloomfield S, Jones SI, Win H, Tuteja JH, Calla B, Clough SJ, Hudson M, Vodkin LO (2012) Divergent patterns of endogenous small RNA populations from seed and vegetative tissues of Glycine max. BMC Plant Biol 12(1):177Google Scholar
  202. Zhang BH (2015) MicroRNA: a new target for improving plant tolerance to abiotic stress. J Exp Bot 66(7):1749–1761.  https://doi.org/10.1093/jxb/erv013CrossRefGoogle Scholar
  203. Zhang BH, Pan XP, Cobb GP, Anderson TA (2006) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289(1):3–16.  https://doi.org/10.1016/j.ydbio.2005.10.036CrossRefGoogle Scholar
  204. Zhang JY, Xu YY, Huan Q, Chong K (2009) Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics 10:449.  https://doi.org/10.1186/1471-2164-10-449CrossRefGoogle Scholar
  205. Zhang LW, Song JB, Shu XX, Zhang Y, Yang ZM (2013) miR395 is involved in detoxification of cadmium in Brassica napus. J Hazard Mater 250:204–211Google Scholar
  206. Zhang YF, He LY, Chen ZJ, Wang QY, Qian M, Sheng XF (2011) Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere 83(1):57–62.  https://doi.org/10.1016/j.chemosphere.2011.01.041CrossRefGoogle Scholar
  207. Zhang XN, Li X, Liu JH (2014a) Identification of conserved and novel cold-responsive microRNAs in trifoliate orange (Poncirus trifoliata (L.) Raf.) using high-throughput sequencing. Plant Mol Biol Rep 32(2):328–341.  https://doi.org/10.1007/s11105-013-0649-1CrossRefGoogle Scholar
  208. Zhang Y, Zhu X, Chen X, Song C, Zou Z, Wang Y, Wang M, Fang W, Li X (2014b) Identification and characterization of cold-responsive microRNAs in tea plant (Camellia sinensis) and their targets using high-throughput sequencing and degradome analysis. BMC Plant Biol 14:271.  https://doi.org/10.1186/s12870-014-0271-xCrossRefGoogle Scholar
  209. Zhang T, Zhao YL, Zhao JH, Wang S, Jin Y, Chen ZQ, Fang YY, Hua CL, Ding SW, Guo HS (2016) Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nat Plants 2(10):16153.  https://doi.org/10.1038/Nplants.2016.153CrossRefGoogle Scholar
  210. Zhao JP, Jiang XL, Zhang BY, Su XH (2012) Involvement of microRNA-mediated gene expression regulation in the pathological development of stem canker disease in Populus trichocarpa. PLoS One 7(9):e44968.  https://doi.org/10.1371/journal.pone.0044968CrossRefGoogle Scholar
  211. Zhao H, Wu D, Kong F, Lin K, Zhang H, Li G (2016) The Arabidopsis thaliana nuclear factor Y transcription factors. Front Plant Sci 7:2045.  https://doi.org/10.3389/fpls.2016.02045CrossRefGoogle Scholar
  212. Zhou XF, Wang GD, Sutoh K, Zhu JK, Zhang WX (2008) Identification of cold-inducible microRNAs in plants by transcriptome analysis. BBA-Gene Regul Mech 1779(11):780–788.  https://doi.org/10.1016/j.bbagrm.2008.04.005CrossRefGoogle Scholar
  213. Zhou LG, Liu YH, Liu ZC, Kong DY, Duan M, Luo LJ (2010) Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot 61(15):4157–4168.  https://doi.org/10.1093/jxb/erq237CrossRefGoogle Scholar
  214. Zhou ZS, Song JB, Yang ZM (2012) Genome-wide identification of Brassica napus microRNAs and their targets in response to cadmium. J Exp Bot 63(12):4597–4613.  https://doi.org/10.1093/jxb/ers136CrossRefGoogle Scholar
  215. Zipfel C (2014) Plant pattern-recognition receptors. Trends Immunol 35(7):345–351.  https://doi.org/10.1016/j.it.2014.05.004CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Abdelali Hannoufa
    • 1
    • 2
  • Craig Matthews
    • 1
    • 2
  • Biruk A. Feyissa
    • 1
    • 2
  • Margaret Y. Gruber
    • 3
  • Muhammad Arshad
    • 1
    • 4
  1. 1.Agriculture and Agri-Food CanadaLondonCanada
  2. 2.Department of BiologyUniversity of Western OntarioLondonCanada
  3. 3.Agriculture and Agri-Food CanadaSaskatoonCanada
  4. 4.Centre of Agriculture Biochemistry and BiotechnologyUniversity of AgricultureFaisalabadPakistan

Personalised recommendations